
Characterizing the Performance of Analytics
Workloads on the Cray XC40
Cray: Michael Ringenburg, Shuxia Zhang, Kristyn
Maschhoff, Bill Sparks
NERSC: Evan Racah, Prabhat

Agenda

●  Last year at CUG: Showed how to run common open source
analytics frameworks on XC systems

●  Today: How do we understand, monitor, tune performance on
XC40?
●  Focus on Apache Spark framework – more flexibility, better performace,

increasing adoption relative to Hadoop
●  SyncSort Survey: 70% Spark interest vs 55% Hadoop.

●  Look at a couple use cases/techniques, plus a networking analysis
●  Bottom-up: mining system metrics data from HiBench with collectl
●  Top down: application log analysis of CX matrix decompostion in Spark
●  TCP networking performance on XC

●  In the paper: additional details, plus suggested optimizations

Copyright 2016 Cray Inc.
2

CUG 2016

Spark Background: Execution Model

Driver

main()

…

Executor
Thread

Task

Task

Node 1
Executor
Thread

Task

Task

Executor
Thread

Task

Task

Node N
Executor
Thread

Task

Task

Node 0

= Java Virtual Machine Instance

CUG 2016 Copyright 2016 Cray Inc.
3

●  Driver is the "master": execute main,
distribute work , collect results

●  Executors are the "workers": execute
parallel work across partitions of the data

●  Computations lazily evaluated – nothing
happens until result required at driver:

●  Jobs, Stages, and Tasks:
●  Job: Computation that returns a result to driver
●  Stage: Unit of work that can be executed without

communication. Jobs with internode communication
requirements have multiple stages.

●  Between job stages: barrier, global all-to-all shuffle
●  Task: The computation of a stage on a single partition

val lens = file.map(l => (l.length,l))!
val sorted = lens.sortByKey()!
sorted.collect() // execution starts HERE !

Spark Background: Shuffle

●  Communication between
executors implemented via
shuffles
●  Senders send data to block

managers; block managers
write to disks, tell scheduler
how much destined for each
receiver

●  Barrier until all senders
complete shuffle writes

●  Receivers request data; block
managers read and send

CUG 2016 Copyright 2016 Cray Inc.
4

Send
task

Disk

Receive
task

Request

TCP

Spark
Scheduler

Shuffle write

Shuffle read

Meta data

Shuffle on the XC40

●  Spark assumes distributed cluster, with local persistent
storage on each node for shuffle files (also for spilling
RDDs).

●  Not present on XC systems. Options:
●  Global Lustre file system: Many small files, and file opens/closes =

high metadata overheads that dominate performance of shuffles.
●  DRAM-based tmpfs: Much faster, but storage limited to 50% of

memory on node. Works for many workloads, but can run into
memory bottlenecks.

●  Hybrid: Use both. Better performance than pure Lustre.
●  Loopback filesystems (see earlier presentation in Session 7A): Each

node create a filesystem within a single Lustre file. Managed locally.
Eliminates MDS overheads, coherency issues.

CUG 2016 Copyright 2016 Cray Inc.
5

Our Analysis Approaches

●  Collectl
●  Commonly used for collecting compute node system metrics for HPC jobs
●  Used a 1 second sampling rate

●  Negligible overheads next to overheads of analytics frameworks – found to have no
impact on completion time of our workloads

●  Accurate: tested by comparing aggregated Lustre metrics with input and output data
set sizes, saw less than 1% variation

●  Used R+pdbMPI to analyze, plot results
●  Spark event logs

●  Track start and end times of jobs, tasks, stages
●  Collect application level metrics for each task (GC time, serialization time,

shuffle read/write, etc)
●  Can view in Spark History Server, or parse with scripts

●  TCP network performance analysis with iperf3, tcpdump

CUG 2016 Copyright 2016 Cray Inc.
6

Case Study 1: HiBench Analysis

CUG 2016 Copyright 2016 Cray Inc.
7

0	
20	
40	
60	
80	
100	
120	

Sca
laK
me
an
s	

Sca
laP
ag
era
nk
	

Sca
laS
lee
p	

Sca
laS
ort
	

Sca
laT
era
so
rt	

Sca
laW

ord
co
un

Sca
laB
ay
es	

El
ap

se
d	
?m

e	
(s
)	

Performance	of	HiBench	on	XC40	vs	Urika-XA	
Huge	Scale:	48	nodes,	12	cores/node		

XC40		

Urika-XA		

●  Intel HiBench
●  Originally MapReduce, Spark

added in version 4
●  We selected common Spark

workloads without Hive
dependencies

●  Compared performance with
Urika XA system
●  XA: FDR Infiniband, XC40:

Aries
●  Both: 32 core Haswell nodes
●  XA: 128 GB/node, XC40: 256

GB/node (problems fit in
memory on both)

●  Similar performace on
Kmeans, PageRank, Sleep

●  XC40 faster Sort, TeraSort,
Wordcount, Bayes

●  Let's examine…

Collectl: Examining Memory Usage

CUG 2016 Copyright 2016 Cray Inc.
8

9 x Wordcount
(3 each of Scala, Java, Python)

9 x PageRank
(3 each of Scala, Java, Python)

Wordcount PageRank

Time

E
xe

cu
to

r N
od

e

●  PageRank much larger variation between executors in memory usage
●  Points to variation in data set/# links per page

●  Wordcount much higher OS file cache usage
●  Spark uses file system for spills and shuffle data

O
S

 C
ac

he
 (G

B
)

M
ap

pe
d

M
em

 (G
B

)

lo
g1

0
M

ap
pe

d
M

em
 (G

B
)

Collectl Example: Understanding Memory Usage

CUG 2016 Copyright 2016 Cray Inc.
9

●  Examing TCP traffic points to reason for larger OS cache
usage: Larger shuffles

●  Variability of PageRank indicates bottleneck due to
stragglers/imbalance

●  Wordcount has larger shuffles, and much less variability,
indicating potential bottleneck in data movement
●  Takes better advantage of interconnect

9 x Wordcount
(3 each of Scala, Java, Python)

9 x PageRank
(3 each of Scala, Java, Python)

Benefits of Collectl-Based Profiling

● Spark event log/history server can't give this level of
detail
●  Only shows static size of persisted RDDs/DataFrames
●  Only shows application memory usage (no OS)
●  Only shows total shuffle traffic per stage
●  Etc…

● Collectl-based analysis allows you to view all system
metrics, and how they change over time

CUG 2016 Copyright 2016 Cray Inc.
10

Case Study 2: CX for MSI

●  CX matrix decomposition applied to mass spectrometry
data from bioimaging (Spark implementation from NERSC
and AMPLab)
●  Analysis of 1 TB Mass Spectrometry (MSI) dataset

●  Matrix with columns for each spatial location
●  Method: dimensionality reductions via CX factorization

●  Approximately factors m x n matrix A into m x k matrix C and k x n matrix X,
where the k columns of C are drawn from A. The "rank" k is typically much less
than n

●  Goal is to select the k columns of A such that CX is as close as possible to A.
●  These columns best "explain" the data in the matrix

●  These types of matrix decomposition operations are also
common in Machine Learning applications

CUG 2016 Copyright 2016 Cray Inc.
11

Comparison Platforms

●  Two options for XC40 scratch space: DRAM tmpfs, or tmpfs &
Lustre blend

CUG 2016 Copyright 2016 Cray Inc.
12

Platform Total Cores
(Haswell)

Core
Frequency

Interconnect DRAM SSDs/
node

Amazon EC2
r3.8xlarge

960 (30 nodes
x 32 per-node)

2.5 GHz 10 Gigabit
Ethernet

256 GB 2 x 320
GB

Cray XC40 960 (30 nodes
x 32 per-node)

2.3 GHz Aries 256 GB None

Athena early
prototype

960 (40 nodes
x 24 per-node)

2.5 GHx Aries 128 GB 1 x 800
GB

Platform Total
Runtime

Amazon EC2 24.0 min

XC40 w/ tmpfs &
Lustre

23.1 min

XC40 w/ tmpfs 18.1 min

Athena early
prototype

15.2 min

Performance Analysis via Event Logs

●  Workload: Load MSI dataset; 5 iterations, each with local stage (compute local sums) and aggregation stage
●  Observations:

●  Load times faster on machines with local SSD storage
●  Aggregation stage tasks (shuffle read) much faster on Aries-based systems
●  Network wait on XC40 was lower than Athena, due to better peak TCP bandwidth
●  All tmpfs, or fast local SSDs sped up local task time (shuffle write)
●  Mixing Lustre and tmpfs adds long tail to shuffle write time distribution, creating stragglers that slow iterations

CUG 2016 Copyright 2016 Cray Inc.
13

Platform Total
Runtime

Load
Time

Time per
iteration

Average
Local Task

Average
Aggregation

Task

Average
Network Wait

Amazon EC2 24.0 min 92 sec 161 sec 4.4 sec 27.1 sec 21.7 sec

Cray XC40 w/
tmpfs & Lustre

23.1 min 139 sec 125 sec 3.5 sec
(max: 12!)

6.8 sec 1.1 sec

Cray XC40 w/
tmpfs

18.1 min 137 sec 94 sec 3.0 sec 7.3 sec 1.5 sec

Athena prototype 15.2 min 53 sec 92 sec 2.8 sec 9.9 sec 2.7 sec

Advantages of Log Analysis

● Application level view
●  What tasks are bottlenecks
●  Where applications are spending their time (e.g., garbage

collection, serialization, compression, waiting at barriers, etc)
●  Tools integrated with the Spark/Hadoop/etc ecosystem

●  WebUI
●  Visualizations that have application-level information (stages,

operations, etc)
●  User familiarity

CUG 2016 Copyright 2016 Cray Inc.
14

Analysis of TCP Bandwidth w/ iperf3

CUG 2016 Copyright 2016 Cray Inc.
15

●  Communication in open source analytics frameworks is typically
over TCP (for portability)

●  Aries performs well, especially with new kernel. Peak
performance hit at ~ 8K-16K.

0
1
2
3
4
5
6
7
8
9

1 16 256 512 1024

G
b/

se
c

Message length (bytes)

0

10

20

30

40

50

60

70

G
b/

se
c

Message length (bytes)

Aries/SLES11SP3 Aries/SLES12 FDR Infiniband/CentOS 6.5

TCP Packet Size Distribution

●  Picked two shuffle senstive applications – CX and GraphX PageRank
●  CX is more uniform (sending matrix columns) than PageRank (variable sized edge lists)
●  Both have a number of large data packets

●  CX: 58% at least 21KB
●  PageRank: 46% at least 16KB

CUG 2016 Copyright 2016 Cray Inc.
16

0

50

100

150

200

250

300

of

 P
ac

ke
ts

Packet Size

CX

0

10000

20000

30000

40000

50000

60000

of

 P
ac

ke
ts

Packet Size

GraphX PageRank

Summary

● Described multiple approaches to understand analytics
framework performance on XC40
●  System metrics data from collectl
●  Application log analysis
●  Network performance (TCP)

●  Looked at two benchmarks
●  HiBench suite
●  CX (NERSC implementation)

● Paper discusses performance improvement
possibilities

Copyright 2016 Cray Inc.
17

CUG 2016

Legal Disclaimer

Copyright 2016 Cray Inc.
18

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual
property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate
from published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release. Customers
and other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray
Inc. internal codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of
Cray Inc. products as measured by those tests. Any difference in system hardware or software design or configuration may affect
actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design,
SONEXION, and URIKA. The following are trademarks of Cray Inc.: APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT,
CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE, REVEAL, THREADSTORM. The following system family marks, and associated
model number marks, are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other
trademarks used in this document are the property of their respective owners.

CUG 2016

Q&A

Copyright 2016 Cray Inc.
19

Michael Ringenburg
mikeri@cray.com

CUG 2016

