
Configuring and Customizing the 
Cray PE on CLE 6.0 Systems 
Geir Johansen 



Configuring and Customising the 
Cray PE on CLE 6.0 Systems 
Geir Johansen 



Agenda 

●  Purpose  
●  Outline changes to the Cray Programming Environment in CLE 6.0  
●  Provide current information on customization of the programming environment  

●  Benefit/Value 
●  Talk is targeted for site administrators, and system consultants responsible for 

assisting their user community in building and analyzing programs. 
●  CLE 6.0 PE installation and configuration 
●  New CLE 6.0 PrgEnv modulefile features 
●  Topics in porting and integrating third party software with Cray PE 
●  Summary 
●  Q&A 

Copyright 2016 Cray Inc.  
3 

CUG 2016 



CLE 6.0 Installation & Configuration Info @ CUG 

● Cray Management System for XC Systems with SMW 
8.0/CLE 6.0  -- Cray Tutorial 

●  eLogin Made Easy - An Introduction and Tutorial on the 
new Cray External Login Node – Cray tutorial 

● Crossing the Rhine - Moving to CLE 6.0 System 
Management   -- NERSC presentation 

● How to Automate and not Manage under Rhine/
Redwood -- LANL presentation 

CUG 2016 Copyright 2016 Cray Inc.  
4 



CLE6.0/SMW 8.0 Cray Management System 

● CLE 6.0 system installation and configuration 
methodology is significantly different than previous 
versions of CLE. 

● Move away from proprietary tools to Linux tools (rpm, 
zypper, yum, …) 

● Processes can be shared across platforms (XC, SMW, 
eLogin,  …) 

CUG 2016 Copyright 2016 Cray Inc.  
5 



Compute 
Image	

(includes PE 
dependencies)	

CLE 6.0 PE Management 

CUG 2016 Copyright 2016 Cray Inc.  
6 

SMW	
Clone (once	

Per CLE Release)	

PE	

Image	
SMW Disk	

•  PE installation takes place on SMW, 
•  No longer installed on a  shared root on boot node 
•  PE software installed into a PE root image 
•  System agnostic process – same PE image root can be used on different 

systems 
•  Cloning feature – easier to test new PE releases, revert back to previous PE 

releases 



Compute 
Image	

(includes PE 
dependencies)	

CLE 6.0 PE Management 

CUG 2016 Copyright 2016 Cray Inc.  
7 

SMW	
Clone (once	

Per CLE Release)	

PE	

Image	
SMW Disk	

•  Same Cray Developer Toolkit (CDT) ISOs are used for CLE 5.2 and CLE 6.0 
•  craype-installer will continued to be used to install the Cray PE 
•  PE software installed into a PE root image 
•  For CLE 6.0: the install-cdt.yaml configuration file has a new variable 

IMAGE_DIRECTORIES that designates the PE root image 
•  Cray PE software now installed into /opt/cray/pe directory 

CDT 
ISOs	

PE 
Monthly 
Release	

Install (Monthly)	
craype-installer	



Compute 
Image	

(includes PE 
dependencies)	

CLE 6.0 PE Management 

CUG 2016 Copyright 2016 Cray Inc.  
8 

SMW	
Clone (once	

Per CLE Release)	

PE	

Image	
SMW Disk	

CDT 
ISOs	

PE 
Monthly 
Release	

Install (Monthly)	
craype-installer	

PE	

Image	

Image Push	

Boot Raid	
boot node	

•  Once installation has completed (including PE third party 
software), PE image root pushed to the boot node: 

 
smw# image push –dest boot <PE image root>!



Compute 
Image	

(includes PE 
dependencies)	

CLE 6.0 PE Management 

CUG 2016 Copyright 2016 Cray Inc.  
9 

SMW	
Clone (once	

Per CLE Release)	

PE	

Image	
SMW Disk	

CDT 
ISOs	

PE 
Monthly 
Release	

Install (Monthly)	
craype-installer	

PE	

Image	

Image Push	

Boot Raid	
boot node	

PE	

Image	

PE	

Image	

Network FS / Cached	Network FS / Cached	

On boot node ansible-playback 
binds PE image root to system 
nodes 
 

tier2 server nodes	compute/login nodes	

Mount (DVS)	 Mount (DVS)	

/opt/cray/pe	
/opt/…	

(pe_postmount_callback)	



Installation of Third Party PE Software 

● Performed on SMW by using chroot to access the PE 
root image 

● PGI Compiler example: 
smw#  cp pgi-16.4.0-*.rpm <PE root image>/var/tmp!
smw#  chroot <PE root image> rpm -ivh /var/tmp/
pgi-16.4.0-*.rpm  !

●  Intel compiler  -- not system agnostic, needs access to 
install system’s /dev file.  Workaround: 
smw # mount --bind /dev <PE root image>/dev !

CUG 2016 Copyright 2016 Cray Inc.  
10 



CLE 6.0 Shell Initialization (rc) Files to Load 
Programming Environment Modulefiles 

●  Typically site administrators will initialize /etc/
bash.bashrc.local and /etc/csh.cshrc.local to 
automatically load programming environment moduefiles. 

●  In CLE 6.0, the file /etc/opt/cray/pe/admin-pe/site-
config is used to specify the modulefiles to be loaded 
when a user logs in 

●  Supports bash (sh), csh, tcsh, zsh, ksh (lksh, mksh, pdksh) 
●  Task performed by /opt/cray/pe/bin/
setup_shell_rcs.sh!

CUG 2016 Copyright 2016 Cray Inc.  
11 



site-config example 

CUG 2016 Copyright 2016 Cray Inc.  
12 

$ cat /etc/opt/cray/pe/admin-pe/site-config  
# Defines the Programming Environment modules  
# that will automatically be loaded.  
  module add PrgEnv-cray  
  module add atp  
  module add cray-mpich  
  module add craype-haswell  
  module add perftools-base  
  module add forge  
  module add slurm  
$!



CLE 6.0 PrgEnv modulefile features 

● PrgEnv modulefiles (i.e PrgEnv-cray, PrgEnv-intel, …) 
now released in CDT and not CLE 6.0 
●  CLE 5.2 wil continue used PrgEnv modulefiles released with CLE 

5.2 
● SITE_MODULE_NAMES environment variable 

●  User specified modulefiles to be swapped during a PrgEnv 
module swap 

●  cdt modulefiles 
●  Specify modules from a specific CDT release 

● Modules –S substring search  

CUG 2016 Copyright 2016 Cray Inc.  
13 



SITE_MODULE_NAMES 

● Add modulefile name to the SITE_MODULE_NAMES 
environment variable results in the modulefile being 
unloaded and loaded during a module swap of PrgEnv 

● Automatically done for Cray Programming Libraries 
that are loaded 

●  Insures that environment variables are set correctly for 
the compiler that is loaded 

●  craype compiler drivers also check which compiler, 
network target, and CPU target that is loaded for Cray 
Programming Environment libraries  

CUG 2016 Copyright 2016 Cray Inc.  
14 



SITE_MODULE_NAMES example 

CUG 2016 Copyright 2016 Cray Inc.  
15 

$ module load PrgEnv-cray!
$ module load cray-netcdf cray-tpsl boost  
$ export SITE_MODULE_NAMES=boost  
$ module show PrgEnv-gnu 2>&1 | grep swap  
module          swap craype/2.5.4  
module          swap cray-mpich cray-mpich/7.3.3  
module          swap cray-hdf5 cray-hdf5/1.8.16  
module          swap cray-tpsl cray-tpsl/16.03.1  
module          swap boost boost/1.59.0  
$  
!



cdt modulefiles 

●  Introduced in CLE 6.0 
● modulefile for each Cray Developer toolkit (CDT) 

release 
●  Instructs module command to use software 

components from a specific CDT release 
● Effectively changes the set of default modulefiles 

CUG 2016 Copyright 2016 Cray Inc.  
16 



cdt modulefile example 

CUG 2016 Copyright 2016 Cray Inc.  
17 

$ module load cdt/16.3!
$ module load cray-mpich  
$ module list 2>&1 | grep mpich!
 22) cray-mpich/7.3.2!
$ module load cdt/16.4!
$ module swap cray-mpich cray-mpich!
$ module list 2>&1 | grep mpich!
 22) cray-mpich/7.3.3!
$!



Module command substring search 

●  Introduced in modules 3.2.10.4 (CDT 16.04) 
● Available for CLE 5.2 

$ module avail trilinos!
$ module avail -S trilinos!
 !
----------- /opt/cray/modulefiles -----------!
cray-trilinos/12.2.1.0(default)!
$ !

CUG 2016 Copyright 2016 Cray Inc.  
18 



GNU Autoconf --  configure 

CUG 2016 Copyright 2016 Cray Inc.  
19 

•  Version 2.63 (available on CLE 5.2) has Cray specific 
fixes/ CLE 6.0 has version 2.69. 

•  Autoconf generated configure scripts often run 
slowly on Cray systems 

•  Many Cray systems default to static linking 
•  Several large networking (i.e. ugni) and programming 

environment (i.e cray-libsci) libraries are linked 
•  The configure ‘-C’ option creates a config.cache file.  

Subsequent executions using the ‘—config-cache’   
option will avoid many of the configure tests. 

•  Some applications support the configure directive 
‘cross_compiling=yes’, may resolve issue where 
build machine does not match target machine.  
Becoming more supported, build for ARM is a big 
reason for this situtation. 

 



CMake 3.5    

CUG 2016 Copyright 2016 Cray Inc.  
20 

●  Developed by Kitware Inc. 
●  In March 2016 released CMake 3.5.0: 

“The 3.5 release introduced a new platform file to increase the 
compatibility of CMake with the Cray Linux Environment (CLE). 
This file allows CMake to cross-compile code in the CLE to target 
compute nodes.” 

●  -DCMAKE_SYSTEM_NAME=CrayLinuxEnvironment 
is specified on the the CMake  command line 

●  Enables Cmake to use appropriate build settings 
with the PrgEnv modulefiles loaded 

  



Downloading and building CMake 

CUG 2016 Copyright 2016 Cray Inc.  
21 

$ tar xzvf cmake-3.5.1.tar.gz  
$ cd cmake-3.5.1  
$ module load gcc  # load a current version of GCC  
$ export PE_INSTALL=<Installation directory for PE tools>  
$ mkdir –p $PE_INSTALL/cmake/3.5.1  
$ ./configure –-prefix=$PE_INSTALL/cmake/3.5.1  
$ gmake install  
 
 
 
 

●  CMake 3.5.1 that was downloaded from cmake.org.   
●  CC and CXX environment variables were intentionally not set, so 

the build process defaults to directly calling the gcc and g++ 
compilers. 



Creating a CMake modulefile 

CUG 2016 Copyright 2016 Cray Inc.  
22 

 
$ module load craypkg-gen  
$ craypkg-gen -m $PE_INSTALL/cmake/3.5.1  
$ module use $PE_INSTALL/modulefiles  
$ module load cmake  
$ cmake --version  
cmake version 3.5.1  
 
CMake suite maintained and supported by Kitware 
(kitware.com/cmake).  
$  
 
!



Using craypkg-gen to integrate third party software 
with Cray Programming Environment 

● Custom Product Integration and the Cray 
Programming Environment  -- CUG 2015 

● Creates modulefiles 
●  Intel compiler 
●  PGI compiler downloaded from PGI (not Cray) 

● Generate pkg-config (*.pc) files 
●  Allows integration with the CrayPE compiler drivers 

● Create an RPM of the software  

CUG 2016 Copyright 2016 Cray Inc.  
23 



Boost C++ Library Example 

CUG 2016 Copyright 2016 Cray Inc.  
24 

● Open source C++ library 
● Has a wide variety of libraries 
● Available at boost.org 
● Use craypkg-gen to: 

●  Create pkgconfig files 
●  Create modulefile 
●  Create an RPM 



Building Boost 

CUG 2016 Copyright 2016 Cray Inc.  
25 

WELCOME TO BOOST.ORG!
Boost provides free peer-reviewed portable C++ source libraries.

We emphasize libraries that work well with the C++ Standard Library. Boost
libraries are intended to be widely useful, and usable across a broad
spectrum of applications. The Boost license encourages both commercial
and non-commercial use.

We aim to establish "existing practice" and provide reference
implementations so that Boost libraries are suitable for eventual
standardization. Ten Boost libraries are included in the C++ Standards
Committee's Library Technical Report (TR1) and in the new C++11 Standard.
C++11 also includes several more Boost libraries in addition to those from
TR1. More Boost libraries are proposed for standardization in C++17.

Since 2006 an intimate week long annual conference related to Boost called
C++ Now has been held in Aspen, Colorado each May. Boost has been a
participant in the annual Google Summer of Code since 2007.

GETTING STARTED

Boost works on almost any modern operating system, including UNIX and
Windows variants. Follow the Getting Started Guide to download and install
Boost. Popular Linux and Unix distributions such as Fedora, Debian, and
NetBSD include pre-built Boost packages. Boost may also already be
available on your organization's internal web server.

BACKGROUND

Read on with the introductory material to help you understand what Boost is
about and to help in educating your organization about Boost.

COMMUNITY

Boost welcomes and thrives on participation from a variety of individuals and
organizations. Many avenues for participation are available in the Boost
Community.

DOWNLOADS

CURRENT RELEASE

Version 1.60.0
Release Notes | Download | Documentation
December 17th, 2015 15:52 GMT

BETA RELEASE

Version 1.61.0 beta
Release Notes | Download | Documentation
In Progress

Search  

WELCOME

Getting Started
Download
Libraries
Mailing Lists
Reporting and Fixing Bugs
Wiki
INTRODUCTION

COMMUNITY

DEVELOPMENT

DOCUMENTATION

“...one of the most highly regarded and expertly designed C++ library projects in the
world.”

— Herb Sutter and Andrei Alexandrescu, C++ Coding Standards

>
>
>
>
>
>
>
>
>
>
>

$ tar xzvf boost_1_59_0.tar.gz 
$ cd boost_1_59_0 
$ export CC=cc 
$ export CXX=CC 
$ export PE_INSTALL=<PE_Installation Directory> 
$ ./bootstrap.sh --prefix=$PE_INSTALL/boost/1.59.0/
CRAY –-without-libraries=python cflags="-hgnu -h 
ipa0" cxxflags="-hgnu -hipa0” 
$ ./b2 toolset=cray link=static     #static   
$ ./b2 toolset=cray.                       #dynamic 
$ ./b2 toolset=cray install 
$ 



Creating pkgconfig_files for boost 

CUG 2016 Copyright 2016 Cray Inc.  
26 

●  craypkg-gen ‘-p’ option 
● Create pkgconfig/<library-name>.pc files in the 

software’s library directories 
● Modulefile sets env. variable to point to these files 
● CrayPE compiler drivers use them to set compiler 

options to find appropriate header files and libraries 
 

$ module load craypkg-gen!
$ craypkg-gen -p $PE_INSTALL/boost/1.59.0/CRAY !



Creating boost modulefile 

CUG 2016 Copyright 2016 Cray Inc.  
27 

●  craypkg-gen ‘-m’ option 
●  Initializes environment variables such as $PATH and 

$MANPATH 
● Sets env. variables to point to the pkgconfig files  
● Creates a set_default script 

●  Used to make modulefile the default version 
 

$ module load craypkg-gen!
$ craypkg-gen -m $PE_INSTALL/boost/1.59.0!



Building a boost RPM 

CUG 2016 Copyright 2016 Cray Inc.  
28 

●  craypkg-gen ‘-r’ option 
● RPM package can be installed on other systems 
● Can be used to transfer software from a user’s local 

directory to a system directory 
●  ‘-prefix’ option used to specify destination directory 
 

$ module load craypkg-gen!
$ craypkg-gen -r $PE_INSTALL/boost/1.59.0!
 –prefix=/opt/local!
$!



 boost modulefile and craype integration 
$ module load PrgEnv-cray!
$ module swap craype-network-aries craype-network-none!
$ module unload cray-mpich cray-libsci!
$ module use $PE_INSTALL/modulefiles!
$ module load boost!
$ cat main.c!
int main() { }!
$ cc -c -craype-verbose main.c!
driver.cc -hcpu=ivybridge -hstatic -D__CRAY_IVYBRIDGE -D__CRAYXT_COMPUTE_LINUX_TARGET !
-hnetwork=none -c main.c -Wl,--rpath=/opt/cray/cce/8.5.0/craylibs/x86-64 !
-hlast_user_arg -nostdinc -ibase-compiler /opt/cray/cce/8.5.0/CC/x86-64/
compiler_include_base -isystem /opt/cray/cce/8.5.0/craylibs/x86-64/include !
-I/opt/gcc/4.8.1/snos/lib/gcc/x86_64-suse-linux/4.8.1/include !
-I/opt/gcc/4.8.1/snos/lib/gcc/x86_64-suse-linux/4.8.1/include-fixed -isystem /usr/
include -ugcc_base=/opt/gcc/4.8.1/snos -uno_driver_libs !
–I$PE_INSTALL/boost/1.59.0/CRAY/include -I/opt/cray/rca/1.0.0-2.0502.60530.1.62.ari/
include -I/opt/cray/cce/8.5.0/craylibs/x86-64/pkgconfig/..//include -I/opt/cray/krca/
1.0.0-2.0502.63139.4.31.ari/include !
-I/opt/cray-hss-devel/7.2.0/include !
$!

CUG 2016 Copyright 2016 Cray Inc.  
29 



boost modulefile and craype integration 

●  Assuming that a GCC version of Boost 1.59.0 was also built and 
installed into $PE_INSTALL/boost/1.59.0/GNU, then a module swap 
to PrgEnv-gnu will result in the CC compiler driver automatically 
using the GCC version of the Boost library: 

 
$ module swap PrgEnv-cray PrgEnv-gnu  2>/dev/error!
$ module unload cray-libsci!
$ cc -c -craype-verbose main.c!
gcc -march=corei7-avx -static -D__CRAY_IVYBRIDGE -
D__CRAYXT_COMPUTE_LINUX_TARGET !
-upthread_mutex_destroy -D__TARGET_LINUX__ -c main.c !
-I$PE_INSTALL/boost/1.59.0/GNU/include !
$!

CUG 2016 Copyright 2016 Cray Inc.  
30 



mpi4py example 

● Allow python programs to use MPI library 
● Can be downloaded from pypi.python.org 
● Build instructions provided in the CUG paper 
●  To create mpi4py modulefile:    
 
   # craypkg-gen -m $PE_INSTALL/mpi4py/2.0.0!

● Add following line to the mpi4py modulefile: !
 
prepend-path PYTHONPATH $PREFIX/lib64/python2.7/site-packages!
 

CUG 2016 Copyright 2016 Cray Inc.  
31 



mpi4py example 

$ cat test.py 
from mpi4py import MPI 
import os 
import glob 
COMM = MPI.COMM_WORLD 
irank = COMM.Get_rank() 
print 'Hello world from rank', irank!
$ module use $PE_INSTALL/modulefiles 
$ module load mpi4py 
$ aprun -n 8 python test.py 
Hello world from rank 2 
Hello world from rank 4 
Hello world from rank 5 
Hello world from rank 6 
Hello world from rank 7 
Hello world from rank 3 
Hello world from rank 0 
Hello world from rank 1 
Application 8209638 resources: utime ~0s, stime ~0s, Rss ~9892, inblocks 
~4282, outblocks ~12 
$!

CUG 2016 Copyright 2016 Cray Inc.  
32 



Future Opportunities 

● Craype-installer 
●  Ability to remove older PE releases 
●  Finer granularity on selecting products to install or uninstall 

● PrgEnv modulefiles 
●  Snapshot/Restore feature – ability to create user customized 

PrgEnv modulefiles 

● Address Autoconf Issues 
●  Faster linker (gold,LLVM lld) 
●  Automatically detect configure scenario 

CUG 2016 Copyright 2016 Cray Inc.  
33 



Summary 

●  CLE 6.0 changes to Cray Programing Environment 
●  Overview of installation 
●  CLE 6.0 shell initialization files  

●  Enhancements to CLE 6.0 PrgEnv modulefiles 
●  SITE_MODULE_NAMES 
●  cdt modulefile 

●  Recent Topics in porting and integrating third party software 
with Cray PE 
●  Issues with porting and GNU Autoconf 
●  Cmake 3.5 compatibility with CLE 
●  craypkg-gen examples 

Copyright 2016 Cray Inc.  
34 

CUG 2016 



Q&A 
Suggestions! 

Feedback! 

Copyright 2016 Cray Inc.  
35 

Geir Johansen 
geir@cray.com 

CUG 2016 



Legal Disclaimer 

Copyright 2016 Cray Inc.  
36 

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual 
property rights is granted by this document.  

Cray Inc. may make changes to specifications and product descriptions at any time, without notice. 

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.  

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate 
from published specifications. Current characterized errata are available on request.  

Cray uses codenames internally to identify products that are in development and not yet publically announced for release. Customers 
and other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray 
Inc. internal codenames is at the sole risk of the user.  

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of 
Cray Inc. products as measured by those tests. Any difference in system hardware or software design or configuration may affect 
actual performance.  

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, 
SONEXION, and URIKA. The following are trademarks of Cray Inc.:  APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, 
CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE, THREADSTORM.  The following system family marks, and associated model 
number marks, are trademarks of Cray Inc.:  CS, CX, XC, XE, XK, XMT, and XT.  The registered trademark LINUX is used pursuant 
to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.  Other trademarks used 
in this document are the property of their respective owners. 

CUG 2016 


