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Agenda 

●  Last year at CUG: Showed how to run common open source 
analytics frameworks on XC systems 

●  Today: How do we understand, monitor, tune performance on 
XC40? 
●  Focus on Apache Spark framework – more flexibility, better performace, 

increasing adoption relative to Hadoop 
●  SyncSort Survey: 70% Spark interest vs 55% Hadoop. 

●  Look at a couple use cases/techniques, plus a networking analysis 
●  Bottom-up: mining system metrics data from HiBench with collectl 
●  Top down: application log analysis of CX matrix decompostion in Spark 
●  TCP networking performance on XC 

●  In the paper: additional details, plus suggested optimizations 
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Spark Background: Execution Model 
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●  Driver is the "master": execute main, 
distribute work , collect results 

●  Executors are the "workers": execute 
parallel work across partitions of the data 

●  Computations lazily evaluated – nothing 
happens until result required at driver: 

 

●  Jobs, Stages, and Tasks: 
●  Job: Computation that returns a result to driver 
●  Stage:  Unit of work that can be executed without 

communication.  Jobs with internode communication 
requirements have multiple stages. 

●  Between job stages: barrier, global all-to-all shuffle 
●  Task: The computation of a stage on a single partition 

val lens = file.map(l => (l.length,l))!
val sorted = lens.sortByKey()!
sorted.collect()  // execution starts HERE !



Spark Background: Shuffle 

●  Communication between 
executors implemented via 
shuffles 
●  Senders send data to block 

managers; block managers 
write to disks, tell scheduler 
how much destined for each 
receiver 

●  Barrier until all senders 
complete shuffle writes 

●  Receivers request data; block 
managers read and send 
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Shuffle on the XC40 

●  Spark assumes distributed cluster, with local persistent 
storage on each node for shuffle files (also for spilling 
RDDs). 

●  Not present on XC systems.  Options: 
●  Global Lustre file system:  Many small files, and file opens/closes = 

high metadata overheads that dominate performance of shuffles. 
●  DRAM-based tmpfs:  Much faster, but storage limited to 50% of 

memory on node.  Works for many workloads, but can run into 
memory bottlenecks. 

●  Hybrid: Use both.  Better performance than pure Lustre. 
●  Loopback filesystems (see earlier presentation in Session 7A):  Each 

node create a filesystem within a single Lustre file.  Managed locally.  
Eliminates MDS overheads, coherency issues. 
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Our Analysis Approaches 

●  Collectl 
●  Commonly used for collecting compute node system metrics for HPC jobs 
●  Used a 1 second sampling rate 

●  Negligible overheads next to overheads of analytics frameworks – found to have no 
impact on completion time of our workloads 

●  Accurate: tested by comparing aggregated Lustre metrics with input and output data 
set sizes, saw less than 1% variation 

●  Used R+pdbMPI to analyze, plot results 
●  Spark event logs 

●  Track start and end times of jobs, tasks, stages 
●  Collect application level metrics for each task (GC time, serialization time, 

shuffle read/write, etc) 
●  Can view in Spark History Server, or parse with scripts 

●  TCP network performance analysis with iperf3, tcpdump 
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Case Study 1: HiBench Analysis 
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Performance	of	HiBench	on	XC40	vs	Urika-XA	
Huge	Scale:	48	nodes,	12	cores/node		

XC40		

Urika-XA		

●  Intel HiBench 
●  Originally MapReduce, Spark 

added in version 4 
●  We selected common Spark 

workloads without Hive 
dependencies 

●  Compared performance with 
Urika XA system 
●  XA: FDR Infiniband, XC40: 

Aries 
●  Both: 32 core Haswell nodes 
●  XA: 128 GB/node, XC40: 256 

GB/node (problems fit in 
memory on both) 

●  Similar performace on 
Kmeans, PageRank, Sleep 

●  XC40 faster Sort, TeraSort, 
Wordcount, Bayes 

●  Let's examine… 



Collectl: Examining Memory Usage 

CUG 2016 Copyright 2016 Cray Inc.  
8 

9 x Wordcount 
(3 each of Scala, Java, Python) 

9 x PageRank 
(3 each of Scala, Java, Python) 

Wordcount PageRank 

Time 

E
xe

cu
to

r N
od

e 

●  PageRank much larger variation between executors in memory usage 
●  Points to variation in data set/# links per page 

●  Wordcount much higher OS file cache usage 
●  Spark uses file system for spills and shuffle data 

O
S

 C
ac

he
 (G

B
) 

M
ap

pe
d 

M
em

 (G
B

) 

lo
g1

0 
M

ap
pe

d 
M

em
 (G

B
)  



Collectl Example: Understanding Memory Usage 
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●  Examing TCP traffic points to reason for larger OS cache 
usage: Larger shuffles 

●  Variability of PageRank indicates bottleneck due to 
stragglers/imbalance 

●  Wordcount has larger shuffles, and much less variability, 
indicating potential bottleneck in data movement 
●  Takes better advantage of interconnect 

9 x Wordcount 
(3 each of Scala, Java, Python) 

9 x PageRank 
(3 each of Scala, Java, Python) 



Benefits of Collectl-Based Profiling 

● Spark event log/history server can't give this level of 
detail 
●  Only shows static size of persisted RDDs/DataFrames 
●  Only shows application memory usage (no OS) 
●  Only shows total shuffle traffic per stage 
●  Etc… 

● Collectl-based analysis allows you to view all system 
metrics, and how they change over time 
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Case Study 2: CX for MSI 

●  CX matrix decomposition applied to mass spectrometry 
data from bioimaging (Spark implementation from NERSC 
and AMPLab) 
●  Analysis of 1 TB Mass Spectrometry (MSI) dataset 

●  Matrix with columns for each spatial location 
●  Method: dimensionality reductions via CX factorization 

●  Approximately factors m x n matrix A into m x k matrix C and k x n matrix X, 
where the k columns of C are drawn from A.  The "rank" k is typically much less 
than n  

●  Goal is to select the k columns of A such that CX is as close as possible to A. 
●  These columns best "explain" the data in the matrix 

●  These types of matrix decomposition operations are also 
common in Machine Learning applications 
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Comparison Platforms 

●  Two options for XC40 scratch space: DRAM tmpfs, or tmpfs & 
Lustre blend 
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Platform Total Cores 
(Haswell) 

Core 
Frequency 

Interconnect DRAM SSDs/
node 

Amazon EC2 
r3.8xlarge  

960 (30 nodes 
x 32 per-node) 

2.5 GHz 10 Gigabit 
Ethernet 

256 GB 2 x 320 
GB 

Cray XC40  960 (30 nodes 
x 32 per-node) 

2.3 GHz Aries 256 GB None 

Athena early 
prototype 

960 (40 nodes 
x 24 per-node) 

2.5 GHx  Aries 128 GB 1 x 800 
GB 

Platform Total 
Runtime 

Amazon EC2 24.0 min 

XC40 w/ tmpfs & 
Lustre 

23.1 min 

XC40 w/ tmpfs 18.1 min 

Athena early 
prototype 

15.2 min 



Performance Analysis via Event Logs 

●  Workload: Load MSI dataset; 5 iterations, each with local stage (compute local sums) and aggregation stage  
●  Observations: 

●  Load times faster on machines with local SSD storage 
●  Aggregation stage tasks (shuffle read) much faster on Aries-based systems 
●  Network wait on XC40 was lower than Athena, due to better peak TCP bandwidth 
●  All tmpfs, or fast local SSDs sped up local task time (shuffle write) 
●  Mixing Lustre and tmpfs adds long tail to shuffle write time distribution, creating stragglers that slow iterations 

CUG 2016 Copyright 2016 Cray Inc.  
13 

Platform Total 
Runtime 

Load 
Time 

Time per 
iteration 

Average 
Local Task 

Average 
Aggregation 

Task 

Average 
Network Wait 

Amazon EC2 24.0 min 92 sec 161 sec 4.4 sec 27.1 sec 21.7 sec 

Cray XC40 w/ 
tmpfs & Lustre 

23.1 min 139 sec 125 sec 3.5 sec 
(max: 12!) 

6.8 sec 1.1 sec 

Cray XC40 w/ 
tmpfs 

18.1 min 137 sec 94 sec 3.0 sec 7.3 sec 1.5 sec 

Athena prototype 15.2 min 53 sec 92 sec 2.8 sec 9.9 sec 2.7 sec 



Advantages of Log Analysis 

● Application level view 
●  What tasks are bottlenecks 
●  Where applications are spending their time (e.g., garbage 

collection, serialization, compression, waiting at barriers, etc) 
●  Tools integrated with the Spark/Hadoop/etc ecosystem 

●  WebUI 
●  Visualizations that have application-level information (stages, 

operations, etc) 
●  User familiarity 

CUG 2016 Copyright 2016 Cray Inc.  
14 



Analysis of TCP Bandwidth w/ iperf3 
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●  Communication in open source analytics frameworks is typically 
over TCP (for portability) 

●  Aries performs well, especially with new kernel.  Peak 
performance hit at ~ 8K-16K. 
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TCP Packet Size Distribution 

●  Picked two shuffle senstive applications – CX and GraphX PageRank 
●  CX is more uniform (sending matrix columns) than PageRank (variable sized edge lists) 
●  Both have a number of large data packets 

●  CX: 58% at least 21KB 
●  PageRank: 46% at least 16KB  
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Summary 

● Described multiple approaches to understand analytics 
framework performance on XC40 
●  System metrics data from collectl 
●  Application log analysis 
●  Network performance (TCP) 

●  Looked at two benchmarks 
●  HiBench suite 
●  CX (NERSC implementation) 

● Paper discusses performance improvement 
possibilities 
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Legal Disclaimer 
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Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual 
property rights is granted by this document.  

Cray Inc. may make changes to specifications and product descriptions at any time, without notice. 

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.  

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate 
from published specifications. Current characterized errata are available on request.  

Cray uses codenames internally to identify products that are in development and not yet publically announced for release. Customers 
and other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray 
Inc. internal codenames is at the sole risk of the user.  

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of 
Cray Inc. products as measured by those tests. Any difference in system hardware or software design or configuration may affect 
actual performance.  

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, 
SONEXION, and URIKA. The following are trademarks of Cray Inc.:  APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, 
CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE, REVEAL, THREADSTORM.  The following system family marks, and associated 
model number marks, are trademarks of Cray Inc.:  CS, CX, XC, XE, XK, XMT, and XT.  The registered trademark LINUX is used 
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.  Other 
trademarks used in this document are the property of their respective owners. 
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Q&A 
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