
 CUG 2016 Proceedings 1 of 12

Configuring and Customing the Cray Programming
Environment on CLE 6.0 Systems

Geir Johansen
Cray Inc.

geir@cray.com

Abstract—The Cray CLE 6.0 system will provide a new
installation and configuration model for software on Cray XC
systems. This paper will focus on how these new processes affect
the installation and configuration of the Cray Programming
Environment. Topics include an overview of the new installation
method, the configuration of login shell scripts to load
modulefiles, and new features of the PrgEnv modulefile. The
paper will also discuss current processes for porting
programming tools and customizing the site’s programming
environment.

Keywords—Cray Programming Environment

I. INTRODUCTION
The goal of this paper is to outline the changes to the Cray
Programming Environment necessitated by the new CLE 6.0
installation model and to provide current information on
customization procedures for the programming environment.
The intended audience is site administrators and system
consultants responsible for the Cray XC programming
environment. While CLE 6.0 introduces new installation
methods, the changes to the end user are minimal. Existing
Cray customer users should not have to modify how they use
the Cray Programming Environment to build, analyze or
debug their applications.

The Cray Programming Environment provides a wide range of
compilers, libraries and tools. However, customer sites may
require additional third party programming environment
software. Often third party programming solutions come in
the form of open-source software that must be built on the
Cray system, so guidelines for porting software to the Cray
XC will be discussed. In order to improve integration of third
party software with the Cray Programming Environment, the
procedures for creating modulefiles and using pkgconfig to
interface third party libraries with the CrayPE compiler drivers
will be outlined.

II. CRAY PROGRAMMING ENVIRONMENT
INSTALLATION IN CLE 6.0

A. Overview
In CLE 6.0, Cray introduces new tools for installation and
configuration of Cray XC systems. The Cray Programming
Environment (PE) is mainly affected by this change in that the
PE software is no longer installed in to a shared-root

filesystem, but rather into a PE image root. IMPS , the Image
Management and Provisioning System, leverages the use of
rpm and zypper instead of the CLE 5 Cray installation
method.

The installation of the Programming Environment software
into a PE image root is performed on the system's SMW. The
PE image root is then pushed to the boot node so that it can be
mounted by a group of DVS servers and then mounted to the
system's login and compute nodes. One of the advantages of
the PE image root model is that the installation is designed to
be system and hardware agnostic, so the same PE image root
can also be used for other systems, such as eLogin systems or
another Cray XC. A feature of IMPS images is that they are
easily "cloned". This ability allows the site to test new PE
releases, and also makes reverting back to previous PE
releases easier.

B. Change in Installation Directory
One notable change in CLE 6.0 is that the Cray Programming
Environment software originating from Cray will now be
installed in the directory /opt/cray/pe, as oppose to
/opt/cray. This change was done to separate the Cray PE
software from the other Cray software components that are
installed into other IMPS images under the /opt/cray
directory. Third party software, such as the Intel compiler and
TotalView, will continue to be installed in their respective
directories under the /opt directory (i.e /opt/intel,
/opt/totalview).

C. Installation of Cray issued Programming Environment
Software
The craype-installer remains the tool to install Cray
issued Programming Environment software and its interface
has essentially not changed for CLE 6.0. The same Cray
Developer Toolkit (CDT) ISO file is used to install the Cray
Programming Environment software on either a CLE 5 or
CLE 6 system. For CLE 6.0 systems, the install-
cdt.yaml configuration file is edited by the administrator so
that the IMAGE_DIRECTORIES variable points to the PE
root image. The craype-installer is then executed on
the SMW in a similar manner as performed under CLE 5.

 CUG 2016 Proceedings 2 of 12

A feature being added to the craype-installer during
the CLE 6.0 timeframe is the ability to remove older versions
of CDT. The administrator will be able to specify a date and
the tool will be able to remove Cray Software Programming
environment software components installed before that date
unless it satisfies a dependency for a more currently installed
component.

D. Installation of Third Party Programming Environment
Software
The installation of third party PE software is performed on the
SMW by using chroot to access the PE root image. For
example, the install procedure for the PGI 15.10.0 compiler is
to copy the PGI rpm to the PE image and then execute rpm
under chroot:

 smw# cp pgi-15.10.0-*.rpm <PE root image
location>/var/tmp
 smw# chroot <PE root image location> rpm
-ivh /var/tmp/pgi-15.10.0-*.rpm

As previously mentioned, an advantage of the new installation
methods is that they are system agnostic, however, some
vendors installation methods may perform checks on the
system being installed and react accordingly. Cray will
provide steps on how to resolve this issue and will work with
vendors in avoiding this situation. As an example, Appendix
A shows the process to install the Intel compiler and create a
modulefile for a CLE 6.0 system.

E. Pushing updated PE image root to nodes
Once the installation of programming environment software
has been completed, the PE image root is then pushed to the
boot node using the following command:

 smw# image push --dest boot <PE root image
location>

To bind the updated PE image root to the system nodes, the
ansible-playbook command is executed on the boot node. For
example, the following command line binds the updated PE
image root on the compute nodes:

 SDB# pcmd -r -n ALL_COMPUTE "ansible-playbook
/etc/ansible/cray_image_binding.yaml"

When this command is invoked, the compute nodes will start
the /opt/cray/pe_postmount_callback.sh script
to bind mount directories from the PE root image to the
compute nodes’ root.

Figure 1. PE Management Diagram

A summary diagram of the Cray Programming Environment
installation and system management process is shown in
figure 1. The top half of the diagram shows the processes
executed on the SMW, while the bottom half represents the
processes inititiated by the ansible-playbook command on the
boot node.

III. CONFIGURING CLE 6.0 SHELL INITIALIZATION FILES TO
LOAD PROGRAMMING ENVIRONMENT MODULEFILES

Typically a Cray XC system will set up the shell's
initialization files to load a set of modules when a user logs
into the machine. For example, a customer site could choose
to load the Cray compiler environment (PrgEnv-cray) when
the user logs in to the system, while another site may choose
to have the Intel compile environment (PrgEnv-intel)
loaded. For CLE 6.0, the administrator needs to update the
file /etc/opt/cray/pe/admin-pe/site-config to
specify the modulefiles that will be loaded when a user logs
into the system. This file supports the update of the
initialization file scripts for the following shells: bash (sh),
csh, tcsh, zsh, ksh (lksh, mksh, pdksh).

The /etc/opt/cray/pe/admin-pe/site-config
file contains a list of modules commands to be performed by
the shell initialization file. Here is an example:

$ cat /etc/opt/cray/pe/admin-pe/site-config
Defines the Programming Environment modules
that will automatically be loaded.
 module add PrgEnv-cray
 module add atp
 module add cray-mpich
 module add craype-ivybridge
 module add perftools-base
 module add forge
 module add slurm
$

	
	

	
	

	
	
	
	
	
	

	
	
	
	

	
	
	

	
	

	
	

PE
Image

PE
Image

Mount (NFS)

Image Push

i

PE
Image

Network FS / Cached

PE
Image

Bind
(pe_postmount_callback)

Network FS / Cached

PE	
Monthly	
Releases

Install (Monthly)
craype-installer

Compute	
Image

(includes	PE	
dependencies)

Clone (once
Per CLE Release)

boot node tier2 server nodes compute/login nodes

SMW Disk

/opt/cray/pe
/opt/…

Mount (DVS)

ISOs

Boot Raid

SMW

 CUG 2016 Proceedings 3 of 12

In CLE 6.0, the system's shell initialization files are updated
by /opt/cray/pe/bin/setup_shell_rcs.sh. This
script is automatically executed during the execution of the
ansible-playbook command.

IV. PRGENV MODULEFILES IN CLE 6.0

 A. PrgEnv modulefiles released in CDT package
The PrgEnv modulefiles (PrgEnv-cray, PrgEnv-gnu,
PrgEnv-intel, PrgEnv-pgi) will no longer be
released with CLE 6.0 software, but will be release with the
CDT package. CLE 5.2 systems will continue to use the
PrgEnv-* modulefiles released in the CLE 5.2 software.The
functionality of the PrgEnv modulefiles remains the same, but
there have been a couple of new features added.

B. SITE_MODULE_NAMES Environment Variable

The swapping of a PrgEnv module file preserves the versions
of the Cray Programming Environment libraries that are
loaded. For example, given the situation of PrgEnv-cray
and cray-mpich/7.2.6 modulefiles are loaded, then a
"module swap PrgEnv-cray PrgEnv-intel" will
result in the cray-mpich/7.2.6 module to continued to
be loaded. What actually occurs during the swap of PrgEnv is
that the process notes which version of cray-mpich is loaded,
then proceeds to unload it, load the new PrgEnv modulefile,
and then re-load appropriate version of cray-mpich. This
functionality is now extended to local library modulefiles by
the use of the SITE_MODULE_NAMES environment
variable.

As an example, a site that has a custom built version of the
Boost library with a modulefile named 'boost' can set
SITE_MODULE_NAMES=boost. When the PrgEnv module
file is swapped, the boost modulefile will be reloaded to
account for any changes in the compiler being used.

$ module load cray-netcdf cray-tpsl boost
$ export SITE_MODULE_NAMES=boost
$ module show PrgEnv-gnu 2>&1 | grep swap
module swap craype/2.5.4
module swap cray-mpich cray-mpich/7.3.3
module swap cray-hdf5 cray-hdf5/1.8.16
module swap cray-tpsl cray-tpsl/16.03.1
module swap boost boost/1.59.0
$

C. cdt modulefiles
CLE 6.0 introduces the cdt modulefiles that will instruct the
modules command to use software components from a
specific Cray Programming Environment CDT release when
loading modulefiles. The cdt modulefiles effectively
changes the default version of a software component
modulefile to be the version associated with that specific CDT

release. For example, a "module load cdt/16.1" and
"module load cray-mpich" will result in a cray-
mpich/7.3.1, the version released with CDT 16.1, being
loaded. A subsequent "module swap cdt/16.1
cdt/16.3" and "module swap cray-mpich cray-
mpich" will result in cray-mpich/7.3.2, the version
released with CDT 16.1, being loaded.

D. Module command substring search
In the modules 3.2.10.4 release, the module avail
command will support the ‘-S <string>’ option, so that
the command will search for any modulefile name that
contains <string>:

$ module avail trilinos
$ module avail -S trilinos

----------- /opt/cray/modulefiles -----------
cray-trilinos/12.2.1.0(default)
$

V. PORTING SOFTWARE TO CRAY PROGRAMMING
ENVIRONMENT

A brief discussion of porting code is provided along with
current developments of the Autoconf and CMake utilities.

A. General Guidelines
Many open-source third party programming environment
software packages are available for Linux and can be used on
Cray systems. Porting open-source to Cray systems is often
not difficult, but there are a few common issues that
frequently arise when porting software.

1) CPU targeting. The CPU type of the node that is
building the software is very often different than the compute
node executing the software. Build processes, particular the
Autoconf configure script, will create and execute small
programs on the build system to check the system
configuration. To resolve this, it is often necessary to use the
craype-<cpu target> modulefile that matches the CPU
of the build system. Once the configure script has been
executed to create a makefile, the user may be able to load
the craype-<cpu target> that matches the compute
nodes and then execute the makefile to build the software
using the appropriate CPU target.

While Cray does not officially support executing the Cray
Programming Environment compilers on compute nodes, a
user can often eliminate CPU differences between login and
compute nodes by building the program using a compute
node.

2) Static versus dynamic linking. While many Cray
systems default to static linking, the reality is that the default
use of static linking in Linux software is rare. Given this
situation, it is not uncommon for users to encounter problems

 CUG 2016 Proceedings 4 of 12

when building a static version of a software package. A
quick way to workaround this issue is to build the software on
the Cray system using dynamic linking. This can be done by
setting the environment variable
CRAYPE_LINK_TYPE=dynamic.

3) Use of PrgEnv CrayPE compiler drivers. When using
autoconf and CMake utilities to build applications, the
common procedure is to set CC=cc, FTN=ftn, and CXX=CC.
This will inform the build tools that the CrayPE compiler
drivers should be used. Using the compiler drivers will cause
the loaded Cray Programming Environment libraries, such as
cray-libsci and cray-mpich, to be linked with the program. If
the program to be ported does not need any Cray
Programming Environment libraries and is not using the Cray
compiler, then the CrayPE compiler drivers do not need to be
used. Appendix B demonstrates the CMake utility being built
without using the CrayPE compiler drivers.

B. Autoconf
GNU Autoconf is a popular tool used for building and
installing open-sourced software. The tool has had some CLE
related bugs in past versions, but these problems have been
resolved in version 2.63, which is the version running on CLE
5.2 (CLE 6.0 has version 2.69).

The Autoconf generated configure scripts performs various
tests to check the environment of the system. These tests can
include building many small programs that are executed.
Given that static linking is the default of many Cray systems
and that several large Cray networking libraries are included
on the link line, the execution time of the configure script can
be much longer than on other systems. One way to resolve
this issue is to use the configure ‘-C’ option to create a
config.cache file. After this file has been created,
subsequent executions using the ‘—config-cache’ option
will run significantly faster.

C. CMake
Cmake is a popular tool used for building and packaging
software. In March 2016, Kitware Inc. released CMake 3.5.0
with a new platform file that increases compatibility with
CLE. CMake 3.5.0 is now able to use correct build settings
when the Cray Programming Environment PrgEnv
modulefiles are loaded by using the following CMake option:
-DCMAKE_SYSTEM_NAME=CrayLinuxEnvironment.

Appendix B shows the procedures to port CMake 3.5.1 to a
Cray XC system. More information about CMake’s
compatibility with CLE can be found at the following website:

https://cmake.org/cmake/help/v3.5/manual/cmake-
toolchains.7.html - cross-compiling-for-the-cray-linux-
environment

VI. USING CRAYPKG-GEN TO CREATE MODULEFILES AND
INTERFACE WITH CRAYPE

The Craypkg-gen tool is used to generate a modulefile so that
third party programming software can be used in a similar
manner as the components of the Cray Programming
Environment. For programming libraries, Craypkg-gen has
the ability to generate pkg-config (*.pc) files that are used
to integrate the libraries with the CrayPE compiler
drivers. Finally, the Craypkg-gen utility has the functionality
to create an RPM file of the software, so that an administrator
can install the RPM on a system.

The following example shows the use of Craypkg-gen to
create pkg-config files, a modulefile and an RPM for the
Boost library built by g++. The following environment
variables represent the installation directories:

 USER_INSTALL_DIR=<user’s install directory
for PE software>
 CLE_INSTALL_DIR=<system wide install
directory for PE software>

As an example, the directory /opt/local could be used for
$CLE_INSTALL_DIR.

A. Creation of pkgconfig files
The pkgconfig/*.pc files contains dependency information for
the libraries of the software component. The dependency
information includes the header file directories that must be
specified on the compilation command line and any specified
compiler options that are needed. The pkgconfig file also
provides the link option to indicate the dependent libraries that
are needed. The Craypkg-gen ‘-p’ option is used to create the
pkgconfig files:

$ module load craypkg-gen
$ craypkg-gen —p $USER_INSTALL_DIR/boost/1.59.0/GNU

B. Creation of modulefile
The Craypkg-gen utility can be used to create a modulefile for
the software package. The main functionality of a modulefile
is to update environment variables, such as update $PATH to
include the software package’s executables or $MANPATH to
point to any included man pages. For libraries, the modulefile
sets the appropriate pkgconfig environment variables so that
the CrayPE compiler drivers will include the correct options to
find the software header files and libraries. The Craypkg-gen
‘-m’ option will create the modulefile:

$ craypkg-gen –m $USER_INSTALL_DIR/boost/1.59.0

The ‘-m’ option also creates a set_default script that will make
the associated modulefile the default version that is used by
the module command. For this example, the following
set_default script was created:

 CUG 2016 Proceedings 5 of 12

$USER_INSTALL/admin-pe/set_default_craypkg/
set_default_boost_1.59.0

Executing the generated set_default script will result in a
“module load boost” loading the boost/1.59.0
modulefile.

C. Building an RPM

Craypkg-gen provides the functionality to create an RPM. A
user may want to create a RPM to give to a system
administrator, so that the software package that is installed in
the user’s local directory can now be installed in a system
location for all users. The ‘-r’ option is used to create an
RPM with the ‘—prefix’ option used to specify the final
install location:

$ craypkg-gen –r$USER_INSTALL_DIR/boost/1.59.0
--prefix=$CLE_INSTALL_DIR

The name of the generated RPM will be prefixed by
“craypkg-“. For this example, the name will be:
craypkg-boost-1.59.0-0.x86_64.rpm.

Appendix C shows information on porting the Boost library
for the Cray compiler including the creation of the pkgconfig
files, modulefile, and a RPM. Appendix D demonstrates the
porting of the Python MPI library mpi4py along with the
creation and use of a modulefile for the library.

VII. FUTURE OPPORTUNITIES

A. Craype-installer
Further work is planned to increase the granularity of
installation and uninstallation of the Craype-installer. For
example, users will be able to select specific PE software
components to install or uninstall of the Cray Developer
Toolkit ISO.

B. PrgEnv modulefile
An enhancement to develop a snapshot/restore feature to
create user specified functionality of a PrgEnv modulefile is
being planned. For example, if a user has a specific versions
of libraries that are needed for an application, then the feature
will load these libraries when the PrgEnv modulefile is loaded.

VIII. CONCLUSION
The system installation and configuration methodology
introduced in CLE 6.0 is significantly different than previous
versions of CLE. The following functionality of the Cray
Programming Environment were affected:

• Additional information required for the Craype-installer

configuration file
• Change in the installation directory of the Cray

Programming Environment
• Configuring shell login ‘rc’ init scripts to load Cray

Programming Environment modulefiles
• Minor changes and enhancements to the PrgEnv

modulefiles

Recent enhancements to help port programming software tools
and integrate them in the Cray Programming Environment
include:

• CMake 3.5.0 feature to provide better compatibility with

the Cray Programming Environment.
• Creation of modulefiles for third party software using the

Craypkg-gen tool.
• Craypkg-gen’s ability to create pkgconfig files that allow

libraries to be automatically linked by the CrayPE
compiler drivers.

Examples of porting programming environment software have
been provided in the appendices.

ACKNOWLEDGMENT
The author thanks the Cray software development team for

valuable technical information and consultation. Specifically, I
like to thank Ryan Ward, Sean Palmer, Sean Byland, Justin
Cook, and Harold Longley.

REFERENCES

[1] S. Byland and R. Ward, “Custom Product Integration and the Cray
Programming Environment,” Cray User Group proceedings, May 2015.

[2] H. Longley, “Cray Management System for XC Systems with SMW
8.0/CLE 6.0,” Cray Inc. internal presentation, March 2016.

[3] “CMake 3.5.1 Documentation,” cmake.org, March 2016
.

 CUG 2016 Proceedings 6 of 12

APPENDIX A

CLE 6.0 Installation of Intel Compiler

In CLE 6.0 the Programming Environment software is installed on to a PE image root. After downloading the Intel software
package, the first step is to copy it to the PE image root:

 smw # export PECOMPUTE=/var/opt/cray/imps/image_roots/<pe_compute_cle_6.0_imagename>
 smw # cp parallel_studio_xe_2016_update1.tgz $PECOMPUTE/var/tmp

If the site has an existing license file then this information should also be copied to PE image:

 smw # cp <Intel license file> $PECOMPUTE/var/tmp

Beginning with version 16, the Intel Compiler installation procedure performs checks that require the access to the /dev
filesystem of a running system. In order to work around this issue the PE image's /dev can be bind mounted to the /dev of the
SMW system. Also, the compiler license from Intel must be a floating license, as opposed to a node-locked license.:

 smw # mount --bind /dev $PECOMPUTE/dev

Next, perform a chroot to PE image:

 smw # chroot $PECOMPUTE

Unzip and untar the Intel Compiler package.

 smw # cd /var/tmp
 smw # tar xzvf parallel_studio_xe_2016_update1.tgz

If the administrator has an existing license for the compiler then it should be installed at this time. For example, if the site has
license file that is installed into /opt/intel/licenses directory, then this file should be copied over at this time.

The Intel Compiler install script is interactive and requires the administrator to respond to prompts. For installations on Cray
systems, Intel suggests the use of '--ignore-cpu' and '--ignore-signature' options:

 smw # cd parallel_studio_xe_2016_update1/
 smw # ./install.sh --ignore-cpu --ignore-signature

The following messages printed out by the installer can be ignored:

 df: Warning: cannot read table of mounted file systems: No such file or directory
 mount: failed to read mtab: No such file or directory

The installation process consists of seven steps.

Step 1 Welcome
The administrator can ignore any prerequisite warnings that occur during this step.

Step 2 License Agreement
Press <space> to read through the license agreement and type 'accept' when completed.

Step 3 of 7 | Activation
If the license has been installed, the install script should have detected the license and will prompt the user on whether this license

 CUG 2016 Proceedings 7 of 12

should be used. If a license has not been installed, there are options to install the license at this time or the administrator can
select the following option:

 I want to evaluate Intel(R) Parallel Studio XE 2016 Update 1 Cluster Edition for Linux* or activate later

Step 4 Intel Software Improvement Program
The default selection is to participate in the Intel Software Improvement Program. This program requires access to the internet, so
for sites where compilation is performed on nodes that are not connected to the internet will need to select the 'No' option. Cray
suggests selecting ‘No’ for this option.

Step 5 Options
The first prompt of this step presents a question involving "Configure Cluster Installation". For this prompt, the administrator
should select the default option of "Finish configuring installation target".

Subsequent prompts in 'Step 5' includes customization options for selecting components of the Intel compiler package to install.
Cray recommends to select the installation of all of the Intel(R) Math Kernel Library (MKL) libraries. It is important that the
administrator does not unselect the installation of the poorly named MKL Cluster Support libraries, as this component contains
the important Scalapack library. Unless the administrator is positive that a component of the Intel Compiler package will not be
used, it is suggested to not remove any components that are installed by default.

Step 6 Installation
This step performs the installation and outputs the progress of the installation.

Step 7 Complete
Outputs final report of the installation.

Creation of the Intel Compiler Modulefile
After installing the Intel Compiler, the administrator needs to create a modulefile for the newly installed release. The following
steps will create the modulefile for Intel Compiler 16.0.1.150 release:

 smw # module load craypkg-gen
 smw # craypkg-gen -m /opt/intel/compilers_and_libraries_2016.1.150
 Generating a modulefile
 /opt/intel/compilers_and_libraries_2016.1.150/linux/bin/compilervars.sh intel64
 To make this module accessible please type: module use /opt/modulefiles
 smw #

The above procedure will create the module file /opt/modulefiles/intel/16.0.1.150. Information about creating a
modulefile for the Intel compiler can be found in the file:

/opt/cray/pe/craypkg-gen/default/intel_example.txt

 CUG 2016 Proceedings 8 of 12

APPENDIX B

Building and Installing CMake for Cray XC

The CMake utility is used by numerous applications as part of their build processing. Beginning with version 3.5.0, the CMake
software has modifications to work with in the Cray Programming Environment. The cmake.org website contains the following
information:

Cross compiling for compute nodes in the Cray Linux Environment can be done without needing a separate toolchain
file. Specifying -DCMAKE_SYSTEM_NAME=CrayLinuxEnvironment on the CMake command line will ensure
that the appropriate build settings and search paths are configured. The platform will pull its configuration from the
current environment variables and will configure a project to use the compiler wrappers from the Cray Programming
Environment’s PrgEnv-* modules if present and loaded.

More information about using CMake on a Cray XC can be found here:

 https://cmake.org/cmake/help/v3.5/manual/cmake-toolchains.7.html - cross-compiling-for-the-cray-linux-environment

The press release announcing CMake's compatibility with Cray Linux Environment can be found here:

 http://www.prweb.com/releases/2016/03/prweb13256288.htm

The following demonstrates porting CMake 3.5.1 that was downloaded from cmake.org. Note that the CC and CXX environment
variables were intentionally not set, so the build process defaults to directly calling the gcc and g++ compilers.

$ tar xzvf cmake-3.5.1.tar.gz
$ cd cmake-3.5.1
$ module load gcc # load a current version of GCC
$ export PE_INSTALL=<Installation directory for PE tools>
$ mkdir –p $PE_INSTALL/cmake/3.5.1
$./configure –-prefix=$PE_INSTALL/cmake/3.5.1
$ gmake install

A modulefile can be created for CMake by using the Craypkg-gen command

$ module load craypkg-gen
$ craypkg-gen -m $PE_INSTALL/cmake/3.5.1

The resulting modulefile is placed in the file $PE_INSTALL/modulefiles/cmake/3.5.0. It is recommended to edit the
modulefile and change the line "append-path PATH" to "prepend-path PATH ". This will ensure that
if /usr/bin/cmake exists, then it will not be used when the cmake modulefile is loaded. Here is an example of using the
cmake modulefile:

$ module use $PE_INSTALL/modulefiles
$ module load cmake
$ cmake --version
cmake version 3.5.1

CMake suite maintained and supported by Kitware (kitware.com/cmake).
$

A RPM of the resulting CMake package can be created by using the Craypkg-gen '-r' option.

$ export CLE_PE_INSTALL=<System PE tools directory>
$ craypkg-gen -r $PE_INSTALL/cmake/3.5.1 –-prefix=$CLE_PE_INSTALL

The resulting RPM that is created will be called craypkg-cmake-3.5.1-0.x86_64.rpm .

 CUG 2016 Proceedings 9 of 12

APPENDIX C

Building and Installing the Boost library for Cray XC

<Caveat: This information is being provided as proof of concept. It has not been tested on a production level system>

The Boost libraries are a set of open-sourced C++ header files and libraries that perform a wide range of functions. Several
applications require the use of Boost software as part of their build procedures. The software is available for download at the site
boost.org.

The Boost code contains many C++ header and source files to build several libraries, as a result it can take quite a bit of time to
build. Before taking the steps to build the libraries, the user may want to verify that the Boost libraries are actually going be used
rather than just the Boost header files. The experience of the author of this article has found the majority of applications that
require Boost software only use the Boost header files. Thereby the only action required was to download Boost and then provide
the application the directory location of the Boost source code.

Since Boost is C++ code, the Boost libraries should be built with the same compiler as the application that intends to use
Boost. The following shows the steps used to build Boost 1.59.0 using the Cray compiler (module 'PrgEnv-cray' loaded).

1) Un-tar the Boost software package:

$ tar xzvf boost_1_59_0.tar.gz

2) Initalize the Boost build script:

$ cd boost_1_59_0
$ export CC=cc
$ export CXX=CC
$ export PE_INSTALL=<PE_Installation Directory>
$./bootstrap.sh --prefix=$PE_INSTALL/boost/1.59.0/CRAY –-without-libraries=python
cflags="-hgnu -h ipa0" cxxflags="-hgnu -hipa0"

Note: '-h ipa0' was chosen to speed up the build time for the Cray compiler.
The '--prefix=$PE_INSTALL/boost/1.59.0/CRAY' option was used to designate an installation location for the
Boost header files and libraries.

3) Build the Boost libraries. The following creates static versions of the libraries:

$./b2 toolset=cray link=static

While the following creates dynamic versions of the libraries:

$./b2 toolset=cray.

4) Install Boost header files and libraries into an installation directory.

If the b2 --prefix option was specified, then the Boost header files and libraries can be installed into that directory by
executing the command:

$./b2 toolset=cray install

With the environment variable $BOOST_DIR set to the install directory $PE_INSTALL/boost/1.59.0/CRAY, the header
files are accessed by the compilation command line specifying the "-l $BOOST_DIR/include" option, while the libraries are
accessed using the "-L $BOOST_DIR/lib" option.

A modulefile can also be created for Boost so that the CrayPE compiler drivers will automatically find the Boost header files and

 CUG 2016 Proceedings 10 of 12

libraries when the Boost modulefile is loaded. If the Boost library is to be created for other compilers (i.e. GNU, INTEL) then the
Craypkg-gen commands should be executed after all the libraries have been created. Here are the steps to create a modulefile for
Boost:

A) Set up the pkg-config .pc files:

$ module load craypkg-gen
$ craypkg-gen -p $PE_INSTALL/boost/1.59.0

B) Create the modulefile:

$ craypkg-gen -m $PE_INSTALL/boost/1.59.0

If versions of Boost are being built for different compilers, then the resulting modulefile
$PE_INSTALL/modulefiles/boost/1.59.0 needs to be edited to modify LD_LIBRARY_PATH to be correct for the
possible values of $loaded_prgenv (CRAY, GNU, INTEL, PGI). Also, the Cray version of Boost does not build
libboost_locale library, so the modulefile needs to be edited to not reference ‘boost_locale’ in the *_PKGCONFIG_LIBS
variables.

To use the Boost header files and libraries, the user would simply need to load the boost/1.59.0 modulefile and use the
CrayPE compiler drivers (CC, cc, ftn). The output of the 'CC –c --craype-verbose' should show an output of a
command that specifies the Boost header files directory:

$ module swap craype-network-aries craype-network-none
$ module unload cray-mpich cray-libsci
$ module use $PE_INSTALL/modulefiles
$ module load boost
$ cat main.c
int main() { }
$ cc -c -craype-verbose main.c
driver.cc -hcpu=ivybridge -hstatic -D__CRAY_IVYBRIDGE -D__CRAYXT_COMPUTE_LINUX_TARGET
-hnetwork=none -c main.c -Wl,--rpath=/opt/cray/cce/8.5.0/craylibs/x86-64
-hlast_user_arg -nostdinc -ibase-compiler /opt/cray/cce/8.5.0/CC/x86-
64/compiler_include_base -isystem /opt/cray/cce/8.5.0/craylibs/x86-64/include
-I/opt/gcc/4.8.1/snos/lib/gcc/x86_64-suse-linux/4.8.1/include
-I/opt/gcc/4.8.1/snos/lib/gcc/x86_64-suse-linux/4.8.1/include-fixed -isystem
/usr/include -ugcc_base=/opt/gcc/4.8.1/snos -uno_driver_libs
–I$PE_INSTALL/boost/1.59.0/CRAY/include -I/opt/cray/rca/1.0.0-
2.0502.60530.1.62.ari/include -I/opt/cray/cce/8.5.0/craylibs/x86-
64/pkgconfig/..//include -I/opt/cray/krca/1.0.0-2.0502.63139.4.31.ari/include
-I/opt/cray-hss-devel/7.2.0/include
$

Assuming that a GCC version of Boost 1.59.0 was also built and installed into
$PE_INSTALL/boost/1.59.0/GNU, then a module swap to PrgEnv-gnu will result in the CC
compiler driver automatically user the GCC version of the Boost libray:

$ module swap PrgEnv-cray PrgEnv-gnu 2>/dev/error
$ module unload cray-libsci
$ cc -c -craype-verbose main.c
gcc -march=corei7-avx -static -D__CRAY_IVYBRIDGE -D__CRAYXT_COMPUTE_LINUX_TARGET
-upthread_mutex_destroy -D__TARGET_LINUX__ -c main.c
-I$PE_INSTALL/boost/1.59.0/GNU/include
$

 CUG 2016 Proceedings 11 of 12

APPENDIX D

Building and Installing the MPI for Python (mpi4py) for Cray XC

<Caveat: This information is being provided as proof of concept. It has not been tested on a production level system>

The Python Software Foundation mpi4py library can be downloaded and built to run python programs that use the MPI
library. Here are instructions on how to build the mpi4py library for a Cray XC system. :

1) Download the mpi4py source code. Here is a link to the software:

https://pypi.python.org/pypi/mpi4py#downloads

2) Untar and unzip the package:

 $ tar xzvf mpi4py-2.0.0.tar.gz

3) Use the GCC environment to build mpi4py

 $ cd mpi4py-2.0.0
 $ module swap PrgEnv-cray PrgEnv-gnu

4) Set environment variable CC, so that 'cc' is used as the compiler, then run setup.py to build mpi4py:

 $ env CC=cc python setup.py build

5) Re-execute these link statements of the build of the Python MPI shared libraries, so that 'cc' is used instead of 'gcc to build the
libraries. For CLE 6.0 systems (Python 2.7), the commands to execute are:

 $ cc -pthread -shared build/temp.linux-x86_64-2.7/src/lib-pmpi/mpe.o -o
build/lib.linux-x86_64-2.7/mpi4py/lib-pmpi/libmpe.so
 $ cc -pthread -shared build/temp.linux-x86_64-2.7/src/lib-pmpi/vt.o -o
build/lib.linux-x86_64-2.7/mpi4py/lib-pmpi/libvt.so
 $ cc -pthread -shared build/temp.linux-x86_64-2.7/src/lib-pmpi/vt-mpi.o -o
build/lib.linux-x86_64-2.7/mpi4py/lib-pmpi/libvt-mpi.so
 $ cc -pthread -shared build/temp.linux-x86_64-2.7/src/lib-pmpi/vt-hyb.o -o
build/lib.linux-x86_64-2.7/mpi4py/lib-pmpi/libvt-hyb.so
 $ cc -pthread -shared build/temp.linux-x86_64-2.7/src/MPI.o -Lbuild/temp.linux-
x86_64-2.7 -ldl -lpython2.7 -o build/lib.linux-x86_64-2.7/mpi4py/MPI.so
 $ cc -pthread -shared build/temp.linux-x86_64-2.7/src/dynload.o -Lbuild/temp.linux-
x86_64-2.7 -ldl -lpython2.7 -o build/lib.linux-x86_64-2.7/mpi4py/dl.so
 $

For CLE 5.2 systems (Python 2.6), the commands to execute are:

 $ cc -pthread -shared build/temp.linux-x86_64-2.6/src/lib-pmpi/mpe.o -o
build/lib.linux-x86_64-2.6/mpi4py/lib-pmpi/libmpe.so
 $ cc -pthread -shared build/temp.linux-x86_64-2.6/src/lib-pmpi/vt.o -o
build/lib.linux-x86_64-2.6/mpi4py/lib-pmpi/libvt.so
 $ cc -pthread -shared build/temp.linux-x86_64-2.6/src/lib-pmpi/vt-mpi.o -o
build/lib.linux-x86_64-2.6/mpi4py/lib-pmpi/libvt-mpi.so
 $ cc -pthread -shared build/temp.linux-x86_64-2.6/src/lib-pmpi/vt-hyb.o -o
build/lib.linux-x86_64-2.6/mpi4py/lib-pmpi/libvt-hyb.so
 $ cc -pthread -shared build/temp.linux-x86_64-2.6/src/MPI.o -Lbuild/temp.linux-
x86_64-2.7 -ldl -lpython2.6 -o build/lib.linux-x86_64-2.6/mpi4py/MPI.so
 $ cc -pthread -shared build/temp.linux-x86_64-2.6/src/dynload.o -Lbuild/temp.linux-

 CUG 2016 Proceedings 12 of 12

x86_64-2.7 -ldl -lpython2.6 -o build/lib.linux-x86_64-2.6/mpi4py/dl.so
 $

6) The setup.py 'install' command can be used to install mpi4py into an installation location. To install the files into the directory
/opt/local/mpi4py the following command can be executed:

 $ export PE_INSTALL=<PE Installation Directory>
 $ python setup.py install –-prefix=$PE_INSTALL/mpi4py/2.0.0

7) A modufile for mpi4py can be created by executing the following commands:

 # craypkg-gen -m $PE_INSTALL/mpi4py/2.0.0

The newly created $PE_INSTALL/modulefiles/mpi4py/2.0.0 modulefile should be edited with the following line
added to the file.
CLE 6.0:

 prepend-path PYTHONPATH $PREFIX/lib64/python2.7/site-packages

CLE 5.2:

 prepend-path PYTHONPATH $PREFIX/lib64/python2.6/site-packages

8) Here is a sample test for the mpi4py library:

$ cat test.py
from mpi4py import MPI
import os
import glob
COMM = MPI.COMM_WORLD
irank = COMM.Get_rank()
print 'Hello world from rank', irank
$ module use $PE_INSTALL/modulefiles
$ module load mpi4py
$ aprun -n 8 python test.py
Hello world from rank 2
Hello world from rank 4
Hello world from rank 5
Hello world from rank 6
Hello world from rank 7
Hello world from rank 3
Hello world from rank 0
Hello world from rank 1
Application 8209638 resources: utime ~0s, stime ~0s, Rss ~9892, inblocks ~4282,
outblocks ~12
$

