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Abstract—We report our experiences in porting and tuning
the Apache Spark data analytics framework on the Cray
XC30 (Edison) and XC40 (Cori) systems, installed at NERSC.
Spark has been designed for cloud environments where local
disk 1/0 is cheap and performance is constrained by the
network latency. In large HPC systems diskless nodes are
connected by fast networks: without careful tuning Spark
execution is dominated by I/O performance. In default mode
the centralized storage system, such as Lustre, results in
metadata access latency being a major bottleneck that severely
constrains scalability. We show how to mitigate this by using
per-node loopback filesystems for temporary storage. With this
technique, we reduce the communication (data shuffle) time
by multiple orders of magnitude and improve the application
scalability from O(100) to O(10,000) cores on Cori. With
this configuration Spark’s execution becomes again network
dominated. This reflects in the performance comparison with
a cluster with fast local SSDs, specifically designed for data
intensive workloads. Due to slightly faster processor and better
network, Cori provides performance better by an average
of 13.7% for the machine learning benchmark suite. This is
the first such result where HPC systems outperform systems
designed for data intensive workloads. Overall, we believe this
paper demonstrates that local disks are not necessary for good
performance on data analytics workloads.
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I. INTRODUCTION

Apache Spark [1] is a data analytics framework which
provides high-level constructs for expressing computations
over datasets larger than the system physical memory. The
runtime provides elastic parallelism, i.e. resources could
grow or shrink without requiring any change to application
code, and provides resilient execution, which allows auto-
matic recovering from resource failures.

Spark is part of the Berkeley Data Analytics Stack [2],
which includes storage, resource management and schedul-
ing infrastructure, such as the Hadoop Distributed File
System (HDFS) [3] and the Hadoop YARN resouce sched-
uler [4]. High-level application-domain libraries are built on
top of spark, such as GraphX for graph analytics [5], Spark
SQL for database queries [6], MLLib for machine learn-
ing [7], and Spark Streaming for online data processing [8].
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Spark targets directly cloud or commodity clusters com-
pute environments, which have latency-optimized local disk
storage and bandwidth-optimized network, relatively few
cores per node, and possibly little memory per node. HPC
systems such as the Cray XC series, in contrast, feature
diskless compute nodes with access to a high bandwidth
global filesystem, large core counts, large memory sizes per
compute node, and latency-optimized networks designed for
use with HPC tightly coupled applications. The question
remains if design decisions made for cloud environments
translate well when running Spark on HPC systems and
whether the latter can bring any value to analytics workloads
due to their superior and tightly integrated hardware. In this
paper, we present a comparative performance analysis of
Spark running on Cray XC HPC systems and on a system
(Comet) designed for data intensive workloads with large
local SSDs.

We discuss the design of the Spark runtime, showing
where file I/O occurs and what file access patterns are
commonly used. On Cori, a Cray XC40 system installed at
NERSC [9], we show that the use of the Lustre filesystem to
store intermediate data can lead to substantial performance
degradation as a result of expensive metadata operations.
Initial Spark scalability is limited to O(100) cores. To reduce
I/O impact we extend Shifter, a lightweight container infras-
tructure for Cray systems, to mount a per-node loopback
filesystem backed by Lustre files. This reduces the impact
of the metadata operations by many orders of magnitude.
With loopback, single node Spark performance on Cray
XC improves by 6x and it becomes comparable to that of
single Comet node with SSDs. Even more exciting, loopback
allows us to scale out to O(10,000) cores and we observe
orders of magnitude improvements at scale.

After calibrating and obtaining equivalent node perfor-
mance on the Cray and Comet, we can compare the perfor-
mance across the two system architectures. While the CPUs
are roughly equivalent, Comet’s nodes are connected with
InfiniBand and the Cray uses Aries [10]. When comparing
InfiniBand and Aries, the former exhibits higher latency
and lower bandwidth. We use the spark-perf benchmark
suite, consisting of a set of core RDD benchmarks and a set



of machine learning algorithm benchmarks using MLLib.

On both systems, the default Spark configuration uses
TCP/IP over the native transport. In this configuration, the
Cray XC is 55% faster than Comet at 16 nodes, which
we attribute to the better network and natively optimized
TCP/IP stack. TCP/IP overhead has been recognized as
unnecessary overhead in HPC systems and optimized Spark
implementations use RDMA communication.

Overall, these results are very encouraging. Simple config-
uration choices make HPC systems outperform architecures
specifically designed for data analytics workloads with local
SSDs: a global file system that provides a global name space
can provide good performance. This indicates current system
HPC designs are good to execute both scientific and data
intensive workloads. The performance differences between
the Cray XC and Comet may provide incentive for the
aquisition of HPC systems in the “commercial” domain.

II. SPARK ARCHITECTURE

Spark implements the Map/Reduce model of computation.
From the application developer’s perspective, Spark pro-
grams manipulate resilient distributed datasets [11] (RDD),
which are distributed lists of key-value pairs. The developer
constructs RDDs from input data by reading files or par-
allelizing existing Scala or Python lists, and subsequently
produces derived RDDs by applying transformations and
actions. Transformations, such as map and filter, declare
the kind of computation that could occur, but does not
actually trigger computation; rather, a lineage is constructed,
showing how the data represented by an RDD can be
computed, when the data is actually required. Actions ac-
tually retrieve values from an RDD, and trigger the deferred
computation to occur. Figure 1 shows a simple example
of such a chain of transformations terminated by an action
triggering computation.

Internally, RDDs are divided into partitions, which in turn
are divided into blocks. All blocks within a partition are
coresident on a particular node, and computation occurs at
the partition level. When a partition is to be computed, the
runtime produces and schedules a task which is submitted
to the scheduling infrastructure. A task is assigned to a core
and the number of partitions during execution is usually a
small multiple of the number of cores.

The system consists of a driver running the application
code, which constructs RDDs and submits tasks to compute
RDD partitions, and one or more executors, where tasks
run. The runtime automatically manages storage for blocks,
through a per-executor BlockManager. The BlockManagers
are responsible for servicing requests for blocks.

When a block is requested which is part of a partition
owned by the current executor, the BlockManager checks to
see if the block has already been computed and is cached in
memory; if so, it is immediately returned. If not, the Block-
Manager retrieves a persisted block from disk, if available.

If the block is neither resident in memory nor on disk, the
BlockManager triggers computation of the block, which may
recursively trigger additional computations on blocks earlier
in the lineage chain. When a block finishes computation, it
is optionally cached in memory. The BlockManager has a
fixed size memory buffer allocated to it. If a block is to be
cached in memory but not enough memory is available, the
least-recently-used block is evicted from memory and either
stored to the disk or dropped entirely.

During map tasks, all data dependencies are intra-
partition. During a reduce task, inter-partition dependencies
can occur, and it is only during reduce tasks that inter-
node communication occurs. This occurs through a shuffle.
During a shuffle, the ShuffleManager sorts data within each
partition by key, and the key-value pairs within each partition
are written to per-partition shuffle data files on disk. Each
executor then submits requests for blocks, which are either
local or remote. Each node then requests blocks, both locally
and from other executors. When a block is requested which
is owned by a remote executor, the local BlockManager
makes a remote request to the owning BlockManager, which
maintains a queue of requests which are serviced once the
shuffle data is written to the corresponding shuffle file. The
runtime storage infrastructure is shown in Figure 2.

III. DisK I/O PATTERNS IN SPARK

Disk I/O can occur in almost every stage of a Spark
application. Figure 3 shows a lineage in which each RDD
is annotated with the type of Disk I/O that can occur during
its computation.

During the construction of input stages, disk I/O occurs
to read the input data. In a traditional Spark installation,
the input data would be stored in an HDFS overlay built
on top of local disks, while on the Cray XC input data
is stored directly on the Lustre filesystem available to all
compute nodes. Output data is similarly stored either in
HDEFS or in Lustre, depending on the installation. When data
is stored outside of HDFS, there is one file per partition, so
as a minimum, there must be at least as many file opens
and file reads as there are partitions. Additionally, each
file is accompanied by a checksum file used for verifying
integrity, and an index file indicating file names and offsets
for specific blocks. Simple file readers such as the text
file reader perform two file opens per partition: one for
the checksum file and one for the partition data file. More
complex file format readers perform more file operations; for
example, the Parquet compressed columnar storage format
performs four file opens per partition: first the checksum is
opened, the partition data file is opened and the checksum
computed, and both closed. Each partition data file is then
opened, the footer is read, and then the file is closed. Finally,
the file is opened again, the remainder of the file is read
before closing the file again.
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Figure 3. An example lineage showing the types of Disk I/O that can

occur during each phase of the computation.

During every phase, BlockManager I/O can occur. If a
block is requested while being stored on disk, the corre-
sponding temporary file is opened and the data read and
stored in memory, potentially triggering an eviction. When
an eviction occurs, the corresponding temporary file is
created, if necessary, and is written to. If sufficient memory
is available that problem data fits in RAM, BlockManager
disk I/O does not occur.

During shuffles, files are created storing sorted shuffle
data. As originally designed, each shuffle map task would
write an intermediate file for each shuffle reduce task,
resulting in O(tasks?) files being written. The very large
number of files produced tended to degrade performance by
overwhelming the inode cache [12], so this was replaced
with a single file per shuffle reduce task. However, as tasks
are not supposed to affect the global state of the runtime
except through the BlockManager, every map task writing
to a per-reduce-task file opens the file, writes to it, and closes
it. Similarly, every shuffle reduce task opens the file, reads
from it, and closes it. Thus, although the total number of
files has been reduced to O(tasks), the number of metadata



operations remains O(tasks?). Shuffle intermediate files
are always written regardless of the amount of memory
available.

IV. EVALUATION

We evaluate the spark-perf Core and MLLib bench-
mark suites on two systems, Cori and Comet. Cori [13],
installed at NERSC, is a Cray XC40 consisting of 1,630
compute nodes, each with two 2.3 GHz 16-core Intel
“Haswell” processors (Intel Xeon E5-2698 v3). Each node
of Cori is equipped with 128 GB DDR4 2133Mhz MHz
memory, and nodes are connected using a Cray Aries inter-
connect [10] based on the Dragonfly topology. A Lustre file
system is used to provide storage to compute nodes on Cori.
Comet [14], installed at SDSC, is Dell cluster consisting of
1,944 compute nodes, each with two 2.5 GHz 12-core Intel
“Haswell” processors (Intel Xeon ES-2680 v3). Each node of
Comet is equipped with 128 GB DDR4 DRAM. Nodes are
connected using InfiniBand [15] FDR. A Lustre filesystem
is provided, and additionally each node is equipped with a
320 GB SSD for fast scratch storage.

All of our evaluations are performed using Spark 1.5.0.
On Cori, we have ported Spark to run under Extreme
Scalability Mode (ESM) as described in [16]. On Comet,
we use the preinstalled Spark 1.5.0 package launched using
myHadoop [17].

On Cori we evaluate three Spark configurations: 1) using
Lustre as backend storage; 2) using a ramdisk as backend
storage; and 3) using as backend a mounted file system
backed by a single Lustre file. On Comet we evaluate two
configurations: 1) using Lustre as the backend storage; and
2) using the local SSDs.

V. SPARK PERFORMANCE ON LUSTRE

Previous work on porting Spark to the Cray platform [18]
running under Cluster Compatibility Mode revealed that
performance of TeraSort and PageRank was up to four
times worse on a 43 nodes of a Cray XC system compared
to an experimental 43-node Cray Aries-based system with
local SSDs, even though the experimental system had fewer
cores than the Cray XC (1,032 vs 1,376). To mitigate this
problem, the authors redirected shuffle intermediate files to
an in-memory filesystem, but noted that this limited the
size of problem that could be solved, and that the entire
Spark job fails if the in-memory filesystem becomes full.
Multiple shuffle storage directories can be specified, one
using the in-memory filesystem and one using the Lustre
scratch filesystem, but the Spark runtime then uses them in
a round-robin manner, so performance is still degraded.

On Cori we compare directly Lustre with in-memory
execution performance. On Comet we compare Lustre with
SSD storage. To illustrate the main differences we use the
GroupBy benchmark which is a worst-case shuffle. GroupBy
generates key-value pairs with a limited number of keys
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Figure 4. GroupBy benchmark performance (worst-case shuffle) on
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Figure 5. GroupBy benchmark performance (worst-case shuffle) on SDSC
Comet, with shuffle intermediate files stored on Lustre or local SSD.
Number of partitions in each case is 4 X cores

across many partitions, and then groups all values associated
with a particular key into one partition. This requires all-
to-all communication, and thus maximizes the number of
shuffle file operations required, as described in Section III,
above.

Figure 4 shows the results on Cori. On a single node (32
cores), when shuffle intermediate files are stored on Lustre,
time to job completion is 6 times longer than when shuffle
intermediate files are stored on an in-memory filesystem.
The performance degradation increases as nodes are added:
at 80 nodes, performance is 61 times worse on Lustre than
the in-memory filesystem. Runs larger than 80 nodes using
Lustre fail.

Results on Comet are shown in Figure 5. On one node,
shuffle performance is 11 times slower on Lustre than on the
SSD; however, the performance penalty does not become
worse as we add nodes. Because Comet compute nodes
feature local SSDs, there is less contention for the Lustre
metadata server, as other jobs running on the system tend to
make use of the SSD for intermediate file storage.
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Figure 6. Slowdown of spark-perf Spark Core benchmarks on Comet with shuffle intermediate data stored on the Lustre filesystem instead of local SSDs.

Figure 6 shows the performance of the spark-perf bench-
marks [19] on SDSC Comet. The scheduling-throughput
benchmark runs a series of empty tasks without any disk I/O;
its performance is unaffected by the choice of shuffle data
directory. The scala-agg-by-key, scala-agg-by-key-int and
scala-agg-by-key-naive benchmarks perform aggregation by
key: they generate key-value pairs and then apply functions
to all values associated with the same key throughout the
RDD; this requires a shuffle to move data between parti-
tions. The version using floating point values (scala-agg-
by-key) and the integer version (scala-agg-by-key-int) are
designed to shuffle the same number of bytes of data, so
that the number of values in the integer version is larger
than for the floating point version, increasing the number
of shuffle intermediate file writes. The scala-agg-by-key-
naive benchmark first performs a groupByKey, grouping all
values for each key into one partition, before performing
partition-local reductions, so that shuffles move a larger
volume of data than for the non-naive versions, giving
larger shuffle writes. The three scala-agg-by-key benchmarks
have degraded performance when intermediate data is stored
on Lustre, which continue to degrade as more nodes are
added; at 16 nodes, performance for scala-agg-by-key-naive
is 12 times worse than on SSD. The remaining benchmarks
involve little or no shuffling and so are unaffected by shuffle
directory placement.

As described in Section III, shuffle intermediate files
are opened once for each read or write. When shuffle
intermediate files are stored on Lustre, this causes heavy
metadata server load which slows the overall process of
reading or writing. Figure 7 shows the slowdown that results
from opening a file, reading it, closing it, and repeating this
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Figure 7. Slowdown from performing open-per-read rather than single-
open many-reads for reads of different sizes on various filesystems on
Edison, Cori, Comet, and a workstation with local disk. The penalty is
highest for the Lustre filesystems.

process, as compared to opening a file once and performing
multiple reads. For read sizes under one megabyte, Lustre
filesystems show a penalty increasing with decreasing read
size.

Spark-perf also provides a set of machine learning bench-
marks implemented using MLLib [7]. Figure 8 shows the
slowdown of using Lustre storage instead of SSD for these
benchmarks. Iterative algorithms — those which perform the
same stages multiple times, and therefore have multiple
rounds of shuffling — show the worst slowdown. The Ilda
(Latent Dirichlet allocation), pic (power iteration clustering),
summary statistics, spearman (Spearman rank correlation)
and prefix-span (Prefix Span sequential pattern mining)
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Figure 8. Slowdown of spark-perf MLLib benchmarks on Comet with shuffle intermediate data stored on the Lustre filesystem instead of local SSDs.

benchmarks all show subsantial slowdown when shuffle files
are stored on Lustre rather than local SSDs. These are
all iterative with the exception of the summary statistics
benchmark, which has smaller block sizes than the other
benchmarks.

These results demonstrate that shuffle performance is a
major cause of performance degradation when local disk is
not available or not used for shuffle-heavy applications.

VI. LOCALIZING METADATA OPERATIONS WITH
SHIFTER

To improve the file IO performance, ideally we need
to avoid propagating metadata operations to the Lustre
filesystem because these files are used solely by individual
compute nodes. On Cray XC systems, we do not have
access to local disk, and using in-memory filesystems limits
the problem sizes. We have previously described a file-
pooling technique [16] which maintains a pool of open
file handles during shuffling to avoid repeated opens of the
same file. However, this requires modifications to the Spark
runtime, and affects only operations coming from the Spark
runtime. Other sources of redundant opens, such as high-
level libraries and third-party file format readers, are not
addressed. Furthermore, each file must be opened at least
once, still placing load on the Lustre metadata server, even
though the files are only needed on one node.

To keep metadata operations local, we have previously
experimented with mounting a per-node loopback filesystem,
each backed by a file stored on Lustre. This enables storage
larger than available through an in-memory filesystem while
still keeping file opens of intermediate files local; only a
single open operation per node must be sent to the Lustre
metadata server, to open the backing file. This approach
was not feasible, however, for ordinary use, as mounting
a loopback filesystem requires root privileges.

Shifter [20] is a lightweight container infrastructure for the
Cray environment that provides Docker-like functionality.
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Figure 9.  Shifter can mount node-local filesystems, keeping metadata
operations local but preventing cross-node access.

With Shifter, the user can, when scheduling an interactive
or batch job, specify a Docker image, which will be made
available on each of the compute nodes. In order to do
this, Shifter provides a mechanism for mounting the image,
stored on Lustre, as a read-only loopback filesystem on
each compute node within the job. Motivated by our work,
Shifter was recently extended to optionally allow a per-
compute-node image to be mounted as a read-write loopback
filesystem, as shown in Figure 9.

Using mounted files eliminates the penalty for per-read
opens, as shown in Figure 7. When we run the GroupBy
benchmark on Cori with data stored in a per-node loop-
back filesystem, we vastly improve scaling behavior, and
performance at 10,240 cores is only 1.6x slower than in-
memory filesystem, as shown in Figure 10. Unlike with the
in-memory filesystem, we can select the size of the per-node
filesystem to be larger than the available memory, preventing
job failure with large shuffles.

We have run the spark-perf benchmarks used in Section V
to compare performance between Lustre and Lustre-backed
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loopback file systems. Results for the Spark Core bench-
marks are shown in Figure 11. Using per-node loopback
filesystems improves performance at larger core counts for
the scala-agg-by-key and scala-agg-by-key-int benchmarks,
particularly for the latter which performs a larger number
of opens. Results for the MLLib benchmarks are shown
in Figure 12. The Ilda, pic, spearman, chi-sq-feature and
prefix-span benchmarks show substantial improvement from
the use of per-node loopback filesystems. Furthermore, they
exhibit better scaling behavior on Cori than on Comet with
local disk. Figure 13 shows weak-scaling performance with
those benchmarks on Cori and Comet. Cori nodes provide
more cores (32) than Comet nodes (24), although Comet
nodes run at a higher clock speed (2.5GHz) than Cori nodes
(2.3GHz).

VII. CONCLUSION

We have evaluated Apache Spark on Cray XC systems
using a series of runtime microbenchmarks and machine
learning algorithm benchmarks. As compute nodes on these
systems are not configured with local disks, files created
by the Spark runtime must be created either in an in-
memory filesystem, limiting the size of data which can
be shuffled, or created on the global scratch filesystem,
which we have found to severely degrade performance,
particularly as more nodes are used. On other systems, such
as SDSC Comet, compute nodes have been equipped with
local SSD storage for the purpose of storing temporary
data during computation, which provides up to 11x faster
performance than using a Lustre filesystem for shuffle-
intensive workloads. We have identified that the cause of
the performance degradation is not read or write bandwidth
but rather file metadata latency, and have used the Shifter
container infrastructure installed on the Edison and Cori
systems to mount per-node loopback filesystems backed by
the Lustre scratch filesystem. This allows for increased per-

formance and scalability, offering performance comparable
to the use of local disks for shuffle-intensive workloads,
without constraining the maximum problem size as with
the in-memory filesystem. This technique is a promising
approach for deploying Apache Spark on Cray XC systems.
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Figure 12. Slowdown of spark-perf MLLib benchmarks on Cori with shuffle intermediate data stored on the Lustre filesystem instead of Lustre-backed
loopback filesystems.
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