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Abstract—Traditionally HPC systems such as Crays have
been designed to support mostly monolithic workloads. How-
ever, the workload of many important scientific applications
is constructed out of spatially and temporally heterogeneous
tasks that are often dynamically inter-related. These workloads
can benefit from being executed at scale on HPC resources,
but a tension exists between the workloads’ resource utilization
requirements and the capabilities of the HPC system software
and usage policies. Pilot systems have the potential to relieve
this tension. RADICAL-Pilot is a scalable and portable pilot
system that enables the execution of such diverse workloads.
In this paper we describe the design and characterize the
performance of its RADICAL-Pilot’s scheduling and executing
components on Crays, which are engineered for efficient
resource utilization while maintaining the full generality of
the Pilot abstraction. We will discuss four different imple-
mentations of support for RADICAL-Pilot on Cray systems
and analyze and report on their performance.

I. INTRODUCTION

Traditionally, high-performance computing (HPC) sys-
tems such as Crays have been primarily designed to support
monolithic workloads, i.e. a single parallel application run-
ning across hundreds or thousands of compute nodes. How-
ever, the workload of many important scientific use-cases is
instead composed of spatially and temporally heterogeneous
tasks that are often dynamically inter-related [1], [2], [3].
For example, simulating the dynamics of complex macro-
molecules is often done using “swarms” of short molecular
dynamics calculations, each running on a small number
of cores. The output of these calculations is collected to
determine the next set of simulations. Such workloads still
benefit from execution at scale on HPC resources but a
tension exists between the workload’s resource utilization
requirements and the capabilities and usage policies of the
HPC system software.

Pilot systems have proven particularly effective in the
execution of workloads comprised of multiple tasks on
physically distributed resources [4]. They decouple work-
load specification, resource selection, and task execution
via job placeholders and late-binding. Pilot systems submit
job placeholders (i.e. pilots) to the scheduler of resources.
Once active, each pilot accepts and executes tasks directly
submitted to it by the application. Tasks are thus executed

within time and space boundaries set by the resource
scheduler, yet are scheduled by the application. Per the
definitions in [4], we refer to a “task” as a part of the
workload and a “job” as the container used to acquire
resources.

In this paper, we describe and experimentally characterize
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Figure 1: Distribution of job size (in number of requested
nodes) submitted to Blue Waters. The period is one year
between April 2015 and April 2016. Single node jobs
outnumber other node sizes by (an) order(s) of magnitude.
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Figure 2: Total number of node hours spent per job size.
The period is one year between April 2015 and April 2016.
Single node jobs account for the 3rd largest consumption
of node hours.



our Python based pilot system, RADICAL-Pilot (RP) [5],
on the Blue Waters Cray XE6/XK6 at NCSA (BW).
Blue Waters is a 26,868 node Super Computer with a
peak performance of a 13.3 petaFLOPS. Like many HPC
systems, it is designed for applications that would use a
large portion of its thousands of processors and that would
be difficult or impossible to run elsewhere.

The many-task computing [6] paradigm was introduced
to bridge the gap between the high throughput computing
and high performance computing paradigms. From a work-
load perspective, many-task computing makes no assump-
tions on workload duration, size, or origin (e.g. distributed
scientific workflows, multi-component applications). Fig-
ure 1 shows the distribution of job size on Blue Waters in
number of nodes during the period of one year. Small jobs
outnumber larger jobs in count. Figure 2 also shows how
small jobs still play a significant role also when considering
total node hours.

The implementation of RP differs from other Pilot sys-
tems mostly in terms of API, portability, and introspec-
tion. Implemented in Python, RP is a self-contained Pilot
system which provides a runtime system for applications
with heterogeneous and dynamic workloads. RP exposes
an application-facing API called the “Pilot API” [7] and
utilizes SAGA [8] to interface to the resource layer. RP pro-
vides fine-grained profiling for each RP module, enabling
a precise and detailed measurement of its overheads. RP
can provide runtime capabilities when interfaced with other
application-level tools [9], [10] or workflow and workload
management systems such as Swift [11] or PanDA [12].
However, RP itself is not a workflow system and does not
provide workload management capabilities itself.

RP supports heterogeneity by concurrently executing
tasks with different properties and couplings on resources
with diverse architecture and software environments. Dy-
namism is supported by enacting the runtime variations of
the number, properties and coupling between tasks. RP’s
architecture is discussed in detail in [5], which also includes
a characterization of RP’s performance across heteroge-
neous HPC systems and workloads. This paper will only
recapture details of the components which are specifically
relevant to the efficient placement and execution of tasks on
Blue Waters. We refer the reader to [5] for a more general
overview of RP.

The remainder of this paper is as follows. In §II we
position our work and discuss related work. As a back-
ground we discuss RP in some more detail in §III. In §IV
we investigate the performance of RP experimentally on
Blue Waters. We complete the paper with a conclusion in
8V and look forward in §VI.

II. RELATED WORK

According to [4], around twenty systems with pilot
capabilities have been implemented since 1995.

AppLeS [13] offered one of the first implementations
of resource placeholders and application-level schedul-
ing; HTCondor [14] and Glidein [15] enabled pilot-based
execution on multiple and diverse resources; and DI-
ANE [16], AliEn [17], DIRAC [18], PanDA [12], and
GlideinWMS [19] brought pilot-based workload executions
to the LHC and other grid communities.

In contrast to RP, the aforementioned systems are often
tailored for specific workloads, resources, interfaces, or de-
velopment models. They often encapsulate pilot capabilities
within monolithic tools with greater functional scope. For
example, HTCondor with Glidein on OSG [20] is one
of the most widely used Pilot systems but serves mostly
single core workloads. The Pilot systems developed for the
LHC communities execute millions of jobs a week [12] but
specialize on supporting LHC workloads and, in most cases,
specific resources like those of WLCG.

Similar specialization can be found in systems without
pilot capabilities. For example, CRAM [21] is a tool de-
veloped to execute static ensembles of MPI tasks on HPC
resources, one of the workload types also supported by RP.
Developed for Sequoia, an IBM BG/Q system at LLNL,
CRAM parallelizes the execution of an application with
many input parameters by bundling it into a single MPI
executable. Compared to CRAM, RP generalizes ensemble
capabilities for both MPI and non-MPI applications, and
for applications for which execution plans are not known in
advance. CRAM could in principle also be made to support
Cray systems.

Recognizing the potential for High-Throughput Comput-
ing (HTC) on HPC resources, IBM developed an HTC mode
resembling a Pilot system [22] for the series of IBM BG/L
products. Unsupported by later IBM Blue Gene series, RP
brings back this HTC capability generalizing it to HPC
architectures beyond IBM BG/L machines, like the BG/Q.
Nitro [23], is a high-throughput scheduling solution for
HPC systems that works in collaboration with the Moab
scheduler for TORQUE. Instead of requiring individual job
scheduling, Nitro enables high-speed throughput on short
computing jobs by allowing the scheduler to incur the
scheduling overhead only once for a large batch of jobs.

Pilots and pilot-like capabilities are also implemented
or used by various workflow management systems. Pe-
gasus [24] uses Glidein via providers like Corral [25];
Makeflow [26] and FireWorks [27] enable users to man-
ually start workers on HPC resources via master/worker
tools called Work Queue [28] and LaunchPad [27]; and
Swift [11] uses two Pilot systems called Falkon [29] and



Coasters [30]. In these systems, the pilot is not always a
stand-alone capability and in those cases any innovations
and advances of the pilot capability are thus confined to
the encasing system. Pegasus-MPI-Cluster (PMC) [31] is
an MPI-based Master/Worker framework that can be used
in combination with Pegasus. In the same spirit as RP, this
enables Pegasus to run large-scale workflows of small tasks
on HPC resources. In constrast with RP, tasks are limited to
single node execution. In addition there is a dependency on
fork()/exec() on the compute node which rules out PMC
on some HPC resources.

Falkon is an early example of a Pilot system for HPC
environments. Similar to RP, Falkon exposes an API that
is used to develop distributed applications or to be inte-
grated within an end-to-end system such as Swift and it
has been designed to implement concurrency at multiple
levels including dispatching, scheduling, and spawning of
tasks across multiple compute nodes of possibly multiple
resources. However, Falkon is optimized for single core
applications. Coasters is similar to RP in that it supports
heterogeneity at resource level. RP supports a greater vari-
ety of resources though, mainly due to the use of SAGA as
its resource interoperability layer. The two systems differ
in their architectures and workload heterogeneity (RP also
supports multi-node MPI applications).

JETS [32] is a middleware component providing Swift
and Coasters with high performance support for many-
parallel-task computing (MPTC). JETS executes short-
duration MPI tasks at scale using pilots managed by
Coasters and workloads codified in the Swift scripting lan-
guage. RP enables MPI executions natively, decoupling the
implementation of application-side patterns of distributed
computation like MPTC from the resource-side communi-
cation capabilities like MPI. JETS uses runtime features
available in the MPICH MPI implementation [33], similar
to RP using runtime features from ORTE [34], a component
of the OpenMPI MPI implementation. Swift/T, the latest
incarnation of Swift [35] (T of Turbine [36]), steps away
from the orchestration of executables by interpreting tasks
as functions. This requires tasks to be codified as functions
instead of executables, for example via the main-wrap
technique presented in [37].

In addition to the solutions discussed so far, that have
some degree of support for heterogeneity, there is also a
set of tools specifically for Crays that have been conceived
at the various sites. A tool developed at LBNL is Task-
Farmer [38]. TaskFarmer enables the user to execute a list
of system commands from a task file one-by-one. This
allows many simulations to be run within a single mpirun
allocation. TaskFarmer runs as one large MPI tasks where
each rank is able to spawn tasks on the node its executes

on, limiting the tasks to be single core or single node.
Wraprun [39] is a utility developed at ORNL that enables
independent execution of multiple MPI applications under a
single aprun call. It borrows from aprun MPMD syntax and
also contains some wraprun specific syntax. QDO [40] is a
lightweight high-throughput queuing system for workflows
that have many small tasks to perform. It is designed
for situations where the number of tasks to perform is
much larger than the practical limits of the underlying
batch job system. Its interface emphasizes simplicity while
maintaining flexibility. MySGE [41] allows users to create a
private Sun GridEngine cluster on large parallel systems like
Hopper and Edison. Once the cluster is started, users can
submit serial jobs, array jobs, and other throughput oriented
workloads into the personal SGE scheduler. The jobs are
then run within the user’s private cluster. Python Task Farm
(ptf) [42] is a utility developed at EPCC and available on
ARCHER for running serial Python programs as multiple
independent copies of a program over many cores.

III. RADICAL-PILOT

RADICAL-Pilot (RP) is a scalable and interoperable pilot
system that implements the Pilot abstraction to support the
execution of diverse workloads. We describe the design and
architecture (see Figure 3) and characterize the performance
of RP’s task execution components, which are engineered
for efficient resource utilization while maintaining the full
generality of the Pilot abstraction. RP is supported on on
Crays such as Blue Waters (NCSA), Titan (ORNL), Hopper
& Edison (NERSC) and ARCHER (EPSRC), but also on
IBM’s Blue Gene/Q, many of XSEDE’s HPC resources,
Amazon EC2, and on the Open Science Grid (OSG).

A. Overall Architecture

RP is a runtime system designed to execute heteroge-
neous and dynamic workloads on diverse resources. Work-
loads and pilots are described via the Pilot API and passed
to the RP runtime system, which launches the pilots and
executes the tasks of the workload on them. Internally,
RP represents pilots as aggregates of resources independent
from the architecture and topology of the target machines,
and workloads as a set of units to be executed on the
resources of the pilot. Both pilots and units are stateful
entities, each with a well-defined state model and life cycle.
Their states and state transitions are managed via the three
modules of the RP architecture: PilotManager, UnitMan-
ager, and Agent (Fig. 3). The PilotManager launches pilots
on resources via the SAGA API [8]. The SAGA API
implements an adapter for each type of supported resource,
exposing uniform methods for job and data management.
The UnitManager schedules units to pilots for execution. A
MongoDB database is used to communicate the scheduled
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Figure 3: RADICAL-Pilot Architecture. Pilots (description
and instance) in purple are for resource allocation; Units
(description and instance) in red are for task execution.
Applications interact with RP through the Pilot-API. Re-
source interoperability comes through SAGA. Unit Man-
ager to Agent communication is via MongoDB, all other
communication is via ZeroMQ.

workload between the UnitManager and Agents. For this
reason, the database instance needs to be accessible both
from the user’s workstation and the target resources. The
Agent bootstraps on a remote resource, pulls units from the
MongoDB instance, and manages their execution on the
cores held by the pilot. RP has a well defined component
and state model which is described in detail in [5].

The modules of RP are distributed between the user
workstation and the target resources. The PilotManager and
UnitManager are executed on the user workstation while the
Agent runs on the target resources. RP requires Linux or
OS X with Python 2.7 or newer on the workstation but the
Agent has to execute different types of units on resources
with very diverse architectures and software environments.

B. Pre-configured Resources

When a user installs RP the system comes with a large
set of pre-configured resources. In §III-C we show refer to
such a configuration.

"bw_aprun": {

"description" "The NCSA Blue Waters \
Cray XE6/XK7 system.",

"notes" "Use ’touch .hushlogin’ \
on the login node.",

"workdir" "/scratch/sciteam/\$USER",

"valid_roots :["/scratch/sciteam"],

"virtenv" "% (global_sandbox)s/ve_bw",

"rp_version" :"local",

"virtenv_mode" :"create",

"schemas" :["gsissh"],

"gsissh" {"job_mgr_url"

"torque+gsissh://bw.ncsa.illinois.edu",
"file_mgr_url"
"gsisftp://bw.ncsa.illinois.edu/"
b

"stage_cacerts" :"True",
"default_queue" :"normal",
"lrms" :"TORQUE",
"agent_type" :"multicore",
"agent_scheduler" :"CONTINUOUS",
"agent_spawner" :"POPEN",

"agent_launch_method":"APRUN",

"task_launch_method" :"APRUN",

"mpi_launch_method" :"APRUN",

"pre_bootstrap_1" : ["module load bwpy"],
}

Listing 1: Resource configuration for ALPS on Blue Waters.
Entries include access schema, batch queue system details,
installation options, file system locations, bootstrap infor-
mation and launch methods.

Besides making use of the pre-supplied resource configura-
tions, users can add their own, or modify existing entries,
either through config files or programmatically through the
API. Listing 1 show the configuration for RP on Blue Waters
with the APRUN launch method. It specifies some general
description fields, locations for temporary files and Python
virtual environments, which version of RP to install, the ac-
cess mechanism and hostname, the queuing system, which
scheduler and launch methods to use, and which commands
to execute before the bootstrapper (e.g. load modules).

C. Programming Model

RP is a Python library that enables the user to declaratively
define the resource requirements and the workload. While
the Pilot-API is a well-defined interface, the application
specific relationships between resources and workload can
be programmed in generic Python. In the following code
snippets we walk the reader to a minimal but complete
example of running a workload on Blue Waters using RP.

# create a session -- closing it will
# destroy all managers and all things
# they manage.

session = rp.Session()

# create a pilot manager
pmgr = rp.PilotManager (session)



# create a unit manager
umgr = rp.UnitManager (session)

Listing 2: Code example showing the declaration of Pilot
Manager and Unit Manager within a Session.

In Listing 2 we show the code used to declare the respective
managers for pilots and units, whose lifetime is managed
by a session object.

# Define an 64 core pilot that
# will run for 10 minutes
pdesc = rp.ComputePilotDescription ({

"resource’ : ncsa.bw,
’cores’ : 64,
"runtime’ : 10,
"project’ "gkd’,

" queue’ " debug’,

b

# submit the pilot for launching
pilot = pmgr.submit_pilots (pdesc)

# Make the pilot resources available to
# the unit manager
umgr.add_pilots (pilot)

Listing 3: Code example showing the declaration of a Com-
pute Pilot, its subsequent submission to the Pilot Manager
and the attachment to the Unit Manager.

In Listing 3 we declare a pilot, by specifying where to start
it, how many cores, the walltime, and optional queuing
and project details. Once the pilot is submitted to the
Pilot manager, it will get passed to the queuing system
asynchronously. In the last step the pilot is associated to
the unit manager, which means that this pilot can be used
to execute units on.

# number of units to run

cuds = []

for i in range(0,42):
# create a new CU description,
# and fill it.
cud = rp.ComputeUnitDescription ()
cud.executable = ’/bin/date’
cuds.append (cud)

# submit units
umgr.submit_units (cuds)

# wait for the completion of units
umgr.wait_units ()

# tear down pilots and managers
session.close ()

Listing 4: Code example showing the declaration of 42
Compute Units, the subsequent submission to the Unit
Manager and the statement to wait for their completion.

In Listing 4 we finally declare the workload by creating a
set of compute units that specify what to run. The units are
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Figure 4: Agent Architecture of RP. Detailed perspective of
the Agent as in Figure 3. Every unit goes through the states
of Input Staging, Scheduling, Execution and Output Stag-
ing. This paper focuses on the different implementations of
Launch Method and Task Spawner.

then submitted to the unit manager which schedules the unit
to a pilot. Once the pilot has become active, the units may
begin execution. The final wait call will block until all the
units have run to completion.

D. Agent Architecture

Depending on the architecture of the resource, the Agent’s
Stager, Scheduler, and Executer components (Fig. 4) can be
placed on cluster head nodes, MOM nodes, compute nodes,
virtual machines, or any combination thereof. Multiple
instances of the Stager and Executer component can coexist
in a single Agent, placed on any service node or compute
node of the pilot’s allocation. ZeroMQ communication
bridges connect the Agent components, creating a network
to support the transitions of the units through components.

E. Enabling RP on Cray systems

To enable RP on Cray systems we have developed four
ways of interfacing RP and the Cray system software.

1) Application Level Placement Scheduler (ALPS): The
ALPS system provides launch functionality for running
executables on compute nodes in the system, interfaced
with the “aprun” command. ALPS is the native way to run
applications on a Cray from the batch scheduling system.
By default, ALPS limits the user to run 1000 applications
concurrently within one batch job, while in practice we
also see values of only 100 concurrent applications. In



the Pilot use-case, these applications may run only for a
very short time, which puts further strain on ALPS and
the MOM node and effectively limits the throughput of
these applications. ALPS also does not allow the user
to easily run more than one tasks on a single compute
node, which makes it unattractive to launch workloads with
heterogeneous application size.

2) Cluster Compatibility Mode (CCM): Crays are effec-
tively MPP machines and the Cray Compute Node OS does
not provide a full set of the Linux services compared to
typical Beowulf clusters. CCM is a software solution that
provides those services when required by applications. It
is not generally available on all Cray installations though.
Access to CCM varies per system, requiring special flags
to the job description or submitting to a special queue
(RP hides those differences from the application). RP can
operate in CCM with the Agent either external or internal to
the created CCM cluster. When the Agent is external it uses
“ccmrun” to start tasks. However, this approach still relies
on ALPS and therefore has the same limitations. When the
Agent runs within the CCM cluster, only the initial startup
of the Agent relies on ALPS. After that, all task launching
is done within the cluster, e.g. by using SSH or MPIRUN,
without further interaction with ALPS.

3) Open Run-Time Environment (OpenRTE/ORTE): The
Open Run-Time Environment is a spin-off from the Open-
MPI project and is a critical component of the OpenMPI
MPI implementation. It was developed to support dis-
tributed high-performance computing applications operating
in a heterogeneous environment. The system transparently
provides support for interprocess communication, resource
discovery and allocation, and process launch across a vari-
ety of platforms. ORTE provides a mechanism similar to the
Pilot concept - it allows the user to create a “dynamic virtual
machine” (DVM) that spans multiple nodes. In regular
OpenMPI usage the lifetime of the DVM is that of the
application, but the DVM can also be made persistent and
we rely on this particular feature for RP. RP supports two
different modes for interacting with the ORTE DVM: via
orte-submit CLI calls, and via ORTE library calls. Currently
we can not run applications that are linked against the Cray
MPI libraries, but once Cray moves to PMIx[43] that issue
is resolved.

Figure 5 shows the layout of the RP agent, the ORTE Head
Node Process that manages the DVM on the MOM Node,
and the ORTE Daemons that run on the Compute Nodes.

Command Line Interface (CLI): Recently ORTE has been
extended with tools to expose the creation of the persis-
tent DVM (“orte-dvm”) and the launching of tasks onto
that DVM (“orte-submit”). This means that the setup of
the DVM is a single ALPS interaction and that all task
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Figure 5: Architecture overview of RP with ORTE backend.
The RP Client launches a Pilot using SAGA through the
batch queue system. Once the job becomes active the
Agent is bootstrapped on the MOM node. The Agent will
use ORTE to launch a ORTE Head Node Process (HNP),
and a ORTE Daemon on every Compute Node. The RP
Client communicates tasks through the MongoDB to the
Agent running on the MOM node. The Agent submits
tasks to the HNP which forwards them to the respective
ORTE Daemons running on the Compute Nodes. The ORTE
Daemons are responsible for the fork() of the unitprocesses.

execution is then outside of the realm of ALPS. As RP is
a Python application and ORTE is implemented in C, we
choose to interface the two using the ORTE CLI. While this
enabled us to push the envelope with more concurrent tasks
and support the sharing of nodes between tasks, we did run
into new bottlenecks. As every task requires the execution of
“orte-submit”, the interaction with the filesystem becomes
a limiting factor for task execution. In addition, as every
task requires a “orte-submit” instance that communicates
independently with the “orte-dvm” we also run into network
socket race conditions and system resource limits with
workloads that consists of very large numbers of concurrent
tasks. RP has the ability to spread the execution of tasks
over multiple sub-agents (potentially running on separate
compute nodes), which does alleviate the problem of having
a large centralized process footprint for maintaining state
about each running process this way.

C Foreign Function Interface for Python (CFFI): CFFI [44]
provides a convenient and reliable way to call compiled C
code from Python using interface declarations written in C.
From an ORTE perspective this mode of operation is similar
to the CLI mode but differs in the way RP interfaces with
ORTE. Instead of running a tool for every task to launch



it only requires a library call. This also allows us to re-
use the network socket, thus further decreasing the per-call
overhead. The incentive for developing this approach was
to overcome the limits in the CLI approach.

IV. EXPERIMENTS

In the previous section we have described the general RP
architecture and the specifics of various launch methods
to execute units on Blue Waters. In this section we first
look at the performance of individual components and
then how these components perform in orchestration. All
experiments are executed on Blue Waters, the XE6/XK7
system at NCSA.

It is often the case that there are more tasks than can be run
concurrently. We then use the term generation to describe
a subset of the total workload, that fits concurrently on the
cores held by the pilot. For example, if we have 128 tasks
of a single core that need to be executed on a 64 core Pilot,
there will be twee generations of units. If each task is 42
seconds in duration, the optimal time to completion (ttc)
would be 84 seconds (2 generations x 42 seconds).

A. Micro benchmarks

Micro-benchmarks measure the performance of individual
RP components in isolation. In a micro-benchmark, RP
launches a Pilot on a resource with a single unit submitted
to the Agent. When the unit enters the component under
investigation, it is cloned a specified number of times. All
the clones are then operated on by the component and
dropped once the component has completed its activity. This
ensures that the downstream components remain idle. The
result is that single components can be stressed in isolation,
with a realistic workload, but without the influence of any
other components.

Currently, RP can instantiate exactly one Scheduler compo-
nent per Agent. The Scheduler is compute (and communica-
tion) bound: the algorithm searches repeatedly through the
list of managed cores; core allocation and de-allocation are
handled in separate, message driven threads. Figure 6 (top)
shows how the component performs in allocating cores to
a set of units for 4 different pilot sizes. The declining rate
is explained by the algorithm and the implementation of
the scheduler, as the scheduler needs to search further and
further when more cores have been allocated to units. In
Figure 6 (bottom) we show the same workload for the
scheduler, but the results now also include the unscheduling
of units and the freeing of the cores. We do not observe
the slope from Figure 6 (top) anymore as the activity now
becomes limited by the contention on the lock on the
datastructure by both the scheduling and the unscheduling.
The process of spawning and managing application tasks is
central to the Agent’s Executor component. Figure 7 shows
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Figure 6: Micro-Benchmark performance of scheduling
units on 4 pilots of different size. (top) Scheduling com-
prises allocating cores to a unit. (bottom) Scheduling
comprises allocating cores to a unit and immediately freeing
the allocated cores.
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the scaling behavior of the ORTE-CLI launch method: the
throughput scales with the number of sub-agents running on
as many compute nodes. Note that this is an asynchronous
process and does not mean that the overall throughput also
scales linear. Not shown here is the trial with increasing
the number of components per sub-agent, which caused no
performance improvement, hinting that the limit is caused
by RP interacting with the OS.

In Figure 8 we investigate the effect of unit duration on
execution rate. The performance of the 300s run initially
benefits from less contention because no units are finishing
yet. Over time the rate of executing Os units becomes higher
than for the 300s run because the total number of concurrent
units that are active in the latter case puts more strain on the
system. As per the rate of 20 units/s from the top plot, it
takes around 200s to start all 300s units. The Os run achieves
no concurrency, as the units run too short in comparion with
the launch rate to build up any concurrency.

Even in the most optimal configuration the performance of
ORTE-CLI is significantly less than the performance of the
scheduler for a 1k pilot as seen in Figure 6, thereby creating
a bottleneck at this stage.

Figure 9 shows the scaling of the ORTE-LIB launch method
for different pilot sizes. For all sizes it appears stable

30

25 —

“Em b WH et il

15

10

Executing Rate (Unit/s)

00:01 00:02 00:03

Time (s)
T T T T
— 0
4000 |- — 300

0
=
g
= 3000 | -
©
g
o
=
3 2000 |- .
Q
g
)
© 1000
Ik

0 ' ' ! ! I -

0 100 200 300 400 500 600

Time (s)

Figure 8: Micro-Benchmark executing units showing the
effect of unit duration. The pilot manages 4096 cores and
4096 units are executed with ORTE-CLI and configured
with 2 sub-agents. Two experiments were performed, with
unit duration set to 0 and 300 seconds respectively. (top)
The execution rate of both experiments. Horizontal dashed
lines show the average execution rates for the two runs.
(bottom) The unit concurrency that is achieved.

over time, but more jittered than the scheduler micro
benchmarks. This can be explained by the interaction with
many external system components. In absolute terms the
performance is lower than the scheduling component’s,
while similarly the performance decreases with increased
pilot size.

While ORTE-CLI did not scale with multiple executor com-
ponents per node, Figure 10 shows that for the ORTE-LIB
launch method the performance does scale up to 4 executor
components. Adding more sub-agents or components does
not increase the performance further, as we reach the upper
limit of the ORTE layer.

Figure 11 shows for varying pilot sizes the achieved unit
concurrency. The initial slopes represent the launch rates.
We can observe that launch rate is dependent on the pilot
size. This difference is largely attributed to the ORTE layer.
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Figure 9: Micro-Benchmark of executing units with the
ORTE-LIB launch method. The experiment is done for 4
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Figure 12: ORTE-only execution without RP. Workload
is 3 generations of single core units on a 4k core pilot.
“Launching” represents the time the callback into RP from
ORTE that the unit has started and “Forking” represents the
time the task is actualled forked on the compute node.

B. ORTE-only Experiments

In the discussion of Figure 9 we mentioned the interac-
tion with external components. To isolate the interaction
between RP and the ORTE layer we also conducted inde-
pendent experiments with ORTE.

In Figure 12 we display the results from a 3 generation
workload on a 4k pilot. The “Launching” (when RP is
notified via a callback from the ORTE layer that the unit
is started) and “Forking” (when the unit is started on
the compute node) rates are a more detailed view of the
“Executing” rate in Figure 9. The two are correlated, but



235

— coM
230 H — ORTE cLI 1
295 Il — ORTE LB i
ALPS
220 | —

Optimal

215

210

205

200

Time to Completion (s)

195

190

Figure 13: Time to Completion (TTC) for a 3 generation
workload of full node units with a 64s duration for varying
pilot sizes. The same workload is executed using RP with
ALPS, CCM, ORTE-CLI and ORTE-LIB launch methods.
All of the experiments use a single executer component.
The theoretical optimal TTC is shown as reference.

we can see that the “Launching” is more erratic, which
means that there is an offset in what RP perceives and the
actual execution. This becomes especially relevant in the
completion, as RP will keep the cores of a unit allocated
until it is notified by ORTE that the unit is finished.

C. Contrast to ALPS and CCM

One of the limitations of ALPS/APRUN is that we can only
run one unit per node. We also ran into SSH limitations
with CCM when running more than 8 concurrent units per
node. Although ALPS and CCM therefore do not satisfy all
of the functional requiremens, we still want to have some
baseline comparisons with ORTE. We therefore run a set
of experiments where every unit consumes a full node.
Figure 13 shows the results of the full-node experiments.
None of the experiments are optimized from a sub-agent
and executer perspective, but still there is a large trend dif-
ference between ORTE-CLI/ORTE-LIB and ALPS/CCM.
Note that these results do not include multiple runs for
the same configuration and therefore we attribute some of
unexpected results as outliers.

D. Sub-Node Agent Experiments

As stated earlier one of the limitations of ALPS/APRUN is
that we can only run one unit per node, we therefore in this
section do not include APRUN in the experiments. As we
ran into SSH limitations with CCM when running more than
8 concurrent units per node, we also exclude CCM from
further consideration and experiments. We thus focus on
ORTE, specifically ORTE-LIB as that showed improvement
over ORTE-CLI in section IV-A.
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Figure 14: Agent Performance for Executing units using
ORTE-LIB. Workload is 3 generations of single core units
of 64s on a 4k core pilot. We display rates of Scheduling,
Executing and Completing over time.

Figure 14 shows the agent performance for executing a
workload of 3 generations of single core 64s units on a 4k
core pilot with 4 executor components on the MOM node.
It shows that the first generation of units is immediately
scheduled and then the executer gets to work to launch all
units. After 64s the first units are completed and we see the
pattern of completion matching the execution pattern. The
consecutive generations show a completely different per-
formance characteristic though. We attribute the detoriation
for later generations to the contention over the lock between
the scheduling and the unscheduling that we discussed in
§IV-A.

The rate of roughly 100 units/s in Figure 14 reflects in the
slope of Figure 15. The latter figure shows the maximum
concurrency thats achieved for various pilot sizes. The
ceiling is caused by the rate of the launching and the
duration of the units.

To build intuition into the efficiency of running a certain
workload, we investigate the effect of the unit runtimes
on the core utilization. The results are in Figure 16. For
short unit durations, the launch overhead is relatively high,
resulting in lower utilization at higher core counts. For
longer running units the impact of the launching decreases,
first for smaller core counts then for larger ones. All data
points are singular runs and outliers are expected therefore.

E. Discussion

We started the experiments with the examining the RP
Agent scheduler. This component is in principle easy to
isolate from system dependencies. When we look at the
performance of the scheduler and relate it to the execution
benchmarks, we can conclude that the scheduler, or more
specifically, the unscheduling, does become the bottleneck
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on pilots with higher unit counts.

In the executor micro-benchmarks we see the same scal-
ability pattern, performance degrades when the pilot size
(and thus unit count) increases.

Both ORTE-CLI and ORTE-LIB execution show scalabil-
ity when adding more concurrent executor compontents.
ORTE-LIB doesn’t require more nodes for that, and scales
by adding more compontens on the MOM node. This is
explained by the fact that an execution through ORTE-

LIB is only a library call that causes a network call and
doesn’t strain the system it is running on. In the micro-
benchmarks we managed to operate 16k units concurrently;
in the 32k and, especially, the 64k experiments the launch
rate becomes too low, effectively throttling the maximum
concurrency.

The additional ORTE-only experiments show that the ex-
ecutor micro-benchmarks with the optimized agent layout
approaches the performance of the ORTE layer with a
launch rate of about 100 units/s for a 4k pilot. In the full-
node experiments the performance of CCM was unexpect-
edly low: RP also runs on normal clusters and we observe
a higher throughput with the SSH launch method there.
Because the degree of unit concurrency in the full-node
experiments is relatively low, the ORTE-CLI and ORTE-
LIB are quite comparable.

In [5] we provide more data and discussion of non-Cray
machines and a full range of micro-benchmarks.

V. CONCLUSION

There is no “one size fits all” approach when it comes to
HPC. While Cray systems excel at executing monolithic
workloads, they are restricted in running more varied work-
loads. RP in combination with ORTE is a non-invasive
userspace approach that enables the execution of workloads
that exceeds the design objectives of Cray systems. By
using RP on Crays we have overcome many of the task
execution limitations. In this paper we showed running up
to 16,000 concurrent tasks with a launch rate of around 100
tasks per second which exceeds native capability by orders
of magnitude. Resource efficiency is largely dependent
on the amount of units and unit duration and currently
improvements are required to make executing more and
shorter tasks viable. We are potentially trading-off some
raw per-task performance as currently we can not run
applications that are linked against the Cray MPI libraries.
In the pre-ORTE era of RP, there was overlap with ORTE
functionality. By leveraging the functionality of ORTE, RP
can focus on the functionality that complements ORTE: the
orchestration of tasks.

VI. FUTURE WORK

As identified the launching of tasks is currently the prime
bottleneck towards higher utilization of resources via RP.
For generic Agent performance improvement we have iden-
tified the following activities. The interface between RP
and ORTE (for submission and notification) is currently on
a per-unit basis. We intend to convert these interfaces to
support bulks of units, to decrease the overhead per unit.
Once we are able to pass units faster between the two
layers we see two possible types of improvement within
ORTE. The communication between the HNP and ORTE



daemons currently runs over TCP. Work is underway to
make direct use of the network fabrics for this inter-process
communication. In addition to the transport of the messages,
the topology of the inter-process communication in ORTE
might also not be optimized for our usage mode and we
want to experiment with different mechanisms.

In all the discussion in this paper resources equalled CPU
cores. On systems like Blue Waters that have heterogeneous
compute nodes, e.g. nodes with and without GPUs on them,
workloads could benefit from a scheduler that is aware of
this heterogeneity, and we intend to extend our scheduler
to enable this.

The placement of units on Blue Waters currently assumes
the nodes on a continuous space. For small units that is not
a problem, but for relatively large units the placement might
benefit from topology aware scheduling. RP’s architecture
supports modular schedulers and a topology-aware sched-
uler has been developed for IBM Blue Gene, we intent to
extent this effort to other HPC resource types.

While many of the components in RP can have multiple
instances, with the shown scalability improvements, the
scheduler currently is the only singular component which
prevents full partitioning of resources and thereby full par-
allel operation. We intend to also parallelize the scheduler.
We are also working on wider bulk support for RP inter-
component communication, which specifically is expected
to releave the stress on the scheduler, as it allows for more
coars grained locks on the internal data structures.
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