
H5Spark: Bridging the I/O Gap between Spark and Scientific Data
Formats on HPC Systems

Jialin Liu1, Evan Racah1,Quincey Koziol1, Richard Shane Canon1,
Alex Gittens2, Lisa Gerhardt1, Suren Byna1, Mike F. Ringenburg3, Prabhat1.

Abstract— The Spark framework has been tremendously
powerful for performing Big Data analytics in distributed data
centers. However, using Spark to analyze large-scale scientific
data on HPC systems has several challenges. For instance,
parallel file systems are shared among all computing nodes, in
contrast to shared-nothing architectures. Additionally, accessing
data stored in commonly used scientific data formats, such as
HDF5 and netCDF, is not natively supported in Spark. Our
study focuses on improving I/O performance of Spark on HPC
systems when reading and writing scientific data stored in
HDF5/netCDF. We select several scientific use cases to drive
the design of an efficient parallel I/O API for Spark on HPC
systems, called H5Spark, which optimizes I/O performance and
takes into account Lustre file system striping. We evaluate the
performance of H5Spark on Cori, a Cray XC40 system located
at NERSC.

I. INTRODUCTION

Big Data analytics frameworks, like Spark [17], have been
tremendously powerful in tackling big data problems and
facilitating scientific knowledge discovery. The productive
interface to distributed computation has largely reduced the
development cycle of data analytics. For example, a word-
count program only has 6 lines of code in Spark, while
a Hadoop MapReduce implementation requires 28 lines
of code [1]. Spark has been developed and optimized in
commercial data centers, where the commodity hardware
has a local disk attached to each compute node. Traditional
HPC, on the other hand, favors the MPI programming model,
which is more explicitly controllable by users in terms
of parallel computing and concurrent I/O. HPC compute
nodes and storage nodes are separated and typically use
parallel file systems like Lustre or PVFS, instead of HDFS.
Porting Spark onto Cray machines to enable efficient data
analysis is an active area of exploration. When shifting this
software stack onto the traditional HPC systems, the most
challenging optimization points include network I/O, file I/O,
file system access, and scalability. This study focuses on the
I/O performance, and we highlight that reading and writing
scientific data arrays is a major I/O task. Parallel HDF5 and
netCDF are two common scientific data formats that are used
to manage large amounts of data (e.g., many TBs), which are
generated from scientific simulations or experiments.

Using the hierarchical data formats and the high perfor-
mance parallel I/O APIs in these libraries scientists are able
to efficiently conduct data analysis and manage millions of

1NERSC, Lawrence Berkeley National Laboratory
2ICSI and Department of Statistics, UC Berkeley
3Cray, Inc.

files. At NERSC, according to an annual workload analysis
in 2014, HDF5 and netCDF are among the top 10 libraries
on Edison (a Cray XC30), with about 750 unique users [2].
Loading these data formats, however, is not currently sup-
ported in Spark. The reasons include, but are not limited to
the lack of an API in Spark to directly load or sub-select
HDF5/netCDF datasets into its in-memory data structures,
and the underlying Lustre file system is not well tuned
for Spark I/O and vice versa. In order to address these
limitations, translators that can map between HPC system
and the Spark ecosystem are needed.

Users have been developing various conversion codes in
order to fit the HDF5/netCDF data into Spark. A large
amount of programming effort has been put towards dealing
with the input/output and data conversion issues instead of
the actual data analytics. One previous work, SciHadoop [4],
has designed a hadoop plugin allowing scientists to specify
logical queries over array-based data models, but is still
based on HDFS and netCDF only. Another previous work,
SciSpark, has been developed by NASA [15], in which a
sciRDD data structure is defined to represent the netCDF
data in memory. The SciSpark library has been only tested on
distributed commodity machines with the data being located
on openDap servers and manipulated on HDFS. Converting
HDF5 files to Spark RDD has been proposed in a HDF5
blog [8], we conduct a more in-depth study and design in
this work with an emphasis on high bandwidth parallel I/O
on HPC system. In this study, we pick several scientific use
cases to drive the design of an efficient parallel I/O API for
scientific data formats in Spark, which we call H5Spark. One
of the selected use cases is to conduct non-negative matrix
factorization on thousands of Daya Bay nuclear datasets
that have been converted to HDF5 formats. We efficiently
load the datasets into Spark and form an RDD based on
user required in-memory data structure, e.g., indexed row
matrix. We optimize the I/O performance, taking into account
Lustre file system striping. We also compare the performance
of H5Spark with MPI-IO and SciSpark on the new Cori
supercomputer (a Cray XC40) at NERSC.

II. MOTIVATION AND BACKGROUND

In a traditional HPC environment, users can explicitly
request and have some level of control over the resources,
e.g., memory allocation, file system tuning, and parallelism,
etc. As we enter the data-intensive era, users are looking for
more productive ways to analyze their data and answer their
scientific questions. Spark is a distributed big data analytic

framework, which started as an academia research project
and now has become very popular in industry. Similar run-
time systems have been considered in HPC for decades, but
have been rejected due to performance issues. As a result,
it is interesting to see how Spark’s ecosystem could poten-
tially speedup scientific discovery in HPC environments [5].
Spark relieves the users from complex resource management,
scheduling, parallelism, and fault tolerance, etc. For example,
Spark can easily parallelize the data loading, transforming
and processing. A simple map(f) command can perform
the function ”f” on a large distributed dataset in an em-
barrassingly parallel way. Although the MPI programming
interface is able to construct various communication patterns
and support highly efficient parallel I/O, Spark is much easier
to use in these kind of workloads (where data dependency
is not an issue) in terms of productivity. On the other hand,
HPC applications often rely on hierarchical data formats to
organize files and datasets [9], [7]. The Daya Bay HDF5
files, for example, store each event as a row record, where
each column records a different sensor’s output. The climate
data has four dimensions, which are time, elevation, latitude,
and longitude, and each data point records the temperature
at a specific time and pace. Consequently, simplifying access
to scientific data formats like HDF and netCDF in Spark is
essential to enabling scientists to more quickly exploit its
capabilities.

Spark reads in the data as a resilient distributed dataset
(RDD), which is a fault-tolerant collection of elements that
can be operated on simultaneously. We have two ways to
create RDDs: one is to parallelize an existing collection and
the other is to reference a dataset in an external storage
system, such as a shared data stores, like HDFS and HBase;
this is based on the assumption that there is a corresponding
Hadoop input format implementation for that format. HDF5
and netCDF, however, are not natively supported in Spark.

To use Spark in HPC, it is impractical to convert all exist-
ing scientific data formats into Spark-friendly data formats,
like text file or columnar parquet formats that Spark has
specific loading functionality for. For a text file, since it is a
sequence of bytes, Spark can easily split the files into even
sized blocks. For parquet formats, it has a row group, which
is a logical horizontal partitioning of the data into rows.
However, there is no physical structure for a row group. A
row group consists of a column chunk for each column in
the dataset. A column chunk is a contiguous data that lives
in a particular row group. These columnar storage formats
have its advantages in data compression and the cases when
an aggregate needs to be computed over many rows but only
for a notably smaller subset of all columns of data. However,
row-oriented storage formats, like HDF5 and netCDF, are
more common in HPC [6].

III. CHALLENGES OF LOADING HDF5 IN SPARK

Scientific data formats often have a deep hierarchy, which
cannot simply be treated as a sequence of bytes nor be evenly
divided [12]. Spark needs extra effort to be able to interpret
the data and file object. For example, as one of the major

hierarchical data formats in the HPC community, HDF5, can
have interleaved metadata and raw data in the file. Its efficient
IO library is another benefit for loading data from parallel
file systems. As such, we have the following list of questions
that we will address in this paper:

• How do we transform an HDF5 dataset into an RDD?
• How do we utilize the HDF5 I/O libraries in Spark?
• How do we enable parallel I/O?
• What is the impact of Lustre striping?
• What is the effect of caching on IO in Spark?

We addressed these challenges by designing the H5Spark,
which is a parallel I/O interface for loading HDF5 natively
in Spark and forms various RDD structures based on the
users’ requirements.

IV. H5SPARK DESIGN

The H5Spark design is driven by several use cases from
the NERSC user community. NERSC users typically have
their data stored in Lustre, often in the form of HDF5 files.
To use Spark, the need this data to be efficiently loaded from
disk and converted into a format that Spark can efficiently
work with in-memory (e.g. RDD files). Furthermore, they
may need various in-memory formats of this data depending
on the questions they are trying to explore. A common
set of cases are from linear algebra parallel processing,
e.g., principal component analysis(PCA) and non-negative
matrix factorization(NMF), where vectors and matrices are
the common data structures. This is also confirmed in the
Spark ecosystem, that the ’matrix’ is the most common data
structure in Spark’s machine learning library, MLlib [14].
The data structure in Spark MLlib includes:

• Vector
• Labeled Points
• RowMatrix
• IndexedRowMatrix
• CoordinateMatrix
• BlockMatrix
As shown in Figure 1, there are four major components

in H5Spark: Metadata analyzer, RDD seeder, Hyperslab
partitioner and RDD constructor. For loading a single HDF5
file, the H5Spark metadata analyzer takes the user’s input
file name and dataset name and triggers the first IO call to
the file system to fetch the HDF5 file metadata information.
The IO calls H5Fopen and H5Dopen are called to return the
size of each dimension of the queried dataset. Note that the
Spark partitions is an important parameter that can be set by
the users to control the degree of parallelism. For example, if
the user chooses 10 partitions, then there will be at most 10
parallel tasks to process the RDD. Therefore, it is essential
for H5Spark to utilize partitions for parallelizing the I/O.
This is achieved with the hyperslab partitioner by comparing
the dataset’s slowest dimension size with the number of
Spark partitions. The basic idea is described in the following
pseudocode (Algorithm 1).

H5Spark determines the hyperslab I/O region for each
Spark task between line 1 and line 10. Starting from line 2,

Group
HDF5	

Dataset

Lustre File System

User
App

H5Spark Hyperslab
Partitioner

R
D

D

Parallel I/O

H5Spark Metadata
Analyzer

H5Spark RDD
Constructor

H5spark
RDD Seeder

1 2 3
4 5 6
7 8 9

Fig. 1. An overview of H5Spark architecture

if the size of the slowest dimension is less than the available
partition, the number of partition will be adjusted to be the
same as the size of the dimension. This assures that each
Spark task will have a chunk to read, otherwise, there will
be idle takes. Then line 7-9 evenly balances the I/O on
the tasks. Each of the Spark tasks will be launched to do
the I/O independently in line 14. Depending on the user’s
requirements, the returned RDD can be transformed to other
structure, e.g., from double array to indexed row, from index
row to indexed row matrix, etc.

To meet users’ requirement and be consistent with the
existing structure in Spark MLlib, we provide the follow-
ing interface for RDD construction, Table I. Using these
functions, users do not need handle all of the details that
are described in Algorithm 1. Instead, simply by calling the
h5 read [option] and passing in the required arguments, the
user can easily acquire the desired RDD object and continue
to work on their data analytics jobs.

The major benefits of using H5Spark is that the Paral-
lel I/O is transparently handled without users’ interaction.
Currently, H5Spark’s IO is an MPI-like independent I/O,
which means, each executor will issue the I/O independently
without communicating with other executors. In the future,
more advanced MPIIO features, like collective I/O, will be
considered. A collective version of H5Spark IO, however,
is difficult to implement and is not guaranteed to deliver
high bandwidth. MPI collective IO’s current implementation
has two phases [16], [13]. In the case of collective read,
the first phase is the I/O phase, where a selected group of
processes act as I/O aggregators, to bring the data from
disks into memory. Then in the second phase, which is
the shuffle phase, all processes will communicate with the
previous subset of processes(i.e., aggregators) to get the

input : HDF5 File Path, f ; Dataset Name, v; Spark
Partition, p; Slowest Dimension ID, sid;
SparkContext, sc, Dimension, dim

output: RDD, r
1 Hyperslab Partition;
2 if dim[sid] < p then
3 p = dim[sid];
4 end
5 step = dim[sid]/p;
6 i = 0;
7 while i < dim[sid] do
8 offset[i] = step ∗ i;
9 i++

10 end
11 Rdd Seeding;
12 r seed = sc.parallelize(offset, p);
13 Parallel I/O;
14 r = r seed.flatmap(h5read(f, v));
15 RDD Construction;
16 r = h5transform(r);

Algorithm 1: From HDF5 to RDD

TABLE I
RDD CONSTRUCTOR IN H5SPARK

Function Input Output
h5read sc, f, v, p A RDD of double array
h5read point sc, f, v, p A RDD of points
h5read vec sc, f, v, p A RDD of vector
h5read irow sc, f, v, p A RDD of indexed row
h5read imat sc, f, v, p A RDD of indexed row matrix

data. In other words, the data is re-distributed among all
processes to its original desired pattern [10], [11]. Such two-
phase design may not work in Spark. One reason is that
there is no global synchronization among tasks in Spark,
while collective I/O will at least require each process to
participate in a synchronized communication to construct
a global offset list. Another reason is that a lot of shuffle
operations are involved in the collective I/O; however, shuffle
is a costly operation in Spark. We are looking to utilize local
(per worker) collective buffering to address this issue in the
future.

V. H5SPARK EVALUATION

A. Experimental Setup and Datasets

In our experiments, we evaluate the H5Spark on the
Cori Phase 1 system at NERSC, which is a Cray XC40
supercomputer. This cluster currently is equipped with 1600
compute nodes and 248 storage nodes. Each compute node
has 32 cores with 128 GB RAM in total. The peak I/O
bandwidth is 700GB/s.

One of the two datasets we used is a temperature dataset
from climate science, which and is a 2D (6349676, 46715)
dataset of double types. The total file size on disk is 2.2
TB. Another dataset is a 1.6 TB dataset from the Daya Bay
neutrino experiment. It is originally stored as hundreds of

thousands of small HDF5 files, as they are extracted and
converted from hundreds of thousands of ROOT files [3].
After combining all these small HDF5 files, we generate a
single 1.6 TB large file.

B. How to Use H5Spark in Spark

Currently, we collect a few use cases from climate science,
high energy physics and astronomy at NERSC. To use Spark,
either Python or Scala/Java is recommended. As a first time
user, we suggest to first download from the H5Spark git
repository, i.e., https://github.com/valiantljk/h5spark.git, and
then use a Scala/Java build tool, e.g., sbt, to build the
H5Spark package. After that, the users can get a h5spark jar
package in the ’target’ directory. For using in Python/Scala
codes, simply exporting the Python/Java classpath to where
the H5Spark is, and then import the h5spark’s read class,
should have all its I/O interface available. Specifically, to
use in PySpark, a simple example is:

from h 5 s p a r k i m p o r t r e a d
from p y s p a r k i m p o r t S p a r k C o n t e x t
sc = S p a r k C o n t e x t ()
rdd = h5 r ea d (sc , f i l e l i s t o r t x t f i l e ,

mode= ’ m u l t i ’ , p a r t i t i o n s =2000)

In the above Python scripts, the user can use this h5read
function to access a folder or a single HDF5 file and a single
RDD will be returned which contains all the data from all
input files. The users can then use the standard mechanisms
in the Spark world to analyze and transform this data.

For using the H5Spark in Scala, the code will be like:

i m p o r t o rg . n e r s c . i o .
v a l rdd = r e a d . h 5 r e ad (sc , i n p u t p a t h ,

d a t a s e t name , p a r t i t i o n)

C. Profiling H5Spark I/O

The operations in Spark are lazy. For example, if we have
an H5Spark read call, it will not be executed immediately.
Only if an action is detected which requires reading the data,
e.g., count, will Spark start to perform disk I/O. In order to
profile H5Spark’s I/O performance, we need to have at least
one action, we used ’count’ to count the number of rows in
the returned RDD, and this setup is the same in all our tests.

With a count operation, we can guarantee that one
H5Spark read call is able to bring all the data in memory
once, which is necessary to measure the actual I/O band-
width. But this still can not guarantee that the data are in
memory at the same time, because there is no synchroniza-
tion in spark’s concurrent tasks, and any data block fetched
by any task can be immediately thrown away after that task’s
count operation. It is not necessary to persist all the data in
memory at the same time, as long as the users just want
to perform some simple operations. But one major benefit
of running iterative data analytics in Spark is to have in-
memory data processing and avoid the costly disk I/O as
in traditional Hadoop. Therefore, we force the data to be
cached in memory after H5Spark’s read and before the count

operation. This means the I/O time we measured includes
H5spark’s read and Spark’s cache and a count operation,
among which the read and count are necessary, while the
cache makes sense to the real user cases. Note that Spark’s
sc.cache() (or sc.persist()) operation involves more cost
than not caching.

D. Testing H5Spark with Lustre Striping

In Figure 2, we used 45 nodes and set the number
partitions as 3000. We vary the Lustre striping counts, i.e.,
number of OSTs, to observe the I/O bandwidth. The 2.2
TB climate data is duplicated in different directories with
different striping counts. As shown in the Figure 2, the
number of OSTs we have tried is 1, 8, 24, 72, 144, 248. These
striping counts are configured using the current striping
recommendation commands on Cori. Users tend to follow
our file system optimization suggestions to optimize their
I/O. Cori’s lustre file system sets the default striping to 1
for all users. For small files, we have a command called
”stripe small”, which can set the striping count to 8, and cor-
respondingly, 24 and 72 are the results of ”stripe medium”
and ”stripe large”. We also set the striping to be 144 and
248, which are about half and all of the storage bandwidth,
respectively. We assume that those striping configurations are
commonly used by our users.

Fig. 2. H5Spark I/O Bandwidth with Lustre Striping

It is not surprising to find out that a single OST can not
provide desired I/O bandwidth for the 2.2TB dataset. In our
tests, H5Spark does not finish loading the 2.2TB data from
this single OST, we tried with one hour wall time limit. We
mark it as zero bandwidth in the figure. Then we immediately
observe the increasing of I/O bandwidth as we increase the
number of OSTs. For example, with 8 OSTS, we are able
to load the whole 2.2TB data in 2.7 minutes with 13.65
GB/s bandwidth. And the maximum bandwidth is achieved
at OST=248, which is 1.6 minutes of loading time for the
2.2 TB dataset.

In general, this is not surprising to HPC communities and
traditional MPI/Lustre users. The striping effect is similar
for both H5Spark and MPIIO. For H5Spark Scala version,
the current implementation is equal to the MPI independent

I/O, where each executor reads a chunk/hyperslab from the
HDF5 file. If the striping is not set well, e.g., only one OST
is used, then all executors’ tasks will be issued to the same
storage node, which will cause huge I/O contention on server
side. Spark is sensitive to these contentions (or delays) and
after certain amounts of waiting time, the Spark driver may
re-launch the tasks (which will continue to block on the I/O
queue), and eventually will fail the tasks.

Fig. 3. H5Spark Launching Delay

We also profiled the I/O Cost in details in H5Spark. Spark
uses a task scheduler to allocate the resources for the tasks.
The resources are designed to be the CPU and memory
only, according to Spark’s scheduling implementation, but
we observed some weird situations where disk I/O can
also be a resource bottleneck in scheduling. As shown in
Figure 3, with fewer OSTs, the tasks have longer launching
delay. For example, with 8 OST, 95% of the tasks are
launched at t0, while the remaining 5% tasks are launched
1 minute later than t0. This increased the overall I/O cost
and largely reduced the I/O bandwidth. This launching delay
reduction scales as we increase the number of OSTs. We
currently suggest that users distribute their data on more
OSTs to reduce such launching delay. We believe that storage
resources are also important in the Spark scheduling on HPC.
We will investigate in the future on a storage-aware H5Spark
scheduling to complement the Spark’s existing scheduler
(where only CPU and memory are considered).

The garbage collection cost is constant in these different
striping configurations. This is because the number of nodes,
the total memory capacity, the way how H5Spark allocates
the buffer, as well as the JVM garbage collection mechanism
are all same in these tests. Storage(i.e., lustre striping) is not
a factor in affecting the GC cost in Spark.

E. H5Spark Scaling

As we mentioned before, the number of Spark partitions
determined the degree of parallelism. We used partitions
equal to 3000 in the previous evaluation, and that is around
twice of the number of available cores, i.e., 1440 (45 worker
nodes, each has 32 executor cores). As shown in Figure 4, we
did not see expected scalability as we increase the number

Fig. 4. H5Spark Scaling with Partitions

of partitions. For example, from partition 3000 to partition
10000, the I/O performance is about the same, which means
this workflow is already I/O dominated at partition 3000.
With more partitions, however, the I/O would not be scaled
anymore. Instead, more partitions bring more scheduling
overhead to Spark driver, which causes performance degra-
dation. With fewer partitions, e.g., 1000, the job fails. This
is due to two possible reasons. One is that if the number
of partition is too small, then each executor needs to read a
very large chunk of data from disk, which is relatively slow.
The other reason is that the fewer the partitions, the more
cores are idle in Spark.

Fig. 5. H5Spark Scaling with Executors

Because of the lack of scaling from increasing the parti-
tions, we tried to increase the actual total number of physical
cores, while fixing the number of partitions. We used 45, 90
and 135 executor nodes , all with 3000 partitions and the
data stored on 72 OSTs. In Figure 5, the I/O achieved 1.3X
speedup when doubling the number of physical cores, i.e.,
90 nodes with 3000 partitions, but higher concurrency did
not result in linear scaling, e.g., with three times of nodes,
the I/O performance only gets 1.4x speedup. For the three
tests, we found that the number of physical cores in test
1 is only 45 × 32 = 1440, in which each core will need
to handle 3000/1440 = 2 tasks, while in test 2, we have

90×32 = 2880 cores, in which each core can roughly handle
1 task. Therefore, the difference between test 1 and test 2 is
reasonable. In test 3, we have 135 × 32 = 4320 cores, and
each core can handle one task with no problems, however,
1320 cores are actually idle. This suggests that we increase
both of the partitions and the number of executors. Which is
confirmed in the following test.

Fig. 6. H5Spark Scaling with both Executors and Partitions

In Figure 6, we increased the number of partitions along
with the number of executor nodes. In this test, we run three
tests on the same data but with 144 OSTs. The first test has
45 executor nodes and 3000 partitions, the second one has 90
executor nodes with 6000 partitions, and the last one has 135
executor nodes with 9000 partitions. The last one achieved
much better performance compared with the previous tests.
The last two tests gets 2.73X and 3.24X speedup, which is a
linear speedup. Therefore, among all the tests, the best result
we get so far is shown in the Table II. Also, we included the

TABLE II
H5SPARK’S BEST PERFORMANCE OBSERVATION AND HERO RUN ON

CORI, APRIL 8 2016

Size(TB) I/O(s) B/W(GB/s) OSTs Executors Partition
2.2 37 59.7 144 135 9000
16 120 136.5 144 1522 52100

I/O number of a hero run on Cori, in which H5Spark was
used as an essential plugin in loading the data. That hero run
reserved all nodes on Cori and successfully loaded 16 TBs
data in 2 minutes.

F. H5Spark Python vs Scala Version

Since we implemented two versions of H5Spark, Python
and Scala, we are interested in comparing their performance.
The dataset we used is the 2.2 TB climate data on 24 OSTS.
We found that the Scala version is 1.8 times faster than
the Python version. This is because in PySpark, the JVM
has to spawn a Python process to run the Python scripts,
while with Scala version, all processes and threads run in
the same JVM without creating additional process space

and generating additional copy between JVM and Python
process. We also observed the difference of RDD in-memory
size. In the Scala version, the cached RDD equals the raw
data, while in Python, the cached RDD is only 479 GB
(Spark history server shows it is 100% fully cached), which
is only 1/4.61 of original size. This might be due to the
default serialization process used in Python, i.e., pickle.

TABLE III
COMPARISON OF H5SPARK PYTHON AND SCALA VERSION

Version I/O(s) B/W(GB/s) Speedup Mem(GB) Ratio
Python 162 13.65 1 479 1
Scala 90 24.56 1.8 2210 4.61

G. H5Spark vs MPI-IO

Fig. 7. H5Spark vs MPI-IO, Scaling with Storage Nodes

We varied the number of OSTs and compared MPI-IO’s
independent I/O with H5Spark on a 2.2 TB temperature
dataset. As shown in Figure 7, MPI scales better than
H5Spark when increasing storage nodes, which confirmed
with our previous observation, that storage resources are
not well considered in the spark tasks scheduling. The
performance gap between H5Spark and MPI in this test is
1.48X to 4.25X.

We then varied the number of nodes and conducted a
strong scaling test with the same 2.2TB dataset on 248
OSTS(the maximum number of OSTs on Cori). The Fig-
ure 8 shows that H5Spark demonstrates a linear speedup
while MPIIO only achieves a sub-linear speedup. However,
MPIIO still outperforms H5Spark with 4.25X, 2.35X and
2.45X speedup. The MPIIO’s sub-linear speedup is due to
its saturated bandwidth under this configuration. H5Spark’s
performance is encouraging in a sense that it only takes
half minute to bring in 2.2TB data, when MPIIO needs 15
seconds.

H. H5Spark vs SciSpark

The last evaluation we did was to compare the existing
SciSpark with our H5Spark. SciSpark provides interfaces for
loading netCDF files, so to have a fair comparison, we used

Fig. 8. H5Spark vs MPI-IO, Scaling with Compute Nodes

the netCDF4 format in SciSpark and HDF5 file formats in
H5Spark, which will ensure the underlying format is same.
We tested on a single TB of data and then a 51 GB file.
SciSpark returns out-of-memory error in both cases. We
checked the source code of SciSpark (the version before
March 2016, new codes have been pushed in after that), we
found that SciSpark used Spark’s ‘binaryFile’ function to
load all data into memory and form a RDD. This function,
however, assumes that the data is a Hadoop-readable dataset,
and splittable. This function requires input to be like:

• hdfs:hdfs-pathpart-00000
• hdfs:hdfs-pathpart-00001
• ...
• hdfs:hdfs-pathpart-nnnnn

Then by calling this binaryFile function, the returned RDD
is like:

• (hdfs-path/part-00000, its content)
• (hdfs-path/part-00001, its content)
• ...
• (hdfs-path/part-nnnnn, its content)
Given a single large HDF5/netCDF file, however, this does

not trigger the parallel I/O to the Lustre file system. We were
able to test on several small files, as shown in Figure 9.
The results confirm that SciSpark performs serial I/O to the
file system, while H5Spark can fetch the data by chunk or
hyperslab in parallel.

Note that both SciSpark and H5Spark are being actively
developed. This comparison does not reflect any new and
future changes.

VI. CONCLUSION

In this work, we designed H5Spark, an efficient HDF5 file
loader for Spark. We implemented an MPI-like independent
I/O in H5Spark and utilized the Spark’s parallelism to auto-
matically handle the I/O without much of users’ interference,
and such that the users can just focus on the data analysis.
We evaluated H5Spark extensively, observing linear scaling
when increasing the number of OSTs, and confirming that
storage is also an important resource in Spark’s scheduling on
an HPC environment. We also achieved high I/O bandwidth

Fig. 9. H5Spark vs SciSpark

by increasing the number of partitions along with the number
of executor nodes. This is a valuable lesson for users to scale
their codes. At last, we compared H5Spark with MPIIO and
SciSpark, and found that in terms of I/O bandwidth, H5Spark
gets closer to MPIIO (2X gap) and performs better than
SciSpark. In the future, we would like to investigate more
details in Spark’s internal scheduling, and consider a storage-
aware scheduling algorithm in H5Spark, we would also
like to implement a collective IO mechanism in H5Spark.
H5Spark’s parallel write and loading balancing functionality
are still under development.

ACKNOWLEDGMENT

During the development of H5Spark, we received help
from Jey Kottaalam in understanding the PySpark and the
spark runtime. We also thank the SciSpark team, we get
help and quick response from Rahul Palamuttam, Chris
Mattmann, Brian Wilson, and Renato Marroqun Mogrovejo,
etc. We would like to thank Douglas Jacobsen at NERSC,
Doug helps us in debugging and fixing the memory issue
when running H5Spark on Cori. We thank HDF group for
consulting on the HDF5 java library. We thank our users and
reviewers for providing useful feedback and comments.

REFERENCES

[1] Introduction to spark, http://blog.cloudera.com/blog/2014/03/apache-
spark-a-delight-for-developers/.

[2] Brian Austin. NERSC 2014 workload analysis,
http://portal.nersc.gov/project/mpccc/baustin/nersc 2014 workload
analysis v1.1.pdf, 2014.

[3] Rene Brun and Fons Rademakers. Rootan object oriented data analysis
framework. Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, 389(1):81–86, 1997.

[4] Joe B. Buck, Noah Watkins, Jeff LeFevre, Kleoni Ioannidou, Carlos
Maltzahn, Neoklis Polyzotis, and Scott A. Brandt. Scihadoop: array-
based query processing in hadoop. In Scott Lathrop, Jim Costa, and
William Kramer, editors, SC, page 66. ACM, 2011.

[5] N. Chaimov, A. Malony, S. Canon, K. Ibrahim, C. Iancu, and J. Srini-
vasan. Scaling spark on hpc systems. In The 25th International ACM
Symposium on High-Performance Parallel and Distributed Computing,
2016. in publication.

[6] Mike Folk, Gerd Heber, Quincey Koziol, Elena Pourmal, and Dana
Robinson. An overview of the HDF5 technology suite and its
applications. In Peter Baumann, Bill Howe, Kjell Orsborn, and Silvia
Stefanova, editors, EDBT/ICDT Array Databases Workshop, pages 36–
47. ACM, 2011.

[7] Jim Gray, David T. Liu, Marı́a A. Nieto-Santisteban, Alexander S.
Szalay, David J. DeWitt, and Gerd Heber. Scientific data management
in the coming decade. SIGMOD Record, 34(4):34–41, 2005.

[8] Gerd Heber. From hdf5 to spark rdd,
https://hdfgroup.org/wp/2015/03/from-hdf5-datasets-to-apache-spark-
rdds/, 2015.

[9] Mark Howison, Quincey Koziol, David Knaak, John Mainzer, and
John Shalf. Tuning HDF5 for Lustre File Systems. In Proceed-
ings of 2010 Workshop on Interfaces and Abstractions for Scientific
Data Storage (IASDS10), Heraklion, Crete, Greece, September 2010.
LBNL-4803E.

[10] Wei keng Liao and Alok Choudhary. Dynamically adapting file domain
partitioning methods for collective I/O based on underlying parallel file
system locking protocols. In SC’08 USB Key. ACM/IEEE, Austin, TX,
November 2008.

[11] Wei keng Liao, Kenin Coloma, Alok N. Choudhary, Lee Ward, Eric
Russell, and Sonja Tideman. Collective caching: application-aware

client-side file caching. In HPDC, pages 81–90. IEEE, 2005.
[12] Jialin Liu, Brad Crysler, Yin Lu, and Yong Chen. Locality-driven high-

level i/o aggregation for processing scientific datasets. In 2013 IEEE
International Conference on Big Data, pages 103–111, Oct 2013.

[13] Jialin Liu, Yu Zhuang, and Yong Chen. Hierarchical collective i/o
scheduling for high-performance computing. Big Data Research,
2(3):117 – 126, 2015. Big Data, Analytics, and High-Performance
Computing.

[14] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D.B. Tsai, M. Amde, S. Owen, et al. Mllib: Machine
learning in apache spark. arXiv preprint arXiv:1505.06807, 2015.

[15] R. Palamuttam, R. M. Mogrovejo, C. Mattmann, B. Wilson, K. White-
hall, R. Verma, L. McGibbney, and P. Ramirez. Scispark: Applying in-
memory distributed computing to weather event detection and tracking.
In Big Data (Big Data), 2015 IEEE International Conference on, pages
2020–2026, Oct 2015.

[16] R. Thakur, W. Gropp, and E. Lusk. Data sieving and collective i/o in
romio. In Frontiers of Massively Parallel Computation, 1999. Frontiers
’99. The Seventh Symposium on the, pages 182–189, Feb 1999.

[17] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.
Spark: cluster computing with working sets. In Proceedings of the

2nd USENIX conference on Hot topics in cloud computing, 2010.

