
The GNI Provider Layer for OFI libfabric

Howard Pritchard, Evan Harvey
Los Alamos National Laboratory

Los Alamos, NM
Email: {howardp,eharvey}@lanl.gov

Sung-Eun Choi, James Swaro, Zachary Tiffany
Cray Inc.

St. Paul, MN
Email: {sungeun,jswaro,ztiffany}@cray.com

Abstract—The Open Fabrics Interfaces (OFI) libfabric, a
community-designed networking API, has gained increasing
attention over the past two years as an API which promises
both high performance and portability across a wide variety
of network technologies. The code itself is being developed as
Open Source Software with contributions from across govern-
ment labs, industry and academia. In this paper, we present a
libfabric provider implementation for Cray XCTM series systems
using the Generic Network Interface (GNI) library. The provider
is especially targeted for highly multi-threaded applications
requiring concurrent access to the Aries High Speed Network
with minimal contention between threads.

Keywords-libfabric, networking, communication libraries, in-
terconnects, MPI

I. INTRODUCTION AND MOTIVATION

Open Fabrics Interfaces (OFI) libfabric is a hardware-
agnostic, user-level API for network programming. It was
designed by a broad community of experts from across
industry, academia, and government with the goal of provid-
ing a standardized interface for higher-level clients such as
MPI and PGAS, while being portable and enabling excellent
performance [1]. In fact, the design process included direct
input and participation from the client community. The code
itself is being developed as Open Source Software, with
contributions from across a wide range of developers. In the
current release of libfabric, there are five hardware-specific
implementations, called providers, including the Generic
Network Interface (GNI) [2] provider for the Aries High
Speed Network [3], and two portability providers (TCP and
UDP).

OFI libfabric has gained significant momentum over the
past two years and is anticipated to be one of the standard
APIs for future HPC systems. This gives clients a unique
opportunity to port their codes to the API of future systems
before they become available. While the portability providers
can be used on nearly any system, the GNI provider enables
clients to utilize some of the largest systems in existence
today and experiment with scalability issues. Such machines
include DOE’s Trinity system and the NERSC Cori su-
percomputer. Moreover, the Aries interconnect implements
a dragonfly topology [4], often cited as a candidate for
Exascale-era systems [5] [6], making studies on these sys-
tems potentially more relevant for future systems.

In this paper, we present the GNI provider implementation
of libfabric for Cray XC series systems with the Aries
interconnect. Expanding on previous work [7], we describe
the supported libfabric API implementations, including data
transfer operations, progression model, memory registration
and the tag matching engine. We also present performance
results for the GNI provider using Open MPI [8], Argonne
National Laboratory (ANL) MPICH and Cray MPICH.

The remainder of the paper is organized as follows. Sec-
tion II, provides an overview of OFI libfabric and Section III
describes the GNI provider layer. In Section IV, we present
performance results for the GNI provider using libfabric
directly, as well as for a variety of MPI implementations.
Finally, in Section V, we conclude and describe future work.

II. OFI LIBFABRIC

OFI libfabric is an open interface for user-level network-
ing. It was designed by a working group of the OpenFabrics
Alliance (OFA) comprised of representatives from across
the industry including vendors, government laboratories and
academic institutions. Members of the working group also
designed a pluggable software architecture, implemented as
open source software and available on GitHub [9].

The library itself is comprised of two parts: the client API
and one or more fabric providers as well as implementations
of the API for specific hardware or services. Clients such as
MPI or PGAS implementations write code to the portable
API and then select a specific provider at runtime. Note that
providers are not required to implement the entire API or
various capabilities of the API. The function fi_getinfo
can be used to query the available providers and the in-
terfaces and capabilities they implement. Some providers
implement functionality that is not directly supported by the
network; other providers only implement what is available
natively in hardware. The GNI provider aims to support
nearly all the libfabric APIs, native or not, since one of
our goals is to enable clients to prepare their code for future
systems.

The libfabric API is organized into four service types:
control, communication, data transfer and completion. Con-
trol services aid in discovery of services available to the
client on a system. Communication services are used to han-
dle connection management and addressing. Data transfer

services export asynchronous interfaces for various commu-
nication types. Completion services are used to determine
the result of the data transfer operations.

Most libfabric resources have one or more attributes
associated with them. These attributes are used to define
behavior per instantiated (in C++ parlance) resource. For
example, attributes are used to define specific policies (such
as message ordering requirements or progress model), set
limits (such as the maximum single message size or internal
buffer sizes), as well as associate other libfabric resources
with the given resource (such as the wait object used for a
completion queue).

The following resource types are defined in libfabric:
fabric (fi_fabric): A fabric represents a collection

of hardware and software resources that access a single
physical or virtual network.

domain (fi_domain): A domain typically represents
a physical or virtual NIC or a hardware port, although it can
be used to represent multiple such resources for fail-over or
data striping. Domains are associated with a specified fabric.

address vector (fi_av): Address vectors (AVs) are
an abstraction used to provide a mapping of higher level
addresses, such as rank or processing element (PE), to fabric
specific addresses. Address vectors are associated with a
specified domain.

endpoint (fi_endpoint): Endpoints (EPs) are com-
munication portals that can support connected and con-
nectionless communication, both reliable and unreliable.
There are three endpoint types: FI_EP_MSG (reliable,
connection-oriented), FI_EP_RDM (reliable, connection-
less) and FI_EP_DGRAM (unreliable, connectionless). End-
points are associated with a specified domain.

event queue (fi_eq): Event queues (EQs) are used
to deliver events associated with control operations, such as
those on address vectors. Event queues are associated with
a specified fabric.

completion queue (fi_cq): Completion queues (CQs)
are used to deliver events that are generated by both success-
ful and unsuccessful data transfer operations. Completion
queues are associated with a specified domain.

completion counter (fi_cntr): Completion counters
are a lighter-weight alternative to completion queues that
simply count data transfer completion events. Counters are
associated with a specified domain.

Figure 1 illustrates the relationship between the libfabric
resources via a typical use case. In this example, a single
fabric is being used. An event queue is associated with
the fabric. One or more domains can be associated with a
fabric (two are depicted in the example). Each domain can
be set up differently. In this example, the first domain has
two completion queues and completion counters associated
with it, and the second only has a single completion queue.
Finally, any number of endpoints can be associated with a
domain.

Figure 1. Example use of libfabric to illustrate the relationship between
libfabric resources.

All data transfer operations are asynchronous and initiated
with a specified local endpoint and remote address (obtained
via an out-of-band method). The following data transfer
operations are defined in libfabric:

atomic operations: Atomic transfers are used to read
and update remote memory locations in an atomic manner.

one-sided operations: One-sided operations, or remote
memory access (RMA) operations, are use to transfer data
directly to a remote memory location, without requiring
synchronization with the remote side.

two-sided operations: Two-sided operations, or mes-
sage operations, implement explicit send and receive com-
munication.

tagged two-sided operations: Tagged operations carry
a tag with the message that is used at the receiving endpoint
to match the incoming message with a corresponding receive
operation.

trigger operations: Triggered operations defer any of
the above data transfer operation until a specified condition
is satisfied.

Since atomic and RMA operations can read or write
directly from remote memory, all such memory must be
registered with libfabric. Memory registration is handled via
the fi_mr interface.

III. THE GNI PROVIDER

In this section, we describe the supported interfaces and
capabilities of the GNI provider. We refer readers to previous
work [7] for details on the internal mapping of libfabric
resources to GNI resources.

Recall that one of the goals of the GNI provider is to give
clients early access to an API available on future HPC sys-
tems. For this reason, our first release supported interfaces
used primarily by existing MPI and PGAS implementations.
Since then, we’ve continued to expand our coverage and
include support for almost all the data transfer operations,
supported endpoint types, and their associated capabilities.

A. Domain Attributes

The GNI provider supports the following functional do-
main attributes:

Progression models: Manual progress
(FI_PROGRESS_MANUAL) and automatic progress
(FI_PROGRESS_AUTO) are supported for data transfers
as well as control operations. In both cases, an additional
thread is spawned to implement FI_PROGRESS_AUTO.
The data progression mechanism will be discussed later in
this section.

Multi-threading support: Full thread safety
(FI_THREAD_SAFE) and completion resource thread
safety (FI_THREAD_COMPLETION), where clients ensure
thread safety on shared completion resources when using
FI_PROGRESS_MANUAL, are supported.

Resource management: Resource management of lib-
fabric resources to protect against overrunning of local and
remote resources (FI_RM_ENABLED) is supported.

Address Vector type: Mapped addresses
(FI_AV_MAP), where addresses are represented by a
GNI device address and an identifier for a communication
domain (a GNI abstraction for the hardware protection
mechanism), and indexed addresses (FI_AV_TABLE),
where addresses are represented by a simple index, are
supported.

Memory registration model: Basic memory registration
(FI_MR_BASIC), where clients register specific allocated
buffers to be used in data transfer, is supported. In addition,
clients are not required to register local memory regions (i.e.,
FI_LOCAL_MR is not required). The memory registration
cache will be discussed in detail later in this section.

B. Endpoint Types

Currently, the GNI provider supports two of the three
libfabric endpoint types: datagram (FI_EP_DGRAM) and re-
liable datagram (FI_EP_RDM). Not surprisingly, these two
endpoint types are quite similar. Implementation-wise, the
data transfer operations are exactly the same except that the
internal retry mechanism is disabled for the FI_EP_DGRAM
endpoint type. The data transfer operations will be discussed
in more detail in the next subsection.

Most of the endpoint attributes specify various internal
limits, except for the memory tag format attribute which
enables clients to customize the use of the tag field for
tagged data transfers. The tag matching engine will be
discussed in detail later in this section.

Associated with each endpoint is an internal struc-
ture called a gnix_nic. This structure contains a
gni_nic_handle_t handle, which in turn is associated
with an Aries Fast Memory Access (FMA) descriptor (the
Aries hardware unit used to initiate remote memory access
across the network) and a handle to the associated commu-
nication domain.

C. Data Transfer Operations

The GNI provider supports all the data transfer opera-
tions presented in the previous section, including triggered

operations, for both endpoint types. The data transfer op-
erations also support the FI_FENCE flag, which requires
all previous operations targeting the same endpoint to be
completed before the requested operation is initiated. All
data transfer operations are initiated on a virtual connection
(VC). VCs are obtained dynamically and maintained at the
libfabric domain level. They include a handle to the GNI
representation of an endpoint, gni_ep_handle_t, thus
there is one VC per each remote peer that a local endpoint
communicates with. VCs are also used to implement the
progression model, to be discussed later in this section.

Currently, only atomic operations that are supported na-
tively by the Aries hardware are implemented. This includes
32- and 64-bit versions of min, max, sum, bitwise OR,
bitwise AND, bitwise XOR, read, write, compare-and-swap
and masked compare-and-swap.

Tagged and untagged two-sided operations less than 16KB
in size are sent using Aries FMA functionality as a control
message payload. Larger transfers are sent via the Aries
Bulk Transfer Engine (BTE) using a rendezvous protocol.
In the rendezvous protocol, the sender first sends a short
control message containing information about the source
buffer. When ready, the receiver pulls the data from the
sender using the Aries BTE. Once source data is moved,
the receiver sends a message to the sender indicating the
transfer has completed. Similarly, RMA operations shorter
than 8KB are sent using Aries FMA functionality, and larger
messages are transferred using the Aries BTE.

Whenever possible, data is transferred directly between
the user supplied buffers. Exceptions to this include handling
remote reads and atomic operations that are not four byte
aligned.

D. Progression Model

There are three types of progress managed in the GNI
provider: receive (RX), transmit (TX) and deferred work
(DW). A VC maintains one queue for each type of progress.
The queues are independent to prevent a stall in TX process-
ing from delaying RX processing and vice versa. Processing
on any given queue stops when either the queue is empty
or if an operation needs to be retried, in order to avoid
livelock. Both control and data transfer operations use these
VC queues.

RX progress involves servicing GNI messages and pro-
gressing the state of associated requests. If receipt of a
message during RX progress requires significant additional
processing, such as more network operations or acquiring
certain locks, this new work is deferred and put on the
DW queue. Examples of deferred work include the start of
rendezvous data transfer or freeing an automatic memory
registration after an RX completion.

The DW queue is processed after the RX processing,
where most deferred work will be originated, and before TX

Figure 2. Aggressive registration matching: A newly requested registration
that is fully within the memory region covered by an existing registration
can use that existing memory registration.

processing, giving network resource priority to TX requests
which have already been initiated.

TX operations are injected into the network in the order
in which they queued. The GNI provider supports the
FI_FENCE flag by stalling the TX queue until all initiated
requests have completed.

E. Memory Registration

Memory registration for the GNI provider utilizes the
uGNI memory registration API and an internal memory reg-
istration cache. Though the uGNI API provides all the func-
tionality necessary for memory registration at a primitive
level, the memory registration operation is expensive. The
memory registration cache is designed to reduce redundant
registrations as well as the total number of registration and
deregistration calls using the uGNI memory registration API.
It does so by combining registrations for overlapping and ad-
jacent memory regions and employing a lazy deregistration
scheme.

When a client requests a new memory registration, if
an existing registration exists that matches the requested
memory region, then there is no need to issue another
registration request since an existing registration can satisfy
the request. Failing that, a number of other optimizations
have been implemented to reduce the number of uGNI
memory registrations.

Aggressive registration matching uses the cache to search
for existing registrations that fully encompass the newly
requested memory region. Figure 2 illustrates an example
of aggressive matching where the requested memory region
is subsumed by an existing registration. In the example, the
requested registration is not abutting either boundary of the
existing registration and is fully satisfied by the existing
registration.

If no existing memory registration satisfies the new re-
quest, we look for opportunities to combine memory reg-
istrations. Registration coalescing is employed when the
newly requested registration is adjacent to (or would overlap
with) an existing memory registration. A new, larger memory

Figure 3. Registration coalescing: A new request that is adjacent to an
existing memory registration is coalesced with that registration to form a
new larger registration. The existing registration is then retired.

region is registered with uGNI and the existing (smaller)
memory registration is removed from the cache and marked
as retired. Figure 3 illustrates an example of registration
coalescing. The user-requested registration is extended to
the boundaries of the adjacent registration and registered
with uGNI. The newly retired entry exists so long as the
client retains a reference to the entry, i.e., until fi_close
is called with the memory registration object.

When fi_close is used to release a memory registra-
tion, it can be deregistered with uGNI. Lazy deregistration
is a passive optimization that delays registrations from being
de-allocated. Since the registrations are not deregistered
immediately, these stale registrations may be re-used in the
event that a memory registration request is received and the
stale registration would satisfy the registration request. As
such, lazy deregistration prevents unnecessary calls to the
device to register and deregister memory.

Ultimately, application behavior determines the best poli-
cies to employ, and thus the memory registration cache is
configurable. The memory registration cache supports limits
on the total number of registrations and the total number
of stale registrations. In addition, lazy deregistration can be
disabled at runtime.

F. Address and Tag Matching

The GNI provider uses the same framework for address
and tag matching; untagged messages simply ignore the
tag matching aspect. Address matching is performed for
wildcard or exact matches of the addresses of inbound
messages. The libfabric tags are 64-bit values with a format
that is dictated by the provider and client application. Tag
matching is specific to whether the message is expected (i.e.,
posted receive) or unexpected.

Internally, tags are stored in either a simple linked list or
a hash list (configurable at runtime). The linked list allows
for a simple structure that is optimized for small numbers of
tags. The hash list implementation uses the tag ID to hash
to one of multiple bucket lists, with tags stored in order
of arrival on a per-bucket basis. The best case scenario for

 0

 1

 2

 3

 4

 5

 4 8 16 32 64 128 256 512 1024 2048

la
te

n
c
y
 i
n
 u

s
e
c
s

message size in bytes

fi_tsend/trecv performance

fi_tsend/trecv (1 thread)
fi_tsend/trecv (2 threads)
fi_tsend/trecv (4 threads)
fi_tsend/trecv (8 threads)

fi_tsend/trecv (16 threads*)
fi_tsend/trecv (24 threads*)

Figure 4. fi tsend/fi trecv ping/pong performance using multiple threads

the hash list is tags that hash evenly across the buckets and
have a single, exact match. If all tags in the tag storage
are identical or simply unevenly distributed amongst the
various buckets, search time with exact tags may be similar
to that of the linked-list implementation. Furthermore, if a
wildcard tag is used, the hash list implementation will search
multiple buckets in order to find the oldest matching tag. In
the worst case, all buckets must be searched, again making
this equivalent to the linked list worst-case.

IV. EXPERIMENTAL RESULTS

In this section, we present results using the libfabric GNI
provider, including results from low level performance tests
written directly to the libfabric API, as well as results using
libfabric within Open MPI and ANL MPICH.

For the experiments we used a Cray XC30 system with
compute nodes comprised of two Intel Xeon IvyBridge
processors (E52697 v2) with 24 cores total (12 cores/socket)
without hyperthreading and 128 GB of memory running
Cray Linux Environment (CLE) version 5.2up04. The job
scheduler for the system was Slurm version 15.0.8.10.
Release 1.3 of libfabric was used for the experiments. The
library was built using gcc version 5.1.0 with optimization
level O2. No special configuration options were used.

A. libfabric Microbenchmarks

We rewrote versions of the OSU MicroBenchmarks
(OMB) [10] to make direct libfabric calls to measure
performance of the GNI provider without the overhead of
an MPI or SHMEM implementation. We further modified
the tests to optionally use multiple threads per process
to exercise the GNI provider’s support for multithreaded
processes. All libfabric benchmarks are available at
https://github.com/ofi-cray/fabtests-cray.

Figure 4 shows the performance of fi_tsend and
fi_trecv (tagged, twosided) latency achieved by one to
24 threads. For this test, we rewrote a version of the OSU

 1

 4

 16

 64

 256

 1024

 4096

 16384

4 16 64 256 1K 4K 16K 64K 256K 1M 4M

th
ro

u
g
h
p
u
t
in

 M
B

/s

message size in bytes

Multithreaded fi_write Bandwidth

1 thread
2 threads
4 threads
8 threads

16 threads*
24 threads*

Figure 5. Multithreaded fi_write (onesided) bandwidth for one to 24
threads for 64 write window size (loglog scale). The 16 and 24 thread cases
access the NIC from the far socket.

Latency Test (osu_latency) to use libfabric fi_tsend
and fi_trecv, with each thread using its own endpoint. As
we increase the number of threads, we see small increases in
latency when using the socket directly attached to the Aries
NIC. There is a more pronounced jump when both sockets
are being fully utilized.

Figure 5 shows the onesided fi_write throughput
achieved by one to 24 threads. For this test, we rewrote a
version of the OSU Bandwidth Test (osu bw) to use the
libfabric onesided operation fi_write with completion
events; the completion queue is checked every 64 writes
(window_size in the original benchmark) for transfer
sizes of 8K bytes or smaller. For onesided operations, there
is no software involvement at the target node. As with the
previous benchmark, we also create additional pthreads, each
of which uses its own endpoint to communicate with a
thread on the other node. Similarly, we see good scaling
for small message sizes up until the 16 thread case. Beyond
this, the effects of accessing the NIC from the far processor
socket generally limits improvements to the throughput rate.
Also note that beyond a message size of 8K, the underlying
transfer mechanism switches to using the BTE engine,
which although it enables asynchronous data transfer, does
introduce a serialization point as it has a limited number of
virtual channels to service the requests from the threads.
Consequently, the lack of increased throughput at these
larger message sizes is expected. For 16 and 24 threads, all
available virtual channels of the BTE engine are saturated,
and thus there is no dip in performance between 8K and
16K message sizes.

Note also that for a single thread, the FMA performance
levels off around a 16K message size, which can be seen in
the graph by the slight dip at the 8K message size.

B. OSU Microbenchmarks

Basic performance characteristics of the GNI provider
were investigated using the OSU MicroBenchmarks (version
5.3) using Open MPI and ANL MPICH. Both Open MPI
and ANL MPICH can use libfabric as a lower level network
API; Message Transfer Layer (MTL) in Open MPI, Netmod
in ANL MPICH. Open MPI also has a Byte Transfer Layer
(BTL) that uses GNI directly, allowing for comparison of
implementations using the Aries network. We also compared
these results to Cray MPICH.

For these experiments, we used Open MPI mas-
ter@3597a083 and ANL MPICH master@81c1290e utiliz-
ing the CH3 variant of the ANL MPICH libfabric (OFI)
Netmod [11]. Note that ANL MPICH must be patched to
work on Cray XC systems [12], but the patch is purely to
enable ANL MPICH to work with Cray’s Process Manage-
ment Interface (PMI) implementation and has no impact on
the performance of the MPICH OFI Netmod. Both srun
and aprun can be used to launch the ANL MPICH with
the patch applied. Cray MPICH (version 7.3.3) was used
to compare with the open source MPI implementations.
Cray MPICH uses a proprietary Netmod coded directly to
GNI [13].

Both the Open MPI and ANL MPICH implementations
make use of the FI_EP_RDM endpoint type and the tag
matching interfaces. In the case of the Open MPI OFI
MTL, the MTL is a thin layer on top of the underlying
libfabric tag matching interfaces. The OFI Netmod in ANL
MPICH makes use of the MPIDI_Comm_ops_t approach
for defining send, cancel, and probe methods as well as
the recv_posted method for registering an application’s
posted receives with the libfabric provider’s tag matching
component. It does not make use of the Netmod Large
Message Transfer (LMT) mechanism. Both MPI implemen-
tations make use of the fi_tinject libfabric interface for
short messages.

The GNI provider targets applications requiring thread
safety, thus the OSU benchmarks were modified to re-
quest MPI_THREAD_MULTIPLE even though the appli-
cations were singlethreaded. Both Open MPI and ANL
MPICH were compiled to be able to support this level
of thread safety. In the case of Cray MPICH, the
MPICH_MAX_THREAD_SAFETY environment variable was
used to specify this level of thread safety support.

Figure 6 compares the MPI pingpong latency for Open
MPI when using the GNI BTL versus going through the
OFI MTL, as well as the latency achieved using the OFI
Netmod in ANL MPICH and Cray MPICH. Not surprisingly,
the Cray MPICH shows the best results. The OFI Netmod
yields similar results, with a nearly constant overhead of
about 400 nsecs over the native implementation. This can
be largely accounted for by the additional overhead within
the GNI provider of allocating a providerinternal request,

 0

 0.5

 1

 1.5

 2

 2.5

 3

4 8 16 32 64 256 1K

la
te

n
c
y
 (

u
s
e
c
s
)

message size in bytes

osu latency test

Open MPI uGNI BTL
Open MPI OFI MTL

Cray MPICH
ANL MPICH OFI

Figure 6. OSU short message latency benchmark using Open MPI, ANL
MPICH and Cray MPICH.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

4 16 64 256 1K 4K 16K 64K 256K 1M 4M

B
a
n
d
w

id
th

 M
B

/s

message size in bytes

osu bandwidth test

Open MPI uGNI BTL
Open MPI OFI MTL

Cray MPICH
ANL MPICH OFI

Figure 7. OSU bandwidth benchmark using Open MPI, ANL MPICH and
Cray MPICH.

as well as the overhead of generating libfabric CQ entries.
The finegrain locking in the GNI provider also accounts for
some of the overhead. Neither of these operations is required
in the Cray GNI Netmod. The overhead when using the
Open MPI OFI MTL is less, around 200 nsecs for messages
smaller than 1024 bytes. More of the software within Open
MPI is used (tag matching, etc.) when using the native GNI
path through Open MPI, whereas when using the OFI MTL,
more of the software operations are occurring within the
libfabric provider. Figures 7 and 8 compare, respectively, the
MPI unidirectional and bidirectional bandwidths achieved
for Open MPI with the GNI BTL and when going through
the OFI MTL, along with a similar comparison between
ANL MPICH using the OFI Netmod and Cray MPICH.
The GNI provider compares well for both small and large
messages for the corresponding MPI implementations, but
for intermediate size messages between 8K and 64K bytes,
the GNI provider under performs the native implementations

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

4 16 64 256 1K 4K 16K 64K 256K 1M 4M

B
a
n
d
w

id
th

 M
B

/s

message size in bytes

osu bi-directional bandwidth test

Open MPI uGNI BTL
Open MPI OFI MTL

Cray MPICH
ANL MPICH OFI

Figure 8. OSU bidirectional bandwidth benchmark using Open MPI, ANL
MPICH and Cray MPICH.

 0

 200000

 400000

 600000

 800000

 1x10
6

 1.2x10
6

 1.4x10
6

 1 4 16 64 256 1024 4096

m
e
s
s
a
g
e
s
/s

e
c

message size (bytes)

osu_mbw_mr

Open MPI uGNI BTL
Open MPI OFI MTL

Cray MPICH
ANL MPICH OFI

Figure 9. OSU multi-bandwidth message rate benchmark using Open MPI,
ANL MPICH and Cray MPICH.

substantially. In the case of the two Open MPI results,
the difference in the crossover to the rendezvous protocol
(below 8K bytes when using GNI directly versus under 16K
bytes for the OFI MTL) accounts for the difference at these
transfer sizes for Open MPI. Analysis of the results for
32K and 64K bytes revealed that the performance difference
was due to interference of the GNI provider data progress
thread with the application thread. A strategy to avoid this
interference is planned for the 1.4 release of libfabric. In
the case of Cray MPICH, a pipelined GET eager protocol
is used up to 128K bytes. This outperforms the GET-based
rendezvous protocol used by the GNI provider between 16K
and 128K bytes.

Figure 9 compares the short message rates when using
Open MPI with the GNI BTL versus using the OFI MTL,
and likewise for ANL MPICH using the OFI Netmod verses
the GNI Netmod. In this experiment, two MPI processes
were used. For Open MPI, the OFI BTL implementa-

 0

 20

 40

 60

 80

 100

1 4 16 64 256 1K 4K 16K 64K 256K 1M

o
v
e
rl
a
p
 %

message size in bytes

smb overlap test

Open MPI uGNI send
Open MPI OFI send

Open MPI uGNI recv
Open MPI OFI recv

Figure 10. Sandia MPI overlap benchmark using Open MPI.

tion slighly outperforms the OFI MTL implementation for
messages 64 bytes and shorter. The OFI MTL uses the
fi_tinject method for messages 64 bytes and smaller.
This cuts down considerably on permessage processing on
the send side as compared to the operation count when
using the GNI BTL. Above 64 bytes, fi_tsend is used
in the OFI MTL. This requires processing of CQ events
on the send side, and thus more overhead. In the case
of ANL MPICH, the additional overhead of allocating a
GNI libfabric internal request leads to a lower message rate
compared to that obtained using Cray MPICH. The ANL
MPICH OFI Netmod also makes use of the fi_tinject
so the difference in performance for 64 byte messages and
smaller is not as large. Above 64 bytes, the additional
overhead of the libfabric internal request allocation, as well
as the need to generate libfabric CQ events both at the sender
and receiver leads to a significantly lower message rate when
compared to Cray MPICH. Above 1024 bytes, the time spent
moving the message data begins to dominate, so the relative
difference in message rate shrinks.

C. Sandia Message Overhead Benchmark

The Sandia MPI message overhead benchmark [14]
is a simple, but effective, benchmark for giving a first
order indication of how well an MPI implementation
achieves overlap of communication with computation. Be-
cause the GNI provider supports independent progres-
sion(FI_PROGRESS_AUTO), it is expected that for larger
messages, the test should indicate good overlap of commu-
nication with computation. Figure 10 bears this out. Results
for Open MPI using the GNI BTL verses the OFI MTL show
that for the sender side, both methods show good overlap of
communication with computation. This is expected since in
both cases a receiver side GET approach is used for pulling
the data from the sender’s buffer into the matching receive
buffer. For the receiver side however, the results show that

the GNI libfabric provider’s independent progress support
allows for good overlap of computation with communication
for 16K bytes and longer messages.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented the GNI provider for OFI
libfabric, a new network programming API designed to
be portable and deliver excellent performance. The GNI
provider gives middleware clients such as MPI and PGAS
libraries early exposure to the API of future systems using
systems of scale, such as DOE’s Trinity and Cori systems.

In addition to general performance improvements, we
plan to continue implementing interfaces requested by our
user community. This includes nonnative atomic operations
and scalable endpoints, an endpoint type that multiplexes
transmit and receive contexts and onnode acceleration based
on XPMEM. We also plan to investigate additional config-
urability of the memory registration cache to enable better
tuning for end users and a kdtree tag list implementation for
clients that use highlysegmented tag formats, heavy wildcard
use and deep tag queues.

VI. ACKNOWLEDGMENTS

The authors would like to thank Chuck Fossen, James
Shimek, Tony Zinger, Ben Turrubiates and Nathan Graham
for their contributions to the GNI provider. We would also
like to thank the OFI working group for the design and
implementation of the libfabric architecture.

LA-UR-16-23187

REFERENCES

[1] P. Grun, S. Hefty, S. Sur, D. Goodell, R. Russell, H. Pritchard,
and J. Squyres, “A Brief Introduction to the OpenFabrics
Interfaces–A New Network API for Maximizing High Per-
formance Application Efficiency,” in Proceedings of the 23rd
Annual Symposium on High-Performance Interconnects, Au-
gust 2015.

[2] Using the GNI and DMAPP APIs, Cray Inc., 2011.

[3] G. Faanes, A. Bataineh, D. Roweth, T. Court, E. Froese,
B. Alverson, T. Johnson, J. Kopnick, M. Higgins, and J. Rein-
hard, “Cray Cascade: A scalable HPC system based on
a Dragonfly network,” in Proceedings of the International
Conference on High Performance Computing, Networking,
Storage and Analysis (SC ’12), November 2012.

[4] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-
driven, highly-scalable dragonfly topology,” in Proceedings of
the 35th International Symposium on Computer Architecture,
June 2008.

[5] P. Kogge (Editor and Study Lead), “Exascale Computing
Study: Technology Challenges in Achiveing Exascale,” 2008.

[6] J. Shalf, S. Dosanjh, and J. Morrison, “Exascale computing
technology challenges,” in Proceedings of the 9th Inter-
national Conference on High Performance Computing for
Computational Science (VECPAR ’10), 2010.

[7] S.-E. Choi, H. Pritchard, J. Shimek, J. Swaro, Z. Tiffany,
and B. Turrubiates, “An Implementation of OFI libfabric in
Support of Multithreaded PGAS Solutions,” in Proceedings
of the 9th International Conference on Parititioned Global
Address Space Programming Models, September 2015.

[8] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Don-
garra, J. M. Squyres, V. Sahay, P. Kambadur, B. Barrett,
A. Lumsdaine, R. H. Castain, D. J. Daniel, R. L. Graham, and
T. S. Woodall, “Open MPI: Goals, concept, and design of a
next generation MPI implementation,” in Proceedings of the
11th European PVM/MPI Users’ Group Meeting, Budapest,
Hungary, September 2004, pp. 97–104.

[9] OpenFabrics Interfaces Working Group, “OFIWG libfab-
ric repository,” https://github.com/ofiwg/libfabric, accessed:
2016.

[10] “OSU Micro-Benchmarks,” http://mvapich.cse.ohio-state.edu/
benchmarks, accessed: 2016.

[11] D. Buntinas, G. Mercier, and W. Gropp, “Design and Evalu-
ation of Nemesis, a Scalable, Low-Latency, Message-Passing
Communication Subsystem,” in CCGRID’06, 2006, pp. 521–
530.

[12] “Building and Running MPICH,” https://github.com/ofi-cray/
libfabric-cray/wiki/Building-and-Running-MPICH.

[13] H. Pritchard, I. Gorodetsky, and D. Buntinas, Recent
Advances in the Message Passing Interface: 18th European
MPI Users’ Group Meeting, EuroMPI 2011, Santorini,
Greece, September 18-21, 2011. Proceedings. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, ch. A uGNI-
Based MPICH2 Nemesis Network Module for the Cray XE,
pp. 110–119. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-24449-0 14

[14] “Sandia Micro-Benchmark (SMB) Suite,” www.cs.sandia.
gov/smb/, accessed: 2016.

