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Abstract— We present a case study of porting seismic 
applications from the Beowulf cluster using Ethernet 
networking to the Cray XC40 cluster with Aries 
networking. The applications in question are Tilted 
Transverse Anisotropic Reverse Time Migration (TTI 
RTM), Kirchhoff Depth Migration (KDMIG) and Wave 
equation migration (WEM). The primary obstacle in this 
port was that TTI RTM and WEM used local scratch disk 
heavily, and imaging is performed one shot per node as 
in map-reduce applications. The Cray nodes do not have 
local scratch disks and depend on the remote file 
system for storage. The primary obstacle in KDMIG was 
its heavy IO usage from permanent disk due to the 
constant reading of Travel Time Maps (TT). We briefly 
explain how these algorithms were refactored to be less 
dependent on scratch disk and to fully utilize the 
advanced networking in the Cray XC40. In the case of 
KDMIG, we explain how its IO load was reduced via a 
memory pool concept. We also provide some details 
concerning the management of striping issues on 
Lustre file systems and other IO load management 
issues. 

I.  INTRODUCTION  
Years ago when PGS first started as a seismic acquisition 
and processing company, its first large computer was based 
on the Intel 860 chip. This was considered a large distributed 
computer in its day, similar in concept to the CM2 or CM5. 
Like most companies, PGS switched to the Beowulf concept 
in the early 1990’s. This switch was due to the superior 
performance relative to cost characteristics of the Beowulf 
cluster compared to monolithic computers of the day.  
 

Today, we see evidence of a trend toward more 
monolithic computer architecture in order to achieve the 
integration and reliability needed to achieve Exascale 
computing.  To solve new physics challenges, the HPC 
community is seeing increased usage of fiber optics and 
various other high-speed networking in order to achieve the 
sustained performance needed across nodes. . This paper 
relates our experiences in trying to switch from an 
embarrassingly parallel paradigm to a more distributed 
computing paradigm.  

II. BACKGROUND  
To acquire seismic data, PGS tows source and receiver 

arrays behind marine seismic vessels. The receiver array 

consists of many sensors and acts as a giant antenna 
receiving the reflected sounds from the sub surface. These 
reflected sound waves are received and recorded on the 
surface boundary. The HPC challenge is to project these 
sound waves recorded on the surface boundary back into a 
simulated mathematical earth model using the wave equation 
in order to form a useful image of the earth’s sub surface. 

 
 PGS employs three common techniques to do this: 

Kirchhoff depth imaging, one-way wave equation, and 
reverse time migration. Industry practice is to use an acoustic 
and not an elastic approximation to this physics problem. 
This is largely due to the fact that the marine environment 
does not support shear waves but only compressional sound 
waves. Also the elastic approximation that might be used in 
the onshore case is more computationally expensive.  

 
In the marine environment, current industry practice is to 

perform a one-shot experiment every 25 meters or so. A 
single shot consists of one discharge of the compressed air 
gun source array, and the collection of the reflected 
subsurface data upon the receiver antenna. In a large marine 
survey that is 100 kilometers squared in size, up to 1.6 
million shot experiments can be recorded, each of which can 
be up to ½ gigabyte of captured shot experiment data. The 
total size of the collected data can run into the petabytes for a 
large survey. The outputs from imaging this input data are 
also of a similar size.  

 
Past industry practice was to treat or image each shot 

separately using one of the accepted algorithms mentioned. 
This allowed us to use an embarrassingly parallel paradigm 
for the most part, making it possible to compute the image 
result using one node per shot experiment. However this 
becomes challenging as the frequency increases, both from a 
main memory and compute cycle point of view. Also the 
industry is evolving to use continuous shooting which causes 
cross talk in the received results, thereby making the 
embarrassingly parallel paradigm more difficult to use in 
practice. We will discuss in order our experiences in 
restructuring reverse time migration, Kirchhoff, and one-way 
wave equation to the XC40.  

III. REVERSE TIME MIGRATION  
Reverse Time Migration (RTM) is based on the idea of 

sending the recorded sound energy back into the earth 
model, using the wave equation from the surface boundary, 



and correlating this energy with a synthetically generated 
forward source model. The computation cost of RTM scales 
as the 4th power of the maximum frequency imaged. The 
main memory requirements of RTM scales as the 3rd power 
of the maximum frequency imaged. This is due to the wave 
equation’s three spatial dimensions and one time dimension, 
and the relationship to the size of the computational bin/cell   

 
bin_size ~ Vmin / ( Fmax * points_per_wavelength )        [1]   
 
Bin_size decreases as Fmax increases, and also the time 
stepping are inversely proportional to the maximum 
frequency to be imaged. The implementation of TTI RTM 
we are using is a spectral domain implementation and 
requires the use of FFTs to perform differentiation.  
 

When we started our investigation into porting RTM 
from a Beowulf cluster to the Cray XC30, we started from 
the somewhat naive view of simply recompiling the code for 
the Cray and check its performance. At the time we had 
access to a two cabinet XC30 cluster. The program ran 
successfully using 9 nodes and produced a valid result. We 
then proceeded to try to scale up to 100 nodes and 
discovered that a job with 100 nodes ran much slower than 
the corresponding job on a Beowulf cluster.  

 
We determined the slowness was due to IO on the Lustre 

disk. Our initial starting point was the embarrassingly 
parallel paradigm where one shot is imaged in one node, and 
we were saving the forward modeled wave field to scratch 
disk. The Cray XC does not have scratch disk on each node, 
so the main Lustre file system had to be used instead. So jobs 
running on hundreds of nodes, each of which is saving the 
forward modeled wave fields to Lustre disk, did not scale 
well.  

 
Making note of the fact that in our implementation of 

pseudo analytic TTI RTM, most of the fourth derivatives just 
depend on two space axes only. Only 3 of the fourth 
derivatives depend on all three space axes. So most of the 
derivatives just require the use of 2D FFTs only and not 3D 
FFTs. This caused us to use the concept of slabs in this 
algorithm. 
 

Having seen the disk I/O scalability issue, we were also 
up against the Cray’s 128 gigabyte-per-node memory 
limitation in some of our business projects, so we decided to 
restructure the algorithm. Since most of the FFTs in use were 
2D FFTs, the pressure wave field could be divided into slabs, 
and each slab distributed to different nodes. Further, since 
we did not want to put undue stress on the Lustre file system, 
we decided to keep all the forward extrapolated wave fields 
in memory. In the collection of nodes processing a single 
shot, each node would keep its corresponding pressure slabs. 
The same is true for the forward extrapolated model and also 
the output image – only slabs appropriate for that node are 
kept in that node’s memory. Using this technique, we had 
access to terabytes of memory to process a single shot 
experiment.   

 
 
The only serious problem with this approach was the 3 or 

4 of the 3D FFTs required to perform each time step of the 
algorithm. We tried a distributed 3D cluster-based FFT that 
used MPI but found it was too slow for this purpose. So in 
collaboration with Cray, we developed a 3D cluster-based 
FFT based on the shared memory protocol. Since SHMEM is 
a one-sided protocol, not a two-sided protocol like MPI, this 
SHMEM FFT turned out to be faster than the normal 3D 
FFT based on MPI.  

 
Once this framework was in place, we discovered that the 

new algorithm in Cray was scaling better than N, the number 
of nodes used in older code running in Beowulf cluster. It 
means that compared with one node per shot, the N nodes 
per shot in the new algorithm run faster than 1 / N time. The 
speed increase was because we were not storing the forward 
wave fields on scratch disk.  

 
Additionally, the old implementation used numerous 

master nodes to contain the output image for the job, and this 
often introduced a large overhead in resources needed for 
each job. This master node overhead was also eliminated in 
the new scheme as the new peer-to-peer MPI job was an 
improvement over the old master-slave MPI job, where the 
master(s) contained the output image(s). This proved to be 
very fortuitous as the new scheme exhibits strong scaling. So 
as long as the problem fits in certain number of N nodes, 
then N can vary over a fairly wide range and the run time per 
shot will change proportionally.   

 
The new scheme is a truly distributed solution and 

effectively frees us from limitations on the maximum 
frequency of a problem that can fit in the memory of one 
node.. For example, if 25 Hz problems could be processed 
with 12 nodes, then the corresponding 50 Hz problem would 
require 96 nodes to solve. We have tested such scenarios and 
see that they do scale properly. When we double the 
maximum frequency to be processed, each of the spatial 
dimensions decreases by half and also the time stepping 
decreases by half. So the amount of compute work to be 
done goes up by a factor of 16.  

 
So in practice there is sufficient compute work to keep 

the SIMD units busy. Also, the slabs do not get too thin in 
each node due to the decreased bin sizes. There is intermodal 
communication overhead in order to perform the 3D 
distributed FFT that is needed in every time stepping of the 
algorithm. We measured the speed of a 3D distributed FFT 
on a regular Beowulf cluster with 1 gigabit leaf switches 
versus the same test on the Cray XC30. We found that this 
type of scheme would run wholly inadequately on a regular 
Beowulf cluster but has strong scaling on a Cray with the 
Aries networking. 

 
 Numerous commercial projects have now been run on 

our production Cray XC40, and we also retain a small XC30 
system for testing and development. The new distributed TTI 



RTM implementation running on the Cray XC40 is now our 
production workhorse. 

 

IV. KIRCHHOFF DEPTH IMAGING 
The Kirchhoff Depth imaging algorithm we have 

implemented operates as a master-slave MPI program that 
also uses OPENMP. In the original implementation, the 
master rank would broadcast both the bulk input data and its 
associated travel time information. Each slave rank has 
ownership of a portion of the output space. These portions 
are staggered. So each subordinate rank receives the bulk 
data. Then each subordinate rank examines whether it should 
generate a response in the output space over which it has 
ownership. This is done for each trace in the group of traces 
that was broadcasted to it. If a response is to be generated in 
the output space, then the travel time information is used to 
do so.  

 
All such output responses reside in the memory space of 

the collection of subordinate nodes. So in this sense 
Kirchhoff Depth migration is a distributed MPI program. It 
turns out that there was a bottleneck when reading travel 
time information from disk and broadcasting it to all nodes in 
the job, and the job would not scale after some point. This 
was true on both the regular Beowulf clusters and the Cray 
XC40 cluster. The behavior on the Cray XC40 was better 
due to the faster networking in the XC40.  

 
The solution to this problem was to stripe the travel time 

file across all the Lustre file system’s object storage targets 
(OST) and to read all the travel time information into a 
shared memory (SHMEM) pool. From this shared memory 
pool, any node could access the travel times on demand 
using the networking in the Cray XC40. The travel times are 
only read once when the job starts, and thereafter they are 
accessed from any node in the job from shared memory 
using SHMEM one-sided communication. The amount of 
memory dedicated to the shared memory pool for travel 
times is about 10% of each subordinate rank. 

 

V. ONE-WAY WAVE EQUATION IMAGING 
 
Wave equation migration (WEM) also used a model 

where one seismic shot was imaged per node on a Beowulf 

cluster. The intermediate imaged depth slices and the TTI 
earth model were kept on scratch disk if there was not 
sufficient memory. Whether there was sufficient memory 
depended on the maximum frequency to be imaged. The 
memory requirements also varied as the third power of the 
maximum frequency, which caused considerable efficiency 
loss when scratch disk was used. To remove this limitation, 
we decided to eliminate the utilization of scratch disk 
altogether by using more than one node to image a single 
seismic shot. Typically only 2 or 3 nodes are required to 
completely contain the problem in memory if the nodes have 
128 gigabytes of memory. In this new model, we divided up 
the problem by depth slices. So the first node is tasked with 
imaging the early depth slices and later nodes in a group 
processing a shot are responsible for processing the later 
depth slices. Frequency slices are passed between nodes as 
processing occurs. There is some overhead in doing so, but 
in practice this is far less overhead than reading and writing 
to scratch disk, as the networking is fast enough to 
accommodate this.  

VI. FILE SYSTEM LESSONS LEARNED  
In the process of restructuring algorithms to run 

efficiently in Cray XC 30/40, we observed that it is better to 
stripe the earth model and travel time parameter files. This is 
because there could be hundreds of jobs accessing the same 
earth model parameters, and unless the files are striped it 
would put an excessive burden on a single OST. Some 
output files from an accumulation process are also being 
striped over two OSTs to better distribute the IO load. 
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