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Abstract— Shifter is a powerful tool that has the potential 
to expand the availability of HPC applications on Cray XC 
systems by allowing Docker-based containers to be run 
with little porting effort. In this paper, we explore the use 
of Shifter as a means of running HPC applications built 
for commodity Linux cluster environments on a Cray XC 
under the Shifter environment. We compare developer 
productivity, performance, and scaling of stock 
applications compiled for commodity Linux clusters with 
both Cray XC tuned Docker images as well as natively 
compiled versions outside of the Shifter environment. We 
also discuss pitfalls and issues associated with running 
non-SLES-based Docker images in the Cray XC 
environment. 
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I. INTRODUCTION 
In the past several years there has been considerable 

excitement surrounding Linux container packages such as 
Docker that facilitate the transfer of self-contained 
applications from one Linux environment to another without 
the overhead of virtual machines.    These packages make 
use of cgroup support in the Linux kernel that allows it to 
isolate sets of processes and place limits on various system 
resources, thereby resulting in a much smaller memory 
footprint than the same application run within a virtual 
machine [1].  With the addition of Shifter to the Cray XC 
and XE/XK product lines, a subset of the functionality 
provided by Docker is now available to users of Cray 
systems.    

In this paper, we look at the implications of using 
containers on the Cray platforms by comparing the timing of 
several applications compiled natively for the environment to 
applications contained within Docker-based images using 
two techniques that are capable of taking advantage of the 
Cray HSN (High Speed Network).   These techniques focus 
on MPI-based applications, which constitute a large 
percentage of traditional HPC workloads.   

In the first technique, a portion of the Cray software stack 
is added to the image to provide native support for the HSN 
using standard libraries.   This technique is referred to in this 
paper as a Cray MPI UDI (User Defined Image).   The 
second technique makes use of the open source MPICH 
distribution to construct an image.   At Runtime, shared 
libraries from the TCP-based MPICH version are replaced 

with the corresponding Cray MPI version of the MPICH-
ABI libraries allowing the application to run natively on the 
Cray HSN.  This technique is referred to in this paper as an 
MPICH-ABI UDI.  We discuss the developer productivity 
aspects of creating a Docker-based image as it compares to 
the native environment.  The runtime performance of a select 
number of applications is also considered.  Several synthetic 
benchmarks are run to compare native IO and HSN 
performance to same metrics for UDI based techniques. 

II. BACKGROUND AND SETTINGS 
Shifter is a set of tools that provide the means to make 

use of a subset of the functionality of Docker images in an 
HPC environment.   The Shifter environment provides an 
end-user with a mechanism to pull a Docker image to the 
system for use on compute resources.   After the image is 
retrieved from an external source (e.g. Docker Hub, 
hub.docker.com), the contents of the image are extracted and 
converted into a file system image by a gateway daemon 
running on a Service node.   This file system image and its 
related resources are referred to as a UDI.   At job run time, 
the user selects which UDI should be used.   Prior to 
application launch, the UDI is mounted on the compute 
nodes assigned to the job and then performs a chroot to 
the alternate file system root contained within the image.   
This environment includes bind mounts of various file 
systems required for Linux to function correctly as well as 
site- and possibly user-defined mounts.   As with traditional 
Linux container environments, the only running kernel is that 
of the underlying host operating system.   To increase the 
security of Shifter, all processes are executed as the normal 
user running the batch job and all mounts within the UDI are 
mounted with the nosuid option at run-time [2].   The nosuid 
mount option is used to ignore set-user-identifier and set-
group-identifier options on binaries within the UDI, thereby 
removing one avenue for privilege escalation.  Shifter 
support was added to the Cray CLE-5.2UP04 release in early 
2016 via several patches, and it included support for the Cray 
XE/XK and Cray XC platforms. 

As with any new technological additions to the HPC 
environment, it is important to understand the performance 
and usability implications of the new technology.   This 
paper does just that by evaluating: end-user productivity— 
what is required to get an application running on the system; 
application performance— how do applications using 
Shifter perform relative to an application compiled natively 
for the system; scaling— how well does the new technology 



scale to higher numbers of processors relative to native 
versions of the same code.    

A. Operating Environment for Performance Tests  
Two systems were used to execute application 

performance tests.   These systems consisted of a Cray XC 
system with a mixture of Intel Ivybridge (IVB) processors 
as well as an older Cray XE/XK system with a mixture of 
AMD Interlagos and Abu Dhabi processors (Table I).  

TABLE I.  SYSTEM CONFIGURATION  

Host Node Configuration Other Details  
Cray 

XE6/XK7 
100- 16 core/2.1 GHz 

AMD Interlagos 
280- 32 core/2.1 GHz 

AMD Interlagos 
96- 32 core/2.5 GHz 

AMD Abu Dhabi 

PBS Professional 
12.2.204;  

Direct Attached 
Lustre;  

CLE-5.2UP04 
Gemini Network 

Cray 
XC30 

116- 20 core/3.0 GHz 
Intel IVB 

116- 24 core/2.7 GHz 
Intel IVB 

20- 24 core/2.7 GHz 
Intel IVB 

Moab 8.1.1.2 & 
Torque 5.1.1.2;   
Sonexion 2000 / 

NEO-2.0.0 
CLE-5.2UP04 
Aries Network 

 
Systems from the venerable Cray XE/XK line were included 
because many systems of that type are still in operation 
today, and because Shifter support was introduced for both 
the Cray XE/XK and Cray XC platforms. 

B. Application Selection  
We use a mixture of real-world applications and 

synthetic benchmarks are used to characterize the 
performance of Shifter image-based applications using 
several different techniques.  The performance of these 
applications is   compared to the performance of the same 
application built directly on the Cray system using the Cray 
Programming Environment.  The HPC applications run 
include: PISM-0.71, Quantum Espresso 5.3.02, and POP23.   
The applications were selected to provide a sampling of 
common HPC libraries including: BLAS, FFTW, GSL, 
LAPACK, NetCDF, PETSc, and ScaLAPACK as well as a 
mixture of C, C++ and Fortran code (Table II).  These 
applications were also selected because each had an existing 
port for the Cray environment.   This ensured there would 
not be excessive effort required to compile the application to 
capture baseline performance for the Cray environment.   
Each application test case is run at different core counts to 
allow for scaling comparisons.  Two synthetic benchmarks 
are also considered to characterize IO performance and 
network bandwidth; those applications are IMB-3.2 4 and 

                                                             
1 Parallel Ice Sheet Model-http://pism-docs.org/wiki/doku.php 
2 Quantum Espresso - http://www.quantum-espresso.org/ 
3 Parallel Ocean Program - 
http://www.cesm.ucar.edu/models/cesm1.0/pop2/ 
4 Intel MPI Benchmarks - https://software.intel.com/en-us/articles/intel-
mpi-benchmarks 

IOR-2.10.35.   Ubuntu is used as a base OS for the UDI 
images due to good availability of scientific libraries for that 
Linux distribution.   The GNU compiler is used to compile 
applications within Docker images to avoid commercial 
license constraints that might limit distribution of the images 
to Docker Hub.  

TABLE II.  APPLICATION BUILD DEPENDENCIES  

Application  Libraries/Build Dependencies 
PISM (C++ based 

code)  
 

BLAS, cmake, FFTW3, GSL, 
LAPACK, MPI, NetCDF, PETSc 

 
POP2 (Fortran90 

based code)  
 

MPI, NetCDF 
 

Quantum Espresso 
(Fortran90 / C based 

code)  
 

BLAS, FFTW3, LAPACK, MPI, 
ScaLAPACK 

IMB (C based code)  
 

MPI 

IOR (C based code) 
 

MPI with MPI/IO support 

 
Application compilation within the native Cray environment 
uses CCE, GNU and PGI compiler suites depending upon 
the application.  Basic optimization flags (e.g. -O3), 
including processor specific tuning options, are used for 
applications. 

III. TECHNIQUES USED TO BUILD IMAGES 
Two methods are used to build applications within the 

Docker environment.  These approaches were selected 
because preliminary work done within the Shifter 
environment suggested that each of these methods could 
deliver native HSN performance for MPI-based 
applications.   

A. MPICH-ABI UDI Method 
The MPICH-ABI UDI method takes advantage of 

MPICH-ABI support provided by the Cray MPI stack.   
During compilation the application is linked against a copy 
of MPICH supporting the MPICH ABI interface [3].  At 
runtime the LD_LIBRARY_PATH environment variable is 
set to point to the Cray MPI version of the MPICH-ABI 
library and dependencies, to the replace the MPI libraries in 
the image.   This allows an application compiled with 
MPICH for a TCP network to make use of the Aries (or 
Gemini) network and get native HSN performance.  For the 
experiments done herein, the shared libraries were copied at 
job launch to the local Lustre file system.   This was done 
because the site-specific mount script did not mount the 
/opt/cray directory containing the necessary shared 

                                                             
5 IOR - https://github.com/LLNL/ior 
	



libraries, and because the current Shifter batch prologue 
integration does not provide a mechanism to specify runtime 
mount options.  The CLE-5.2UP04 release of the shifter 
binary does provide a mechanism to specify alternate 
mounts, but cannot be used more than once per node in this 
release. 

B. Cray MPI UDI Method 
The Cray MPI UDI method uses a technique developed 

by the authors of Shifter in which a portion of the Cray 
libraries in /opt are saved from the Cray system into a 
tarball then imported into a Docker image.  The application 
within the image is compiled and linked using the Cray MPI 
libraries and other dependent libraries.  Directories 
containing MPI shared libraries and dependencies are added 
to the /etc/ld.so.conf, and the ldconfig 
command is run to update the /etc/ld.so.cache[4].   

While this method results in native HSN network 
performance for the application, one key factor makes it a 
less appealing option.   The addition of Cray libraries and 
header files to the Docker image results in Cray intellectual 
property being added to the image, making it illegal to 
upload the resultant image to the public Docker Hub.   This 
issue can be avoided if a user has access to Docker on the 
Cray and can build and import the image directly to the 
system.  Access to the Docker daemon has a number of 
security implications, so sites should treat this access at they 
would system root access.  This consideration limits the 
general applicability of this method.   

It should be noted that the MPICH-ABI UDI and Cray 
MPI UDI methods are both dependent on the Cray 
Programming Environment libraries to provide native HSN 
support.  This means that there are some limitations on 
compiler and library compatibility.  The Cray Programming 
Environment has support for particular versions of Intel and 
GCC (GNU Compiler Collection) compiler, and typically 
the versions are fairly new.  This could potentially limit the 
applicability of these two techniques in the case where the 
OS used for a Docker image is based upon a much older 
GCC version. 

IV. PRODUCTIVITY IMPACTS 
Productivity improvements are one possible outcome of 

moving to a Docker image-based application.   In practice, 
there is some additional effort involved in generating the 
MPICH-ABI based Docker images for the applications 
selected due to several factors.  While there are MPICH-3.2 
dpkg packages available for Ubuntu and other OS flavors, 
the shared library names do not match the MPICH ABI 
naming scheme, so the Cray MPICH ABI libraries cannot 
be swapped in at runtime.   This issue can be worked around 
by building MPICH in the image, but that does add some 
overhead.  Because an alternate MPI build is used, several 
dependent libraries need to be compiled within the Docker 
image (e.g. ScaLAPACK, PETSc).   If MPI support were 
needed for other libraries (e.g NetCDF, FFTW, etc.) this 

would add to the set of locally compiled libraries.   These 
factors add slightly to the complexity of constructing the 
Docker image, but are certainly not insurmountable.   The 
use of MPICH does allow for a fairly straightforward build 
process that is easy to automate through the use of Docker 
build files (i.e. Dockerfile(s)).  One potential drawback to 
using this method is that while MPICH works quite well for 
the Cray environment, it is an uncommon MPI stack on 
Infiniband-based (IB) systems.  Newer versions of the Intel 
MPI stack support the MPICH ABI [5] and include IB 
support, so it is possible that Docker images based on 
MPICH could also take advantage of IB infrastructure (this 
option was not explored further). 

The method used to construct Cray MPI UDIs whereby 
contents are imported from /opt into the image reduces the 
number of dependent libraries that need to be compiled, but 
has several drawbacks.   The addition of /opt contents to 
an image substantially increases the size of the image.   
Several images were over 3 GB with the addition of this 
content, whereas all of the MPICH-ABI images were under 
1 GB.   While larger images do not appear to significantly 
affect startup performance, they6 do take longer to transfer 
from one location to another.  Additionally, the inclusion of 
Cray /opt to the image introduces the aforementioned 
legal encumbrance.   

In one instance, the MPI Fortran 90 module file from the 
Cray MPI stack was not usable with the OS version of the 
compiler due to differences in the gfortran version and 
the available MPI libraries.   This issue was worked around 
by using a newer Ubuntu version that had a GCC compiler 
version closer to the version supported by the Cray MPI 
library (an alternate Cray MPT version may have also had 
the correct GCC version support).   

The process of linking the required MPI libraries and 
dependencies is a bit more involved.   Rather than attempt to 
change the build flags for the application significantly, 
compiler wrapper scripts were generated with the 
appropriate compiler options.   The “cc -dynamic -
craype-verbose” command was run on the target 
system to generate the list of compiler flags.   While this 
option shows excellent network performance, linking with 
the Cray MPI stack limits the portability7 of the application 
to other system types by adding a network dependency.  

All of the applications profiled have working ports for 
Cray hardware, which resulted in straightforward builds for 
the native Cray environment.  A vast majority of the library 
dependencies used by the applications are available from the 
Cray Programming Environment, resulting in low overhead 

                                                             
6 It should be noted that non-essential content such as compilers, 
static libraries, source code, and object files, etc. was not removed 
from Docker images, and thus the image sizes are certainly high 
water marks.  
7 The Cray MPI stack supports the MPICH-ABI as well, so it should be 
possible to compile with MPICH-ABI support enabled to provide 
portability to other runtime environments.  This option was not explored 
for this paper.   



for building on the Cray systems.  If applications with less 
standard dependencies had been selected, the effort to build 
on the Cray systems would have undoubtedly been more 
substantial. 

Both Docker-based methods were fairly straightforward 
to use, with the MPICH-ABI UDI and Cray MPI UDI taking 
only minor batch script changes from the Cray native 
version. These changes primarily involved setting 
LD_LIBRARY_PATH appropriately and setting 
environment variables necessary for Shifter at runtime.  It 
was observed, however, that runtime issues were more 
challenging to debug within the UDI environment.  While it 
was possible to capture core dumps of applications running 
within the Shifter environment, shared library differences 
make it more complicated to interrogate the core dumps 
using gdb.8 

 

A. Quantum Espresso Application Builds 
Experiments done with Quantum Espresso are run 

using four different binary builds on the Cray XE/XK 
system. The first build is an MPICH-ABI UDI build using 
Ubuntu-16.04.  This version uses gcc-5.3.1 as the compiler 
with MPICH-3.2, ScaLAPACK-2.0.2 and espresso-5.3.0 
built within the Docker environment. The remainder of the 
library and compile-time dependencies are provided by the 
distribution.  The Cray MPI UDI build is also based upon 
Ubuntu-14.04 using Cray MPT-7.3.2 for the MPI stack in 
place of MPICH-3.2.  Compiler wrapper scripts are added to 
the environment to point to the appropriate include files and 
libraries to use Cray MPT.  The two native builds of 
Espresso use CCE-8.4 and MPT-7.3.2 with the remainder of 
the dependencies being satisfied by the Cray Programming 
Environment.  One version is built dynamically (the default 
for a GPU based system).  The other CCE-based build is 
compiled statically.  In both cases the craype-interlagos 
module was loaded to enable AMD Interlago-specific 
optimizations. 

 

B. POP2 Application Builds 
Experiments done with POP2 are run using five 

different binary builds on the Cray XC system.  The first 
build is an MPICH-ABI based build using Ubuntu-14.04.   
This version uses gcc-4.8.4 as the compiler with MPICH-
3.2 and POP2 built within the environment.  The remainder 
of the library and compile-time dependencies are provided 
by the distribution.  A second MPICH-ABI based image 
adds the compilers flags “-O3 –march=corei7-avx”, 
but is otherwise the same as the first MPICH-ABI build.  
The Cray MPI UDI build is also based upon Ubuntu-16.04 
using Cray MPT-7.3.2 for the MPI stack in place of 
MPICH-3.2.  Compiler wrapper scripts are added to the 

                                                             
8 It is possible that debugging could be done directly within the image if 
gdb had been installed within the image.  Application debugging using 
Totalview or DDT was not attempted.	

environment to point to the appropriate include files and 
libraries to use Cray MPT.  This version also uses the 
compiler flags “-O3 –march=corei7-avx”.  One 
native build of POP2 uses PGI-15.3.0 and MPT-7.3.2 with 
the remainder of the dependencies satisfied by the Cray 
Programming Environment.  The other native POP2 build 
uses gcc-5.3.0 and MPT-7.3.2 with dynamic libraries.  The 
remainder of the application dependencies are satisfied by 
the Cray Programming Environment.  In both cases the 
craype-ivybridge module was loaded to enable Intel 
Ivybridge-specific optimizations. 

C. PISM Application Builds 
Experiments done with PISM are run using three different 

binary builds on the Cray XC system.  The first build is an 
MPICH-ABI based build using Ubuntu-14.04.  This version 
uses gcc-4.8.4 as the compiler with MPICH-3.2 and PISM-
0.7.2 built within the environment.  The remainder of the 
library and compile-time dependencies are provided by the 
distribution. The Cray MPI UDI build is also based upon 
Ubuntu-14.04 using Cray MPT-7.3.2 for the MPI stack in 
place of MPICH-3.2.  Compiler wrapper scripts are added to 
the environment to point to the appropriate include files and 
libraries to use Cray MPT.  The native build of PISM uses 
gcc-5.3.0 and MPT-7.3.2 with dynamic linking.  A locally 
compiled copy of GSL was installed, however the remainder 
of the dependencies are satisfied by the Cray Programming 
Environment.  The craype-ivybridge module was loaded to 
enable Intel Ivybridge-specific optimizations.  Attempts were 
made to compile using CCE however the application build 
system includes GCC-specific compiler flags, which result in 
compilation failure.  Attempts to statically link were also 
inhibited by compiler warnings that are forced to be failures 
by the build system. 

V. APPLICATION PERFORMANCE 
In the end, application performance is a key factor in the 

assessment of Shifter.  If the UDI methods were 
significantly slower than a native-based method, it might 
not be a viable option.  We ran test cases at various sizes to 
provide a comparison of runtime at various core counts.  
This is used as a first comparison between the UDI methods 
and native applications.  A second comparison uses core 
counts and application runtime to calculate aggregate core 
hours for each data point.  This provides an absolute 
comparison, with the minima being the optimal job size 
from the set of job sizes run.  This metric is used rather than 
speedup because none of the test cases showed strong 
scaling.  A last metric considered for application 
performance is job startup overhead.  Since the two UDI 
methods require that the image be mounted on all compute 
nodes assigned to a job, there is conceivably extra overhead 
for that activity.  The startup overhead is calculated  as the  



100.0	

150.0	

200.0	

250.0	

300.0	

350.0	

400.0	

450.0	

0	 100	 200	 300	 400	 500	 600	 700	 800	 900	

Ru
n$

m
e	
(s
)	

Core	Count	

MPICH-ABI	UDI	(GCC	Opt)	

Cray	MPI	UDI	(GCC	Opt)	

Cray	NaAve	(CCE	Opt	dynamic)	

Cray	NaAve	(CCE	Opt	staAc)	

 
Figure A.  Quantum Espresso Runtime – AUSURF112 Test Case  
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Figure B.  Quantum Espresso Core Hours – AUSURF112 Test Case  
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Figure C.  POP2 Runtime – 30-Day Test Case 
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Figure D.  POP2 Core Hours – 30-Day Test Case 
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Figure E.  PISM Runtime– 1000 Year Test Case  
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Figure F.  PISM Core Hours– 1000 Year Test Case  

difference between a time stamp captured within the batch 
script just prior to launching the application and the start 
unix time stamp saved in the PBS Professional and Torque 
job accounting records.  For this reason all startup times are 
represented as integer second values.  
 

A. Native Performance Characterization 
In the case of Quantum Espresso (Figure A) and POP2 

(Figure C), the native compiled applications show the best 
performance at nearly all test sizes.  In the case of POP2, the 
native 1600 core test case was slightly slower than the 
MPICH-ABI counter part.  In the case of PISM, the native 
build does not result in the best performance.  Native 
applications show the least average startup time for all three 
applications (Figures G, H, I). 

B. MPICH-ABI UDI Performance Characterization 
In the case of PISM (Figure E) the MPICH-ABI UDI 

and Cray MPI UDI methods show optimal performance at 
all measured data points.  In the case of POP2 (Figure C), 
the MPICH-ABI UDI application shows performance quite 
close to the native application when CPU optimizations are 
enabled with the 1600 core case running slightly faster than 
the native counter part.  The Quantum Espresso case 
(Figure A) shows the MPICH-ABI UDI method is slightly 
slower than the statically linked native application.  The 
runtimes for the MPICH-ABI UDI roughly mirror the 
dynamically linked native application.  The MPICH-ABI 
UDI method showed the highest average startup time 
(Figures G, H, I).  This is likely partially attributable to the 
workaround of copying libraries to Lustre in order to take 
advantage of the MPICH-ABI libraries within the UDI at 
runtime. 



C. Cray MPI UDI Performance Characterization 
In the case of PISM (Figure C) the Cray MPI UDI and 

MPICH-ABI UDI methods show optimal performance at all 
measured data points.  In the case of POP2 (Figure B), the 
Cray MPI UDI application shows performance slightly 
slower than the native application.  The Quantum Espresso 
case (Figure A) shows the Cray MPI UDI method is slightly 
slower than the statically linked native application.  The 
runtimes for the Cray MPI UDI roughly mirror the 
dynamically linked native application.  The Cray MPI 
method shows slightly lower average startup time than the 
MPICH-ABI UDI variant (Figures G, H, I). 
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Figure G.  Quantum Espresso Average Startup – AUSURF112 Test Case  
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Figure H.  POP2 Average Startup – 30-Day Test Case 
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Figure I.  PISM Average Startup– 1000 Year Test Case  

A. IOR Performance Comparison 

IO performance characterizations are made with IOR 
using 1 to 200 nodes with each node running with 4 IO tasks 
per node.  Each task uses a 1MB transfer size and 4GB 
output file per task.  IOR write and read performance was 

found to be comparable for the MPICH-ABI UDI 
environment and a Cray Native using CCE build (Figure J).  
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Figure J.  IOR Write and Read Performance 

B. IMB Performance Comparison 

MPI performance experiments are run on 128 nodes 
using IMB to characterize MPI performance of an MPICH-
ABI based UDI relative to a version of IMB compiled with 
a similar GNU version for the native Cray environment.  

The MPICH-ABI UDI results are also compared to a 
native Cray build using CCE.  The latter comparison 
uncovered some interesting performance discrepancies.   
With many MPI routines, the performance for the MPICH-
ABI application is found to be within a few percent of the 
Native MPI rate/timing; the routines include: Sendrecv, 
Exchange, Allreduce, Reduce, Allgather, Allgatherv, 
Gatherv, Alltoall, Alltoallv, and Bcast.  One such example is 
shown below (Figure K).  Several other MPI operations 
were found to have much larger differences between the 
MPICH-ABI UDI case and the CCE-compiled native 
version, which increased significantly up to 3X at larger 
messages; these routines include: Gather, Reduce_scatter 
and Scatter (Chart 12,13).  Review of a number of IMB 
results showed that this behavior occurred repeatedly.  
These differences in performance appear to be due to 
compiler differences. 
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Figure K.  MPI Alltoall Average Performance at 128 Nodes, 1 Rank/Node  
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Figure L.  MPI Gather Average Time at 128 Nodes, 1 Rank per Node 
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Figure M.  MPI Gather Minimum Time at 128 Nodes, 1 Rank per Node 

VI. FUTURE WORK 
Application selection was primarily made on the basis on 
library dependencies.  Several of the application test cases 
did not scale nearly as well as anticipated, which limited 
scaling to the available system sizes.  For future work we 
plan to study applications with library dependencies that are 
less standard for the Cray XC environment as well as select 
test cases capable of scaling to larger core counts.  In the 
cases where the UDI techniques outperformed native 
application versions, it is currently challenging to assess 
which factors contribute to the differences.  While Cray 
performance tools could be used to profile the native 
application builds, corresponding performance tools are not 
yet available for the Shifter environment.  Further 
investigation into performance tools for the UDI 
environment is also of interest. 

VII. SUMMARY 
Shifter is still very much in its infancy as a product, but 

already can provide a means to run applications in new 
ways in the Cray environment.  The applications profiled 
suggest that MPICH ABI and Cray MPI based UDIs can 
perform comparably to applications compiled natively with 
Cray MPI at least at for the scale of applications tested.  
Given the relatively minor performance differences between 
the two techniques, the MPICH ABI UDI technique is more 
applicable for the general user community because it avoids 
intellectual property concerns, is relatively straightforward 
to configure/deploy and allows the same image to target 
different networks without recompiling.  The ability to 
deploy new MPI based software designed for different OS 
distributions while still retaining Cray HSN performance 
could drastically simplify the task of porting some 
applications to the Cray software environment. 
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