

Computational Efficiency of the Aerosol Scheme in the Met Office Unified Model

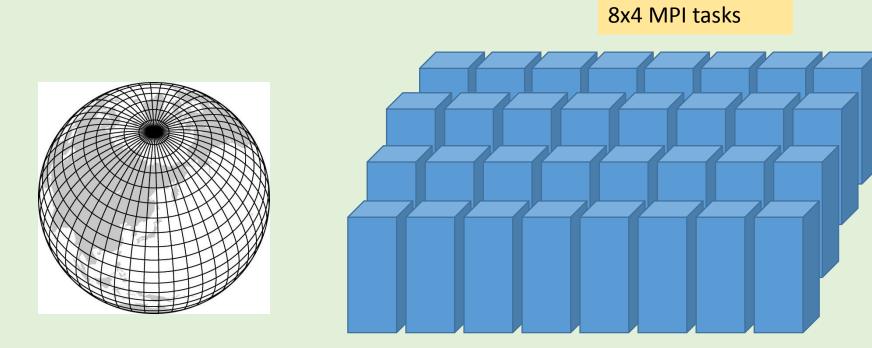
Mark Richardson, Ph.D.

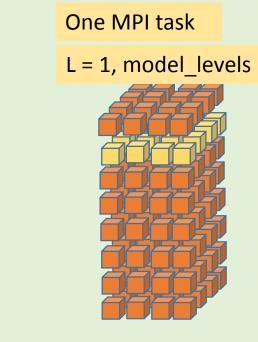
University of Leeds, NCAS

www.ncas.ac.uk

- NCAS funding in association with NERC, https://www.ncas.ac.uk/
- JWCRP collaboration with UK Met Office, http://www.jwcrp.org.uk/
- University of Leeds School of Earth and Environment for hosting the researcher http://see.leeds.ac.uk/
- Graham Mann, University of Leeds
- Fiona O'Connor, Earth Systems and Mitigation Science, UK Met. Office
- Paul Selwood, HPC Optimisation, UK Met. Office
- UK Met Office Collaborative Service for access to MONSooN HPC system
 - A Cray XC40 reached through a secured gateway

Background


- What is the UM
 - A computer simulation for weather prediction
 - Primarily short range forecast
 - Increasingly used for climate simulations
 - Some local area simulations such as regional air quality effects
- Resolution
 - All this work is with N96 (192x144x85 grid boxes) ~ 2degree
- MPI configuration
 - 128 MPI tasks in 2D topology (16x8)
- My job is funded by JWCRP (NCAS) in collaboration with Met. Office
 - 33 months to assess computational efficiency and address places in code where it appears inefficient
 - Introduce OpenMP to UKCA for enhanced parallelism

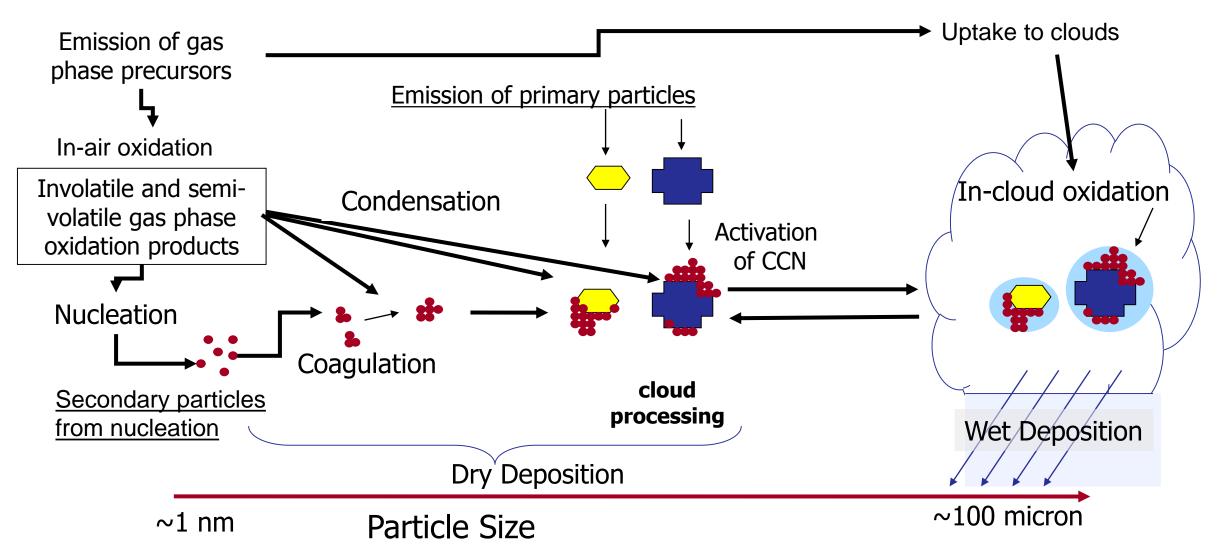

Motivation

- When activated UKCA adds overhead
 - Mode 1, full chemistry and aerosol
 - 30% of run is >40% overhead
 - Mode 2: reduced chemistry
 - with pre-calculated concentrations, i.e. offline oxidants
 - 20% of run is ~25% overhead
- Climate simulations
 - Years 1850-1950 and 1950-2050 (e.g pre-industrial, post-industrial)
 - At best 15 months per day
 - Resolution is N96L85 (192x144x85 grid boxes)
 - 448 cpus
- Options
 - Reduced complexity e.g. reduced GLOMAP and fewer chemical species more parameterisation (some groups are doing this)
 - Limit the frequency of calculation, typical only call UKCA every third time step
 - Improve computational efficiency

Relating physical space, computational domain and arrangement in memory

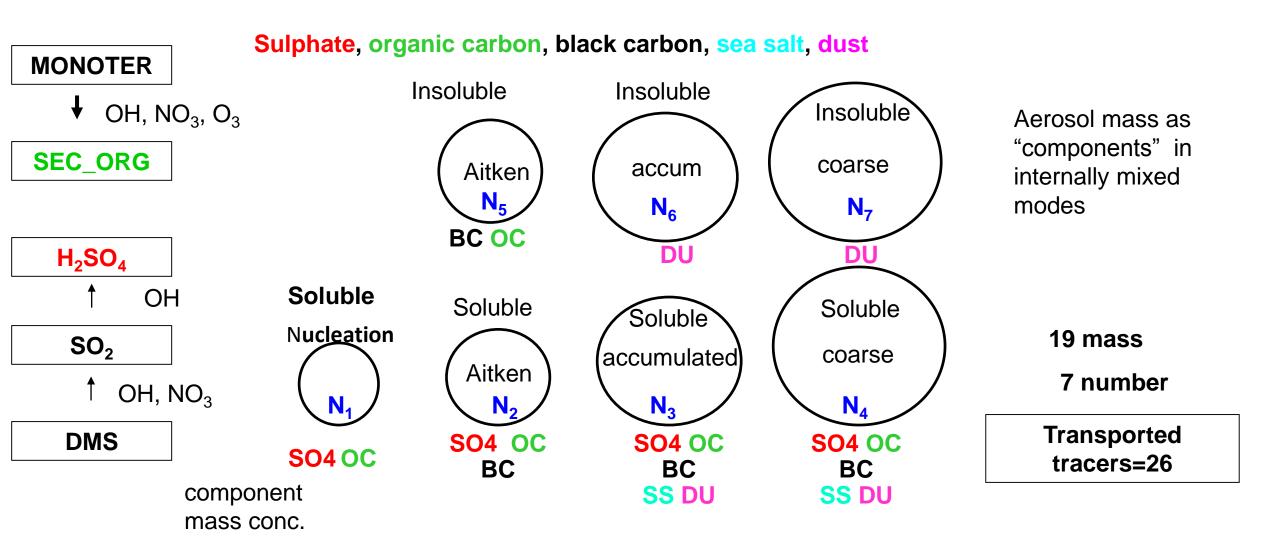
Two layers in memory

kk=1, row length



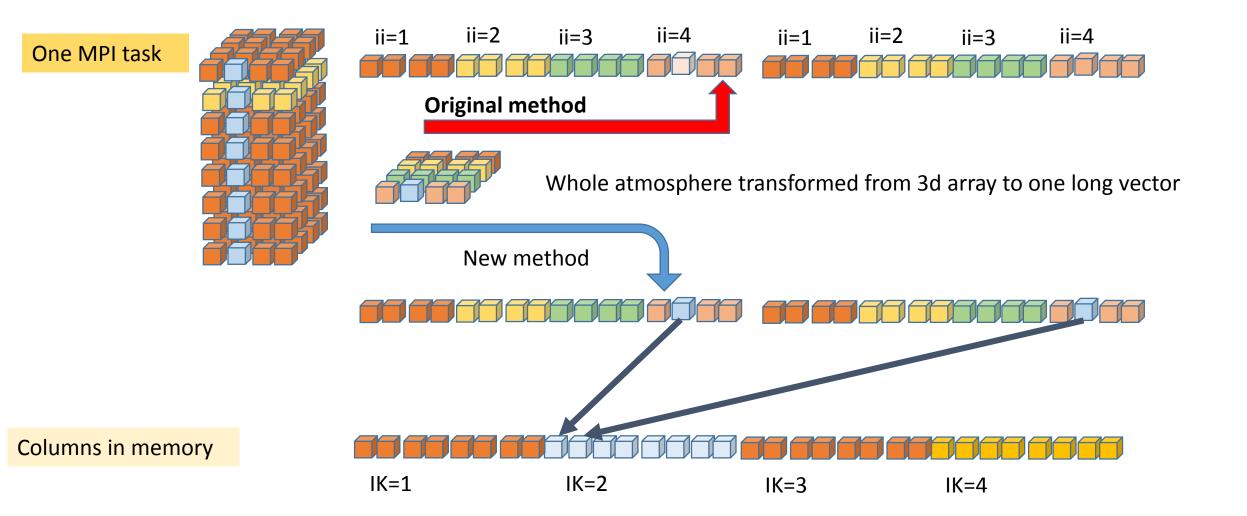
Cray User group Meeting, 9th-11th May 2016, London, UK

Globe Graphic: Warren M Washington et al. Phil. Trans. R. Soc. A 2009;367:833-846


Aerosol processes, size and composition

GLOMAP-mode standard configuration (with dust)

Reference code 2 threads


Number of PEs: 128									
TUILIOCI UI F128, 128	Header fie	lds							
	Min	Mean	Max	(Max-M	(fin)				
Instrument overhead (%		0.99		0.43	·)				
Heap (MB)	567 (PE 9)		607 (PE 18)	40					
RSS (MB)	473 (PE 69)		615 (PE 18)	142					
Stack (MB)	0 (PE 0)		0 (PE 0)	0					
Paging	0 (PE 0)	0.00	0 (PE 0)	0					
Wall Time (s)	399.33 (PE 124)) 401.47	407.91 (PE 95)	8.58					
Thread#1 (s)	399.3 (PE 9)	399.31	399.31 (PE 0)	0					
Thread#2 (s)	22.14 (PE 115)	36.42	52.64 (PE 40)	30.50					
Thread#1 (%)	97.89 (PE 95)	99.46	99.99 (PE 107)	2.10					
Thread#2 (%)	5.54 (PE 115)	9.07	13.03 (PE 40)	7.49					
Ordering routines by self: mean									
					Min	Mean	Max	(Max-Min)	
UKCA_*				(PE)	140.70	(PE)	0		
TIMER@1					22.511 (PE 61)	44.59	68.422 (PE 125)	45.91	
UKCA_COAGWITHNUCL@1				28.523 (PE 5)	30.90	32.733 (PE 24)	4.21		
ATMOS_PHYSICS1@1				23.358 (PE 82)	25. 9 7	28.39 (PE 30)	5.03		
UKCA_ABDULRAZZAK_GHAN@1				10.16 (PE 108)	22.68	29.909 (PE 70)	19.75		
UKCA_COND_COFF_V@1				15.662 (PE 118)	17.50	19.009 (PE 23)	3.35		
HALO_EXCHANGE:SWAP_BOUNDS_NS_DP@1				10.071 (PE 125)	15.36	20.534 (PE 72)	10.46		
UKCA_RADAER_BAND_AVERAGE@2				· ,		14.808 (PE 63)			
UKCA_RADAER_BAND_AVERAGE@1				· /		14.414 (PE 61)			
eg_CUBIC_LAGRANGE@1				. ,		11.525 (PE 119)			
U_MODEL_4A@1				1.175 (PE 70)	9.90	25.209 (PE 108)			
EG_CO	RRECT_TRACE	-	KCA@1		7.221 (PE 121)		7.879 (PE 48)		
	GLUE_CONV_0	0			3.456 (PE 101)		12.816 (PE 59)		
	GLUE_CONV_0	<u> </u>			3.355 (PE 108)		12.65 (PE 77)		
	UM_WRITDUN	<u> </u>			0.482 (PE 0)	6.45	6.751 (PE 6)	6.27	
EG_INTERPOLATION_ETA@1				4.232 (PE 71)		9.533 (PE 122)			
HALO_EXCHANGE:SWAP_BOUNDS_EW_DP@1				5.801 (PE 121)		· · ·			
SCATTER_FIELD_MPL@1				1.644 (PE 0)	6.20	6.64 (PE 108)	5		
	UKCA_CONDE	N@l			4.916 (PE 115)	6.02	6.555 (PE 61)	1.64	

Development code 2 threads

Number of PEs: 128									
Header fields									
	Min	Mean	Max	(Max-	Min)				
Instrument overhead (%)	0.97 (PE 121)	1.18	1.44 (PE 61)	0.47					
Heap (MB)	1391 (PE 112)	1403.03	1430 (PE 40)	39					
RSS (MB)	501 (PE 112)	525.65	563 (PE 40)	62					
Stack (MB)	0 (PE 0)	0.00	0 (PE 0)	0					
Paging	0 (PE 0)	0.00	0 (PE 0)	0					
Wall Time (s)	343.48 (PE 107)	345.88	352.42 (PE 95)	8.94					
Thread#1 (s)	343.44 (PE 0)	343.44	343.44 (PE 0)	0					
Thread#2 (s)	49.7 (PE 123)	65.70	78.93 (PE 46)	29.23					
Thread#1 (%)	97.45 (PE 95)	99.30	99.99 (PE 107)	2.54					
Thread#2 (%)	14.46 (PE 123)	18.99	22.61 (PE 46)	8.15					
Ordering routines by self: mean									
					Min	Mean	Max	(Max-Min)	
UKCA_*					(PE)	118.98	(PE)	0	
	24.25 (PE 49)	44.68	66.561 (PE 125)	42.31					
ATMOS_PHYSICS1@1					23.491 (PE 59)	25.96	28.447 (PE 49)	4.96	
UKCA_ABDULRAZZAK_GHAN@1					10.483 (PE 108)	22.61	29.431 (PE 71)	18.95	
HALO_EXCHANGE:SWAP_BOUNDS_NS_DP@1				9.884 (PE 13)	15.45	20.501 (PE 111)	10.62		
UKCA_RADAER_BAND_AVERAGE@2				7.485 (PE 116)	11.76	14.873 (PE 63)	7.39		
UKCA_RADAER_BAND_AVERAGE@1					7.488 (PE 124)	11.58	14.488 (PE 64)	7	
eg_CUBIC_LAGRANGE@1					9.884 (PE 19)	10.06	11.45 (PE 119)	1.57	
UKCA_COND_COFF_V@1					7.415 (PE 119)	8.41	9.099 (PE 43)	1.68	
UKCA_COND_COFF_V@2					7.584 (PE 97)	8.41	9.147 (PE 58)	1.56	
UKCA_COAGWITHNUCL@2					7.872 (PE 116)	8.13	8.468 (PE 85)	0.60	
UKC.	A_COAGWITH	NUCL@	91		7.82 (PE 2)	8.10	8.403 (PE 81)	0.58	
U_MODEL_4A@1					0.485 (PE 71)	7.70	20.268 (PE 123)	19.78	
EG_CORRECT_TRACERS_UKCA@1					7.237 (PE 120)		7.839 (PE 48)	0.60	
GLUE_CONV_6A@1					3.389 (PE 101)		12.87 (PE 59)	9.48	
GLUE_CONV_6A@2				3.35 (PE 65)	6.62	12.605 (PE 77)	9.26		
UM_WRITDUMP@1				0.473 (PE 0)	6.32	6.632 (PE 2)	6.16		
EG_INTERPOLATION_ETA@1					4.433 (PE 55)	6.29	10.008 (PE 117)	5.57	
HALO_EXCHA	NGE:SWAP_B	OUNDS	_EW_DP@1		5.804 (PE 13)	6.20	6.645 (PE 124)	0.84	

Cray User group Meeting, 9th-11th May 2016, London, UK

Comparison of memory layout for segment method

UNIVERSITY OF LEEDS

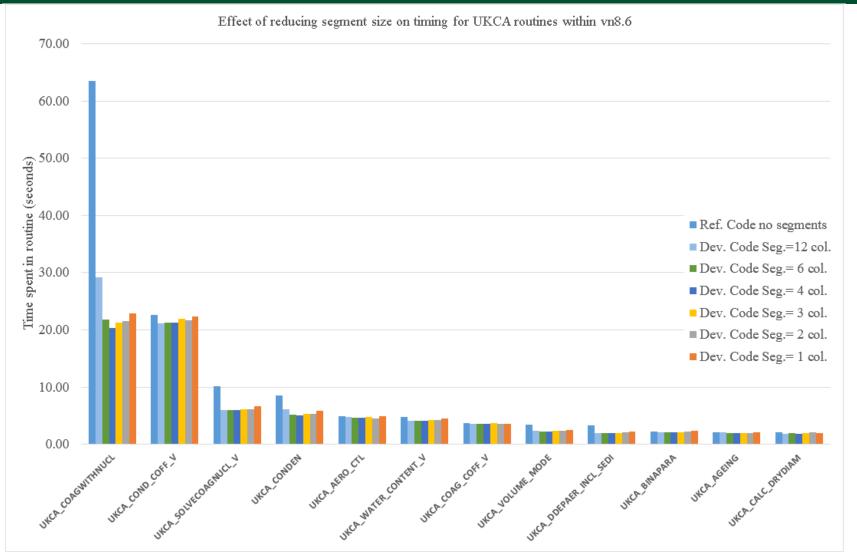
Code restructure for columns

Original

```
nbox = ni*nk*nl
t1d = reshape(t3d, nbox)
...
call aero_step(t1d, nbox)
...
mode_tracers = reshape(ae_nd, nk, ni, nl)
...
! mode tracers returned to atmosphere code
```

Replace intrinsic RESHAPE with double nested loops sized to the segment Additional loops for rows and segments per row

Benefit from compiler "in-line" optimisations Preparation for OpenMP region


Modified

```
DO ii = 1, rows
  DO ik = 1, num segs
     ! Extract columns for this seq
     il =0
     DO kk = k lo, k up
        DO L = 1, model levels
         jl = jl +1
         t1d(j1) = t3d(kk,ii,1)
        END DO
     END DO
     nbox seg = jl
     call aero step(t1d, nbox seg)
     jl =0
    DO kk = k lo, k up
       DO L = 1, model levels
        jl = jl +1
         mode tracers(kk,ii,l) = ae nd(jl)
       END DO
     END DO
  END DO
END DO
! Mode tracers returned to atmosphere code
```

Effect of reducing the segment size, no OpenMP

UNIVERSITY OF LEEDS

- Each group of columns relate to a single function within UKCA
- First column in group is reference code
- Top 12 shown
- Significant effect seen on highest workload function
- Not all as dramatic but generally all benefit
- Appears that choosing 4 columns per segment is optimal

Add Open MP parallelism

Original

```
nbox = ni*nk*nl
```

tld=reshape(t3d, nbox)

```
call aero step(t1d,nbox)
```

mode tracers=reshape(ae nd, nk,ni

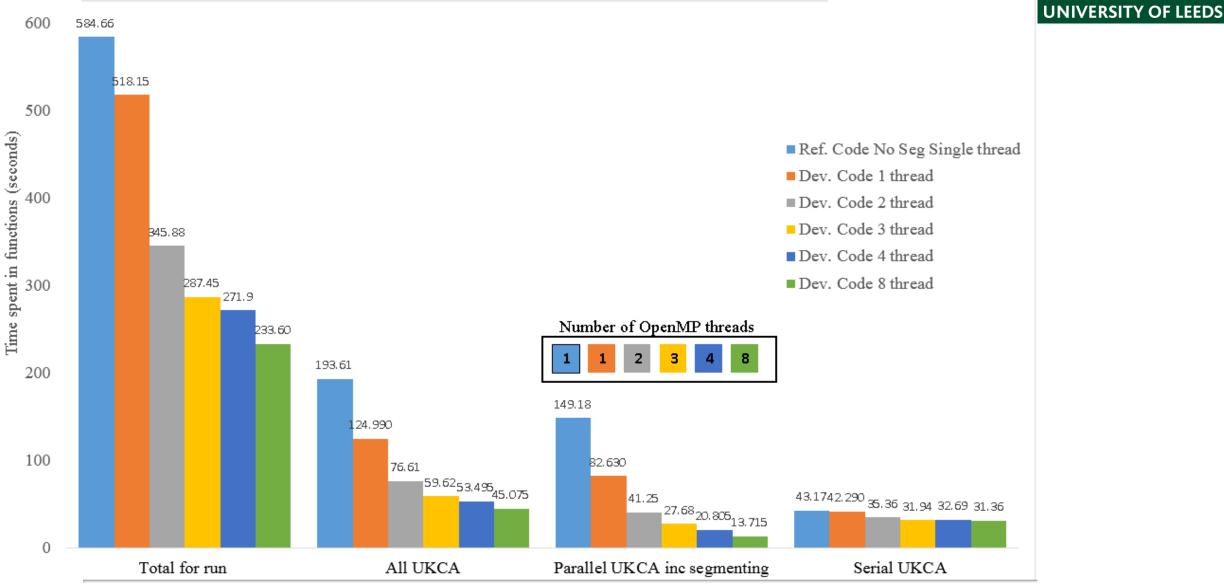
! mode tracers returned to atmospl

Significant effort in code rewriting to make the gains described here.

Modified for cache blocking

```
DO ii = 1, rows
 DO ik = 1, num segs
     ! Extract columns for this seq
    il =0
    DO kk = k lo, k up
       DO L = 1, model levels
         il = il +1
        t1d(j1) = t3d(kk,ii,1)
       END DO
    END DO
    nbox seq = jl
    call aero step(t1d, nbox seg)
    il =0
    DO kk = k lo, k up
      DO L = 1, model levels
        il = il +1
        mode tracers(kk,ii,l) = ae nd(
      END DO
     END DO
 END DO
END DO
! Mode tracers returned to atmosphere c ! Mode tracers returned to atmosphere
```

Modified for OpenMP


!\$OMP PARALLEL <some work> !\$OMP DO COLLAPSE(2) DO ii = 1, rows DO ik = 1, num segs ! Extract columns for this segment il =0 Do kk = k lo, k upDO L = 1, model levels jl = jl + 1t1d(j1) = t3d(k,ii,l)END DO END DO nbox seg = jl call aero step(t1d, nbox_seg) . . . END DO END DO !\$OMP END DO <some work round up> **!\$OMP END PARALLEL**

Cray User group Meeting, 9th-11th May 2016, London, UK

700

Development code OpenMP Static schedule over rows. Cache blocking set at 4 columns per segment.

* C04T08 : the static schedule for OpenMP decided to use only 6 threads on the UKCA parallel region

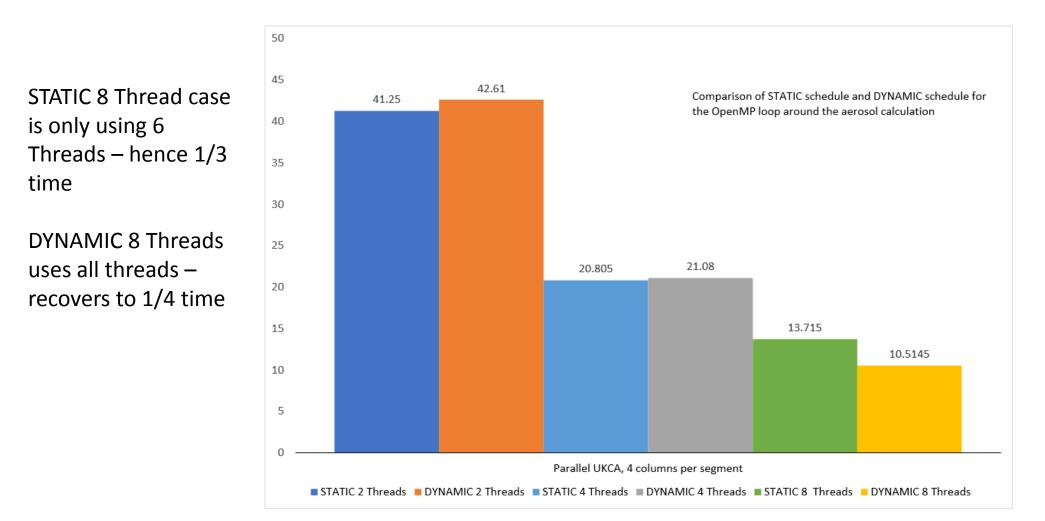
Cray User group Meeting, 9th-11th May 2016, London, UK

Improvement for UKCA compared to whole simulation

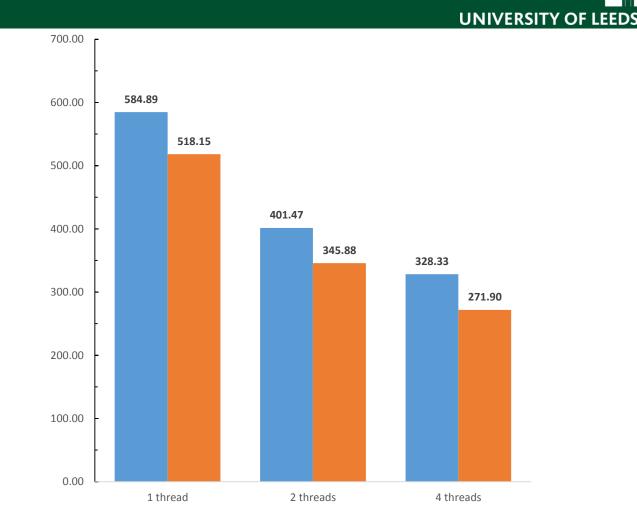
Reducing perceived "overhead"

	Reference	Development				
	1 thread	1 thread	2 thread	3 thread	4 thread	8 thread
Time for whole simulation	584.7	518.2	345.9	287.5	271.9	233.6
Time spent in UKCA	193.6	125.0	76.6	59.6	53.5	45.1
Percentage of run spent in UKCA	33.1	24.1	22.1	20.7	19.7	19.3

UNIVERSITY OF L


Comparing OpenMP Schedules: Static and Dynamic

- Limits of this implementation
 - OpenMP loop is over the rows of computational cells
 - Loop over segments occurs within the rows loop
 - "COLLAPSE" clause not working yet (need all UM to be upgraded)
- Matching threads to number of rows in sub-domain
 - At high thread count the number of threads should be a factor of the rows
- STATIC distributes rows evenly
 - Noticed that even when 8 threads assigned the scheduler chose only 6
 - Additional difficulty in prescribing 6 threads specifically without intervention
- DYNAMIC will allocate all threads some of the work (iterations)
 - Remaining iterations are allocating as threads become available


Comparison of STATIC and DYNAMIC schedules for region of OpenMP containing UKCA

Overall improvement due to segmented data and OpenMP

- The improvement for the single-threaded run is due to the cache-blocking, sending segments of atmosphere to the aerosol processes
- Increasing the number of threads reduces the wall time for both the Reference and Development versions as the UM has regions of OpenMP separate to UKCA
- All this work done with 128 MPI task configuration and fully populated nodes
- The gain in performance due to this work is seen to be
 - 12% through cache blocking seen in the first column pair
 - 14% with cache blocking and 2 OpenMP threads
 - 17% with cache blocking and 4 OpenMP threads
 - Ref. Scaling: 2T = 1.46; 4T = 1.78
 - Dev. Scaling: 2T=1.50; 4T=1.91

Ref wall time Dev wall time

- Currently month 16 status
 - Early development work within vn8.6 completed
 - Restructured code to send smaller amount of data to GLOMAP
 - Improve highest workload function by 69%
 - Reduce the time spent in GLOMAP from 22% to 14% (30% improvement)
 - Overall runtime reduction by 10%
- Ongoing plan
 - Add the segmentation method to vn10.5 ; ready for UKESM
 - Activate OpenMP around GLOMAP within a vn10.4 branch
 - Start work on a case that has active chemistry

- Implementing a segmented atmosphere acts like cache-blocking
 - UKCA components account for 30% of the reference single-threaded run
 - This development reduces that to 24% of the **development** run time
 - Corresponding to an overall improvement of 12% in the run-time
- Subsequent implementation of OpenMP provides improved speed of execution
 - Higher thread counts for **reference** code reveal UKCA as a higher fraction of the run-time
 - For 4 threads it is 40%, the OpenMP enabled UKCA **development** has reduced this to 20%
- Clear that some UKCA is still serial
 - This will be addressed in the near future
- This case is aerosol only with limited chemistry
 - The methodology will be applied to chemistry processes as well.