
Evaluating Shifter for HPC Applications

Donald Bahls
Research & Development

Cray, Inc
St Paul, MN, USA

e-mail: dmb@cray.com

Abstract— Shifter is a powerful tool that has the potential
to expand the availability of HPC applications on Cray XC
systems by allowing Docker-based containers to be run
with little porting effort. In this paper, we explore the use
of Shifter as a means of running HPC applications built
for commodity Linux cluster environments on a Cray XC
under the Shifter environment. We compare developer
productivity, performance, and scaling of stock
applications compiled for commodity Linux clusters with
both Cray XC tuned Docker images as well as natively
compiled versions outside of the Shifter environment. We
also discuss pitfalls and issues associated with running
non-SLES-based Docker images in the Cray XC
environment.

Keywords: Docker, Shifter, Cray XC, Cray XE/XK

I. INTRODUCTION
In the past several years there has been considerable

excitement surrounding Linux container packages such as
Docker that facilitate the transfer of self-contained
applications from one Linux environment to another without
the overhead of virtual machines. These packages make
use of cgroup support in the Linux kernel that allows it to
isolate sets of processes and place limits on various system
resources, thereby resulting in a much smaller memory
footprint than the same application run within a virtual
machine [1]. With the addition of Shifter to the Cray XC
and XE/XK product lines, a subset of the functionality
provided by Docker is now available to users of Cray
systems.

In this paper, we look at the implications of using
containers on the Cray platforms by comparing the timing of
several applications compiled natively for the environment to
applications contained within Docker-based images using
two techniques that are capable of taking advantage of the
Cray HSN (High Speed Network). These techniques focus
on MPI-based applications, which constitute a large
percentage of traditional HPC workloads.

In the first technique, a portion of the Cray software stack
is added to the image to provide native support for the HSN
using standard libraries. This technique is referred to in this
paper as a Cray MPI UDI (User Defined Image). The
second technique makes use of the open source MPICH
distribution to construct an image. At Runtime, shared
libraries from the TCP-based MPICH version are replaced

with the corresponding Cray MPI version of the MPICH-
ABI libraries allowing the application to run natively on the
Cray HSN. This technique is referred to in this paper as an
MPICH-ABI UDI. We discuss the developer productivity
aspects of creating a Docker-based image as it compares to
the native environment. The runtime performance of a select
number of applications is also considered. Several synthetic
benchmarks are run to compare native IO and HSN
performance to same metrics for UDI based techniques.

II. BACKGROUND AND SETTINGS
Shifter is a set of tools that provide the means to make

use of a subset of the functionality of Docker images in an
HPC environment. The Shifter environment provides an
end-user with a mechanism to pull a Docker image to the
system for use on compute resources. After the image is
retrieved from an external source (e.g. Docker Hub,
hub.docker.com), the contents of the image are extracted and
converted into a file system image by a gateway daemon
running on a Service node. This file system image and its
related resources are referred to as a UDI. At job run time,
the user selects which UDI should be used. Prior to
application launch, the UDI is mounted on the compute
nodes assigned to the job and then performs a chroot to
the alternate file system root contained within the image.
This environment includes bind mounts of various file
systems required for Linux to function correctly as well as
site- and possibly user-defined mounts. As with traditional
Linux container environments, the only running kernel is that
of the underlying host operating system. To increase the
security of Shifter, all processes are executed as the normal
user running the batch job and all mounts within the UDI are
mounted with the nosuid option at run-time [2]. The nosuid
mount option is used to ignore set-user-identifier and set-
group-identifier options on binaries within the UDI, thereby
removing one avenue for privilege escalation. Shifter
support was added to the Cray CLE-5.2UP04 release in early
2016 via several patches, and it included support for the Cray
XE/XK and Cray XC platforms.

As with any new technological additions to the HPC
environment, it is important to understand the performance
and usability implications of the new technology. This
paper does just that by evaluating: end-user productivity—
what is required to get an application running on the system;
application performance— how do applications using
Shifter perform relative to an application compiled natively
for the system; scaling— how well does the new technology

scale to higher numbers of processors relative to native
versions of the same code.

A. Operating Environment for Performance Tests
Two systems were used to execute application

performance tests. These systems consisted of a Cray XC
system with a mixture of Intel Ivybridge (IVB) processors
as well as an older Cray XE/XK system with a mixture of
AMD Interlagos and Abu Dhabi processors (Table I).

TABLE I. SYSTEM CONFIGURATION

Host Node Configuration Other Details
Cray

XE6/XK7
100- 16 core/2.1 GHz

AMD Interlagos
280- 32 core/2.1 GHz

AMD Interlagos
96- 32 core/2.5 GHz

AMD Abu Dhabi

PBS Professional
12.2.204;

Direct Attached
Lustre;

CLE-5.2UP04
Gemini Network

Cray
XC30

116- 20 core/3.0 GHz
Intel IVB

116- 24 core/2.7 GHz
Intel IVB

20- 24 core/2.7 GHz
Intel IVB

Moab 8.1.1.2 &
Torque 5.1.1.2;
Sonexion 2000 /

NEO-2.0.0
CLE-5.2UP04
Aries Network

Systems from the venerable Cray XE/XK line were included
because many systems of that type are still in operation
today, and because Shifter support was introduced for both
the Cray XE/XK and Cray XC platforms.

B. Application Selection
We use a mixture of real-world applications and

synthetic benchmarks are used to characterize the
performance of Shifter image-based applications using
several different techniques. The performance of these
applications is compared to the performance of the same
application built directly on the Cray system using the Cray
Programming Environment. The HPC applications run
include: PISM-0.71, Quantum Espresso 5.3.02, and POP23.
The applications were selected to provide a sampling of
common HPC libraries including: BLAS, FFTW, GSL,
LAPACK, NetCDF, PETSc, and ScaLAPACK as well as a
mixture of C, C++ and Fortran code (Table II). These
applications were also selected because each had an existing
port for the Cray environment. This ensured there would
not be excessive effort required to compile the application to
capture baseline performance for the Cray environment.
Each application test case is run at different core counts to
allow for scaling comparisons. Two synthetic benchmarks
are also considered to characterize IO performance and
network bandwidth; those applications are IMB-3.2 4 and

1 Parallel Ice Sheet Model-http://pism-docs.org/wiki/doku.php
2 Quantum Espresso - http://www.quantum-espresso.org/
3 Parallel Ocean Program -
http://www.cesm.ucar.edu/models/cesm1.0/pop2/
4 Intel MPI Benchmarks - https://software.intel.com/en-us/articles/intel-
mpi-benchmarks

IOR-2.10.35. Ubuntu is used as a base OS for the UDI
images due to good availability of scientific libraries for that
Linux distribution. The GNU compiler is used to compile
applications within Docker images to avoid commercial
license constraints that might limit distribution of the images
to Docker Hub.

TABLE II. APPLICATION BUILD DEPENDENCIES

Application Libraries/Build Dependencies
PISM (C++ based

code)

BLAS, cmake, FFTW3, GSL,
LAPACK, MPI, NetCDF, PETSc

POP2 (Fortran90

based code)

MPI, NetCDF

Quantum Espresso
(Fortran90 / C based

code)

BLAS, FFTW3, LAPACK, MPI,
ScaLAPACK

IMB (C based code)

MPI

IOR (C based code)

MPI with MPI/IO support

Application compilation within the native Cray environment
uses CCE, GNU and PGI compiler suites depending upon
the application. Basic optimization flags (e.g. -O3),
including processor specific tuning options, are used for
applications.

III. TECHNIQUES USED TO BUILD IMAGES
Two methods are used to build applications within the

Docker environment. These approaches were selected
because preliminary work done within the Shifter
environment suggested that each of these methods could
deliver native HSN performance for MPI-based
applications.

A. MPICH-ABI UDI Method
The MPICH-ABI UDI method takes advantage of

MPICH-ABI support provided by the Cray MPI stack.
During compilation the application is linked against a copy
of MPICH supporting the MPICH ABI interface [3]. At
runtime the LD_LIBRARY_PATH environment variable is
set to point to the Cray MPI version of the MPICH-ABI
library and dependencies, to the replace the MPI libraries in
the image. This allows an application compiled with
MPICH for a TCP network to make use of the Aries (or
Gemini) network and get native HSN performance. For the
experiments done herein, the shared libraries were copied at
job launch to the local Lustre file system. This was done
because the site-specific mount script did not mount the
/opt/cray directory containing the necessary shared

5 IOR - https://github.com/LLNL/ior
	

libraries, and because the current Shifter batch prologue
integration does not provide a mechanism to specify runtime
mount options. The CLE-5.2UP04 release of the shifter
binary does provide a mechanism to specify alternate
mounts, but cannot be used more than once per node in this
release.

B. Cray MPI UDI Method
The Cray MPI UDI method uses a technique developed

by the authors of Shifter in which a portion of the Cray
libraries in /opt are saved from the Cray system into a
tarball then imported into a Docker image. The application
within the image is compiled and linked using the Cray MPI
libraries and other dependent libraries. Directories
containing MPI shared libraries and dependencies are added
to the /etc/ld.so.conf, and the ldconfig
command is run to update the /etc/ld.so.cache[4].

While this method results in native HSN network
performance for the application, one key factor makes it a
less appealing option. The addition of Cray libraries and
header files to the Docker image results in Cray intellectual
property being added to the image, making it illegal to
upload the resultant image to the public Docker Hub. This
issue can be avoided if a user has access to Docker on the
Cray and can build and import the image directly to the
system. Access to the Docker daemon has a number of
security implications, so sites should treat this access at they
would system root access. This consideration limits the
general applicability of this method.

It should be noted that the MPICH-ABI UDI and Cray
MPI UDI methods are both dependent on the Cray
Programming Environment libraries to provide native HSN
support. This means that there are some limitations on
compiler and library compatibility. The Cray Programming
Environment has support for particular versions of Intel and
GCC (GNU Compiler Collection) compiler, and typically
the versions are fairly new. This could potentially limit the
applicability of these two techniques in the case where the
OS used for a Docker image is based upon a much older
GCC version.

IV. PRODUCTIVITY IMPACTS
Productivity improvements are one possible outcome of

moving to a Docker image-based application. In practice,
there is some additional effort involved in generating the
MPICH-ABI based Docker images for the applications
selected due to several factors. While there are MPICH-3.2
dpkg packages available for Ubuntu and other OS flavors,
the shared library names do not match the MPICH ABI
naming scheme, so the Cray MPICH ABI libraries cannot
be swapped in at runtime. This issue can be worked around
by building MPICH in the image, but that does add some
overhead. Because an alternate MPI build is used, several
dependent libraries need to be compiled within the Docker
image (e.g. ScaLAPACK, PETSc). If MPI support were
needed for other libraries (e.g NetCDF, FFTW, etc.) this

would add to the set of locally compiled libraries. These
factors add slightly to the complexity of constructing the
Docker image, but are certainly not insurmountable. The
use of MPICH does allow for a fairly straightforward build
process that is easy to automate through the use of Docker
build files (i.e. Dockerfile(s)). One potential drawback to
using this method is that while MPICH works quite well for
the Cray environment, it is an uncommon MPI stack on
Infiniband-based (IB) systems. Newer versions of the Intel
MPI stack support the MPICH ABI [5] and include IB
support, so it is possible that Docker images based on
MPICH could also take advantage of IB infrastructure (this
option was not explored further).

The method used to construct Cray MPI UDIs whereby
contents are imported from /opt into the image reduces the
number of dependent libraries that need to be compiled, but
has several drawbacks. The addition of /opt contents to
an image substantially increases the size of the image.
Several images were over 3 GB with the addition of this
content, whereas all of the MPICH-ABI images were under
1 GB. While larger images do not appear to significantly
affect startup performance, they6 do take longer to transfer
from one location to another. Additionally, the inclusion of
Cray /opt to the image introduces the aforementioned
legal encumbrance.

In one instance, the MPI Fortran 90 module file from the
Cray MPI stack was not usable with the OS version of the
compiler due to differences in the gfortran version and
the available MPI libraries. This issue was worked around
by using a newer Ubuntu version that had a GCC compiler
version closer to the version supported by the Cray MPI
library (an alternate Cray MPT version may have also had
the correct GCC version support).

The process of linking the required MPI libraries and
dependencies is a bit more involved. Rather than attempt to
change the build flags for the application significantly,
compiler wrapper scripts were generated with the
appropriate compiler options. The “cc -dynamic -
craype-verbose” command was run on the target
system to generate the list of compiler flags. While this
option shows excellent network performance, linking with
the Cray MPI stack limits the portability7 of the application
to other system types by adding a network dependency.

All of the applications profiled have working ports for
Cray hardware, which resulted in straightforward builds for
the native Cray environment. A vast majority of the library
dependencies used by the applications are available from the
Cray Programming Environment, resulting in low overhead

6 It should be noted that non-essential content such as compilers,
static libraries, source code, and object files, etc. was not removed
from Docker images, and thus the image sizes are certainly high
water marks.
7 The Cray MPI stack supports the MPICH-ABI as well, so it should be
possible to compile with MPICH-ABI support enabled to provide
portability to other runtime environments. This option was not explored
for this paper.

for building on the Cray systems. If applications with less
standard dependencies had been selected, the effort to build
on the Cray systems would have undoubtedly been more
substantial.

Both Docker-based methods were fairly straightforward
to use, with the MPICH-ABI UDI and Cray MPI UDI taking
only minor batch script changes from the Cray native
version. These changes primarily involved setting
LD_LIBRARY_PATH appropriately and setting
environment variables necessary for Shifter at runtime. It
was observed, however, that runtime issues were more
challenging to debug within the UDI environment. While it
was possible to capture core dumps of applications running
within the Shifter environment, shared library differences
make it more complicated to interrogate the core dumps
using gdb.8

A. Quantum Espresso Application Builds
Experiments done with Quantum Espresso are run

using four different binary builds on the Cray XE/XK
system. The first build is an MPICH-ABI UDI build using
Ubuntu-16.04. This version uses gcc-5.3.1 as the compiler
with MPICH-3.2, ScaLAPACK-2.0.2 and espresso-5.3.0
built within the Docker environment. The remainder of the
library and compile-time dependencies are provided by the
distribution. The Cray MPI UDI build is also based upon
Ubuntu-14.04 using Cray MPT-7.3.2 for the MPI stack in
place of MPICH-3.2. Compiler wrapper scripts are added to
the environment to point to the appropriate include files and
libraries to use Cray MPT. The two native builds of
Espresso use CCE-8.4 and MPT-7.3.2 with the remainder of
the dependencies being satisfied by the Cray Programming
Environment. One version is built dynamically (the default
for a GPU based system). The other CCE-based build is
compiled statically. In both cases the craype-interlagos
module was loaded to enable AMD Interlago-specific
optimizations.

B. POP2 Application Builds
Experiments done with POP2 are run using five

different binary builds on the Cray XC system. The first
build is an MPICH-ABI based build using Ubuntu-14.04.
This version uses gcc-4.8.4 as the compiler with MPICH-
3.2 and POP2 built within the environment. The remainder
of the library and compile-time dependencies are provided
by the distribution. A second MPICH-ABI based image
adds the compilers flags “-O3 –march=corei7-avx”,
but is otherwise the same as the first MPICH-ABI build.
The Cray MPI UDI build is also based upon Ubuntu-16.04
using Cray MPT-7.3.2 for the MPI stack in place of
MPICH-3.2. Compiler wrapper scripts are added to the

8 It is possible that debugging could be done directly within the image if
gdb had been installed within the image. Application debugging using
Totalview or DDT was not attempted.	

environment to point to the appropriate include files and
libraries to use Cray MPT. This version also uses the
compiler flags “-O3 –march=corei7-avx”. One
native build of POP2 uses PGI-15.3.0 and MPT-7.3.2 with
the remainder of the dependencies satisfied by the Cray
Programming Environment. The other native POP2 build
uses gcc-5.3.0 and MPT-7.3.2 with dynamic libraries. The
remainder of the application dependencies are satisfied by
the Cray Programming Environment. In both cases the
craype-ivybridge module was loaded to enable Intel
Ivybridge-specific optimizations.

C. PISM Application Builds
Experiments done with PISM are run using three different

binary builds on the Cray XC system. The first build is an
MPICH-ABI based build using Ubuntu-14.04. This version
uses gcc-4.8.4 as the compiler with MPICH-3.2 and PISM-
0.7.2 built within the environment. The remainder of the
library and compile-time dependencies are provided by the
distribution. The Cray MPI UDI build is also based upon
Ubuntu-14.04 using Cray MPT-7.3.2 for the MPI stack in
place of MPICH-3.2. Compiler wrapper scripts are added to
the environment to point to the appropriate include files and
libraries to use Cray MPT. The native build of PISM uses
gcc-5.3.0 and MPT-7.3.2 with dynamic linking. A locally
compiled copy of GSL was installed, however the remainder
of the dependencies are satisfied by the Cray Programming
Environment. The craype-ivybridge module was loaded to
enable Intel Ivybridge-specific optimizations. Attempts were
made to compile using CCE however the application build
system includes GCC-specific compiler flags, which result in
compilation failure. Attempts to statically link were also
inhibited by compiler warnings that are forced to be failures
by the build system.

V. APPLICATION PERFORMANCE
In the end, application performance is a key factor in the

assessment of Shifter. If the UDI methods were
significantly slower than a native-based method, it might
not be a viable option. We ran test cases at various sizes to
provide a comparison of runtime at various core counts.
This is used as a first comparison between the UDI methods
and native applications. A second comparison uses core
counts and application runtime to calculate aggregate core
hours for each data point. This provides an absolute
comparison, with the minima being the optimal job size
from the set of job sizes run. This metric is used rather than
speedup because none of the test cases showed strong
scaling. A last metric considered for application
performance is job startup overhead. Since the two UDI
methods require that the image be mounted on all compute
nodes assigned to a job, there is conceivably extra overhead
for that activity. The startup overhead is calculated as the

100.0	

150.0	

200.0	

250.0	

300.0	

350.0	

400.0	

450.0	

0	 100	 200	 300	 400	 500	 600	 700	 800	 900	

Ru
n$

m
e	
(s
)	

Core	Count	

MPICH-ABI	UDI	(GCC	Opt)	

Cray	MPI	UDI	(GCC	Opt)	

Cray	NaAve	(CCE	Opt	dynamic)	

Cray	NaAve	(CCE	Opt	staAc)	

Figure A. Quantum Espresso Runtime – AUSURF112 Test Case

0.0	

5.0	

10.0	

15.0	

20.0	

25.0	

30.0	

35.0	

40.0	

45.0	

50.0	

0	 100	 200	 300	 400	 500	 600	 700	 800	 900	

Co
re
	H
ou

rs
	

Core	Count	

MPICH-ABI	UDI	(GCC	Opt)	

Cray	MPI	UDI	(GCC	Opt)	

Cray	NaAve	(CCE	Opt	dynamic)	

Cray	NaAve	(CCE	Opt	staAc)	

Figure B. Quantum Espresso Core Hours – AUSURF112 Test Case

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

0	 1000	 2000	 3000	 4000	 5000	 6000	

Ru
n$

m
e	
(s
)	

Core	Count	

MPICH-ABI	UDI	(GCC	Opt)	

Cray	MPI	UDI	(GCC	Opt)	

Cray	Na=ve	(PGI	Opt	sta=c)	

Cray	Na=ve	(GCC	Opt	dynamic)	

MPICH-ABI	UDI	(GCC	no-Opt)	

Figure C. POP2 Runtime – 30-Day Test Case

0.0	

500.0	

1000.0	

1500.0	

2000.0	

2500.0	

0	 1000	 2000	 3000	 4000	 5000	 6000	

Co
re
	H
ou

rs
		

Core	Count	

MPICH-ABI	UDI	(GCC	Opt)	

Cray	MPI	UDI	(GCC	Opt)	

Cray	Na>ve	(PGI	Opt	sta>c)	

Cray	Na>ve	(GCC	Opt	dynamic)	

MPICH-ABI	UDI	(GCC	no-Opt)	

Figure D. POP2 Core Hours – 30-Day Test Case

0	

2000	

4000	

6000	

8000	

10000	

12000	

0	 50	 100	 150	 200	 250	 300	 350	 400	 450	

Ru
n$

m
e	
(s
)	

Core	Count	

MPICH-ABI	UDI	(GCC	Opt)	

Cray	MPI	UDI	(GCC	Opt)	

Cray	Na>ve	(GCC	Opt	dynamic)	

Figure E. PISM Runtime– 1000 Year Test Case

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

0	 50	 100	 150	 200	 250	 300	 350	 400	 450	

Co
re
	H
ou

rs
	

Core	Count	

MPICH-ABI	UDI	(GCC	Opt)	

Cray	MPI	UDI	(GCC	Opt)	

Cray	Na>ve	(GCC	Opt	dynamic)	

Figure F. PISM Core Hours– 1000 Year Test Case

difference between a time stamp captured within the batch
script just prior to launching the application and the start
unix time stamp saved in the PBS Professional and Torque
job accounting records. For this reason all startup times are
represented as integer second values.

A. Native Performance Characterization
In the case of Quantum Espresso (Figure A) and POP2

(Figure C), the native compiled applications show the best
performance at nearly all test sizes. In the case of POP2, the
native 1600 core test case was slightly slower than the
MPICH-ABI counter part. In the case of PISM, the native
build does not result in the best performance. Native
applications show the least average startup time for all three
applications (Figures G, H, I).

B. MPICH-ABI UDI Performance Characterization
In the case of PISM (Figure E) the MPICH-ABI UDI

and Cray MPI UDI methods show optimal performance at
all measured data points. In the case of POP2 (Figure C),
the MPICH-ABI UDI application shows performance quite
close to the native application when CPU optimizations are
enabled with the 1600 core case running slightly faster than
the native counter part. The Quantum Espresso case
(Figure A) shows the MPICH-ABI UDI method is slightly
slower than the statically linked native application. The
runtimes for the MPICH-ABI UDI roughly mirror the
dynamically linked native application. The MPICH-ABI
UDI method showed the highest average startup time
(Figures G, H, I). This is likely partially attributable to the
workaround of copying libraries to Lustre in order to take
advantage of the MPICH-ABI libraries within the UDI at
runtime.

C. Cray MPI UDI Performance Characterization
In the case of PISM (Figure C) the Cray MPI UDI and

MPICH-ABI UDI methods show optimal performance at all
measured data points. In the case of POP2 (Figure B), the
Cray MPI UDI application shows performance slightly
slower than the native application. The Quantum Espresso
case (Figure A) shows the Cray MPI UDI method is slightly
slower than the statically linked native application. The
runtimes for the Cray MPI UDI roughly mirror the
dynamically linked native application. The Cray MPI
method shows slightly lower average startup time than the
MPICH-ABI UDI variant (Figures G, H, I).

18.1	

13.4	

2.2	 2.4	

0.0	

2.0	

4.0	

6.0	

8.0	

10.0	

12.0	

14.0	

16.0	

18.0	

20.0	

average	startup	

St
ar
tu
p	
Ti
m
e	
(s
)	

Core	Count	

MPICH-ABI	UDI	(GCC	Opt)	

Cray	MPI	UDI	(GCC	Opt)	

Cray	NaCve	(CCE	Opt	dynamic)	

Cray	NaCve	(CCE	Opt	staCc)	

Figure G. Quantum Espresso Average Startup – AUSURF112 Test Case

3.8	

2.4	
2.2	

1.2	

4.8	

0	

1	

2	

3	

4	

5	

6	

average	startup	

St
ar
tu
p	
O
ve
rh
ea
d	
(s
)	

Core	Count	

MPICH-ABI	UDI	(GCC	Opt)	

Cray	MPI	UDI	(GCC	Opt)	

Cray	NaDve	(PGI	Opt	staDc)	

Cray	NaDve	(GCC	Opt	dynamic)	

MPICH-ABI	UDI	(GCC	no-Opt)	

Figure H. POP2 Average Startup – 30-Day Test Case

6.6	

4.1	

1.7	

0.0	

1.0	

2.0	

3.0	

4.0	

5.0	

6.0	

7.0	

average	startup	

O
ve
rh
ea
d	
(s
)	

Core	Count	

MPICH-ABI	UDI	(GCC	Opt)	

Cray	MPI	UDI	(GCC	Opt)	

Cray	NaDve	(GCC	Opt	dynamic)	

Figure I. PISM Average Startup– 1000 Year Test Case

A. IOR Performance Comparison

IO performance characterizations are made with IOR
using 1 to 200 nodes with each node running with 4 IO tasks
per node. Each task uses a 1MB transfer size and 4GB
output file per task. IOR write and read performance was

found to be comparable for the MPICH-ABI UDI
environment and a Cray Native using CCE build (Figure J).

0	

10000	

20000	

30000	

40000	

50000	

60000	

70000	

80000	

90000	

100000	

0	 50	 100	 150	 200	 250	

Ra
te
	M

B/
s	

Nodes	

MPICH-ABI	Write	(GNU)	

CRAY	NaAve	Write	(CCE)	

MPICH-ABI	Read	(GNU)	

CRAY	NaAve	Read	(CCE)	

Figure J. IOR Write and Read Performance

B. IMB Performance Comparison

MPI performance experiments are run on 128 nodes
using IMB to characterize MPI performance of an MPICH-
ABI based UDI relative to a version of IMB compiled with
a similar GNU version for the native Cray environment.

The MPICH-ABI UDI results are also compared to a
native Cray build using CCE. The latter comparison
uncovered some interesting performance discrepancies.
With many MPI routines, the performance for the MPICH-
ABI application is found to be within a few percent of the
Native MPI rate/timing; the routines include: Sendrecv,
Exchange, Allreduce, Reduce, Allgather, Allgatherv,
Gatherv, Alltoall, Alltoallv, and Bcast. One such example is
shown below (Figure K). Several other MPI operations
were found to have much larger differences between the
MPICH-ABI UDI case and the CCE-compiled native
version, which increased significantly up to 3X at larger
messages; these routines include: Gather, Reduce_scatter
and Scatter (Chart 12,13). Review of a number of IMB
results showed that this behavior occurred repeatedly.
These differences in performance appear to be due to
compiler differences.

0	

50000	

100000	

150000	

200000	

250000	

32768	 65536	 131072	 262144	 524288	 1048576	 2097152	 4194304	

	A
ve
ra
ge
	M

B/
s	

Message	Size	(bytes)	

Cray	Na1ve	(CCE)	

MPICH	ABI	UDI	(GNU)	

Figure K. MPI Alltoall Average Performance at 128 Nodes, 1 Rank/Node

0	

20000	

40000	

60000	

80000	

100000	

120000	

140000	

160000	

180000	

200000	

262144	 524288	 1048576	 2097152	 4194304	

Av
er
ag
e	
Ti
m
e	
(u
se
c)
	

Message	Size	(bytes)	

Cray	Na1ve	(CCE)	

MPICH	ABI	UDI	(GNU)	

Figure L. MPI Gather Average Time at 128 Nodes, 1 Rank per Node

0.0	

20000.0	

40000.0	

60000.0	

80000.0	

100000.0	

120000.0	

131072	 262144	 524288	 1048576	 2097152	 4194304	

M
in
im

um
	T
im

e	
(u
se
c)
	

Message	Size	(bytes)	

Cray	Na2ve	(CCE)	

MPICH	ABI	UDI	(GNU)	

Figure M. MPI Gather Minimum Time at 128 Nodes, 1 Rank per Node

VI. FUTURE WORK
Application selection was primarily made on the basis on
library dependencies. Several of the application test cases
did not scale nearly as well as anticipated, which limited
scaling to the available system sizes. For future work we
plan to study applications with library dependencies that are
less standard for the Cray XC environment as well as select
test cases capable of scaling to larger core counts. In the
cases where the UDI techniques outperformed native
application versions, it is currently challenging to assess
which factors contribute to the differences. While Cray
performance tools could be used to profile the native
application builds, corresponding performance tools are not
yet available for the Shifter environment. Further
investigation into performance tools for the UDI
environment is also of interest.

VII. SUMMARY
Shifter is still very much in its infancy as a product, but

already can provide a means to run applications in new
ways in the Cray environment. The applications profiled
suggest that MPICH ABI and Cray MPI based UDIs can
perform comparably to applications compiled natively with
Cray MPI at least at for the scale of applications tested.
Given the relatively minor performance differences between
the two techniques, the MPICH ABI UDI technique is more
applicable for the general user community because it avoids
intellectual property concerns, is relatively straightforward
to configure/deploy and allows the same image to target
different networks without recompiling. The ability to
deploy new MPI based software designed for different OS
distributions while still retaining Cray HSN performance
could drastically simplify the task of porting some
applications to the Cray software environment.

ACKNOWLEDGMENT
The author would like to acknowledge the following people
for their assistance and insights during this work—Steve
Behling, Pierre Carrier, Brad Chamberlain, Jason Godfrey
and Peter Johnsen from Cray.

REFERENCES

[1] “Docker,” https://www.docker.com/.
[2] D. Jacobsen, S. Canon, “Contain This, Unleashing Docker for

HPC,” presented at the Cray User Group., Chicago, IL., 2015
[3] S. Oyanagi, “Cray Support of the MPICH ABI Compatibility

Initiative” pg 3-5, Cray Document number S-2544-704,
February 2015, http://docs.cray.com/books/S-2544-704/S-
2544-704.pdf -

[4] D. Jacobsen, J. Botts, S. Canon, “Never Port Your Code
Again – Docker functionality with Shifter using SLURM”, pg
16, presented at the SLURM User Group, Washington, DC,
2015 - http://slurm.schedmd.com/SLUG15/shifter.pdf

[5] MPICH ABI support - https://www.mpich.org/abi/

