
1

Early Experiences with Trinity - The First
Advanced Technology Platform

for the ASC Program
C.T. Vaughan, D.C. Dinge, P.T. Lin, K.H. Pierson, S.D. Hammond, J. Cook,

C.R. Trott, A.M. Agelastos, D.M. Pase, R.E. Benner, M. Rajan and R.J. Hoekstra

Abstract—Trinity, the first in a new generation of Advanced Technology supercomputing systems (ATS) for the Department of Energy’s
National Nuclear Security Administration, will enter production service in late 2016. We present and discuss initial application
performance analysis and scaling results for several key SIERRA production codes - as well as microbenchmarks - that have been
ported to Trinity development machines. By means of comparison, we contrast the performance of Trinity to the previous capability and
capacity computing resources available to analysts at Sandia. Our findings show that our codes will benefit from a doubling in per-MPI
rank performance and a second doubling in terms of MPI rank density per node. The result is that the first phase of Trinity delivers a
combined 4X improvement in capability computing to an important class of problem in the NNSA/ASC stockpile stewardship program.

Index Terms—Trinity, Performance, SIERRA, Engineering, HPC, Cray, XC40

F

1 INTRODUCTION

IN late 2015 Los Alamos National Laboratory and Sandia
National Laboratories took delivery of Trinity, the first

Advanced Technology System (ATS) deployment by the
Department of Energy’s National Nuclear Security Admin-
istration (NNSA). As the first ATS platform, Trinity, a Cray
XC40, marks the start in a new generation of computers for
the NNSA laboratories that are more aggressively adopting
new processor technologies and system designs to prepare
production application codes for future Exascale environ-
ments. In the first phase of deployment, approximately
10,000 nodes of 16-core, dual-socket Intel Haswell E-class
server processors are being installed, with a second phase,
due within 2016, that will feature self-hosted Intel Xeon Phi
Knights Landing (KNL) nodes.

As with any new deployment, there is considerable
interest from production code groups as to the performance
of the new system on ‘day one’ of its use. For Trinity, there
are many changes over the existing computing environment
(the Cielo Cray XE6 machine which has been the NNSA
labs’ capability computing environment since 2011) that are
expected to provide significant improvements in application
runtime including: (1) a new processor vendor (Intel instead
of AMD); (2) a doubling of cores per processor socket;
(3) considerably enhanced instruction set architecture (ISA)
with wider and more capable SIMD vector units; (4) im-
provement in memory bandwidth through the use of DDR4
memory; and, (5), a more capable and higher performing
network interconnect (Cray Aries instead of Cray Gemini).

In this paper we present initial application performance
and scaling results for several key production codes
that have recently been ported to Trinity development
and testing machines prior to the full machine entering
production service, building on preparation activities

shown in [1]. These codes, which are part of the SIERRA
family of engineering applications that are heavily used
by stockpile stewardship programs at Sandia, comprise
many millions of lines of source written in C, C++ and
Fortran and commonly utilize up to 50 third-party libraries.
Porting these codes to new machines is therefore nontrivial
due to the complexity associated with ensuring all of
the dependencies can be successfully compiled on a
new architecture. As a basis for comparison, we also
present several performance results from the predecessor
production computer Cielo, and a heavily used capacity
cluster from Appro (now owned by Cray) called Chama.

The contributions of this work are several:

• Microbenchmark Comparison - we present mi-
crobenchmark comparisons of performance primi-
tives for a Cray XE6, a commodity InfiniBand cluster
and a Cray XC40 for MPI point-to-point operations,
reduction collectives and memory bandwidth.

• SIERRA Application Performance Analysis - we
present performance comparisons of the three im-
portant engineering analysis applications from the
Sandia SIERRA Solid Mechanics, Structural Dynam-
ics and Aero suite. These codes represent production
computing within Sandia’s stockpile stewardship
program and, as such, heavily exercise hardware
capabilities.

• Analysis and Discussion - Finally, we present dis-
cussion and analysis of our initial experiences and
performance results from Trinity. In so doing, we
show that many of our applications achieve a 2X in
direct runtime-to-runtime comparison versus Cielo
(the previous capability production resource), as well
as an additional 2X improvement in density. The



2

result is that on a node-to-node evaluation, our ap-
plications are able to utilize a total of 4X performance
and density improvement reflecting a significant en-
hancement to our scientific capability.

The remainder of this paper is laid out as follows: in
Section 2 we describe the machines evaluted in this paper
including the Phase-I (Haswell) partition of Trinity which
is the focus of this work; Section 3 presents microbench-
mark results of STREAM (memory bandwidth) and base
MPI operations on each of these platforms; an analysis
of application behavior on the platforms can be found in
Section 4. Finally, Sections 5 and 6 present some thoughts
on future activities as we expand our work on Trinity and
begin to focus on the Phase-II Knights Landing deployment
and then conclude our paper with a summary of the results
presented.

2 BENCHMARKING PLATFORMS

In this section of the paper we briefly contrast the super-
computing resources used in our performance studies: (1)
the NNSA/ASC Cielo platform; (2) the NNSA/ASC Chama
capacity cluster and, finally, (3) the NNSA/ASC Trinity
machine. Table 1 provides a summary comparison of basic
hardware parameters.

2.1 NNSA/ASC Cielo

Deployed during 2010, the current capability comput-
ing platform for the NNSA/ASC Tri-Lab community is
Cielo [2], [3], a 1.37 PFLOP/s system using Cray’x XE6
architecture. The machine consists of approximately 8,950
dual-socket, oct-core AMD Magny-Cours compute nodes
interconnected by Cray’s Gemini network. Each socket is
partitioned into two NUMA domains with each housing
four cores and 8 GB of system memory (for a node total
of 16 cores and 32GB). The Gemini network interconnect [4]
used in Cielo, is a three-dimensional torus with some Y-
dimension routing being able to take advantage of faster
inter-router data movement.

The major design goals for Cielo were the ability to
perform several large-scale three-dimensional multiphysics
simulations at roughly the 80 - 100TB scale. While job
sizes and scale have varied considerably over the life of
the machine due to variation in scientific campaigns being
granted time on the machines, routine jobs often scale to
32,000 cores or beyond. Once the Phase-I installation and
acceptance of Trinity (described later in this paper) is fully
completed Cielo will be retired during the summer of 2016.

2.2 NNSA/ASC Chama

Chama [5] is an instantiation of the successful Tri-Lab
Capacity Cluster (TLCC-2) procurement in which the
NNSA/ASC Tri-Labs collaboratively procure numerous in-
stallations of smaller capacity machines in order to support
small to medium sized jobs across the stockpile stewardship
complex. All machines procured under the TLCC program
have identical baseline hardware configurations to reduce
cost and improve portability between machines. A TLCC-2
node comprises two sockets of 8-core Intel Sandy Bridge

E-class server processors running at 2.60GHz. Standard
memory configurations include 32GB of system memory per
core although larger configurations are provided on specific
(non-standard) nodes or machines (up to 256GB) for spe-
cialized functions such as meshing or analysis processing.
The TLCC-2 platforms are interconnected by a QLogic QDR-
InfiniBand Fat-Tree. Although dual-way hyper-threading
is available on Chama, this is regularly disabled for jobs
executing on the machine as it rarely provides performance
improvements (all runs presented in this paper utilize a
single thread per core).

2.3 NNSA/ASC Trinity
The NNSA/ASC Trinity platform [6] is a collaborative
supercomputer deployment between the Los Alamos Na-
tional Laboratory and Sandia National Laboratories un-
der the ACES (Alliance for Computing at Extreme Scale)
partnership. The deployment of the machine is split into
two phases. The first phase, which is already well under
way, will see approximately 9,500 nodes of dual-socket,
sixteen-core Haswell E5-server class processors and 128GB
of system memory per node installed (see Table 1 for a basic
hardware comparison to Chama and Cielo). The second
phase, due in 2016, will be one of the first installations in
the world to utilize the self-hosted Knights Landing many-
core processor by Intel.

For the purposes of this study we have performed much
of the benchmarking activities on the smaller, but hardware
identical, Mutrino test machine located at Sandia National
Laboratories. Mutrino is a single rack of the Trinity Haswell
compute blades provided for initial application porting
and performance analysis while the main Trinity machine
installation is stabilized. As similar to Chama, all the runs
performed on Mutrino are running using a single thread
context per core (i.e. with hyper-threading disabled).

3 MICROBENCHMARK PERFORMANCE ANALYSIS

Almost all new hardware delivered to the NNSA labora-
tories first undergoes initial microbenchmark performance
analysis to ensure basic hardware functionality. Instinc-
tively, the microbenchmark results act as a bounding-box
for the performance our codes are likely to see with mem-
ory bandwidth benchmarks being the most likely of these
to gain interest. In this short section we provide primi-
tive memory bandwidth and MPI performance information
across our benchmark machines as a sentinel for how we
may expect our larger applications to perform.

3.1 STREAM
The STREAM benchmark [7] has become the de-facto as-
sessment of memory sub-system performance as seen from
executing code. In total, four benchmark kernels are ex-
ecuted that represent primitives found in basic scientific
algorithm sequences. In general, the benchmarked Triad
values are of most interest to scientific codes since the vast
majority of calculation requires two operands and then the
write back of the result to memory. Although STREAM-
Triad represents somewhat of an upper bound versus more
complex codes (as described later in this paper), we continue



3

TABLE 1
Architecture Parameters for Cielo, Chama and Trinity

System Cielo Chama Trinity (Phase-I)
Total Nodes 8,894 1,232 9,408
Total Cores 142,304 19,712 301,056
Processor AMD Magny-Cours Intel Sandy Bridge Intel Haswell
Processor ISA SSE4a AVX AVX-2
Clock Speed (GHz) 2.40 2.60 2.30
Cores/Socket 8 (2x4) 8 16
Cores/Node 16 16 32
Peak Node (GFLOP/s) 153.6 332.8 1,177.6
Memory DDR3-1333 DDR3-1600 DDR4-2133
Memory Channels/Socket 4 4 4
Interconnect Cray Gemini QLogic QDR-InfiniBand Cray Aries
Interconnect Topology 3D-Torus Fat-Tree DragonFly

 0

 20

 40

 60

 80

 100

 120

 140

 160

Add Scale Copy Triad

M
e
a
s
u
re

d
 B

a
n
d
w

id
th

 (
G

B
/s

)

Benchmark Kernel

Cielo
Chama

Trinity (Haswell)

Fig. 1. Benchmarked STREAM Memory Bandwidth on Cielo, Chama
and Trinity Compute Nodes

 0

 1

 2

 3

 4

 5

 6

Add Scale Copy Triad

M
e
a
s
u
re

d
 B

a
n
d
w

id
th

 (
G

B
/s

)

Benchmark Kernel

Cielo
Chama

Trinity (Haswell)

Fig. 2. Benchmarked STREAM Memory Bandwidth Per Core on Cielo,
Chama and Trinity Compute Nodes

to use benchmark values from STREAM as a crude measure
of how likely future systems are to meet the goals of the
NNSA/ASC application portfolio.

In Figure 1 we present benchmarked values for the
various kernels of STREAM running on the three platforms.
We note that the Trinity platform exceeds the expected
performance increase from memory clock speed increases
(1333MHz in Cielo to 2133MHz in Trinity should give a
1.6X improvement but benchmarked values are greater than
2X). Since a significant number of applications within the
NNSA/ASC program heavily track memory bandwidth this
provides the first insight into the expected improvement
that our wider application portfolio may expect to see on

 0.25

 1

 4

 16

 64

 256

 1024

 4096

1*10e0 3*10e1 1*10e3 3*10e4 1*10e6 3*10e7

P
in

g
 P

o
n

g
 L

a
te

n
c
y
 (

u
s
)

Message Size (Bytes)

Cielo
Chama

Trinity (Intra-Group)

Fig. 3. Benchmarked MPI Ping Pong Message Latency on Cielo, Chama
and Trinity

the new platform.
When considered from the per-core perspective how-

ever, memory bandwidth has actually decreased when mi-
grating application codes from the Chama TLCC-2 platform
to Trinity. Figure 2 shows the benchmarked STREAM values
now divided by the core count on each compute node. We
note that there is only a small improvement for Trinity when
moving from Cielo and an approximate 20% decrease for
Trinity over Chama. For application codes that utilize a fixed
number of MPI ranks due to meshing or code constraints
this may indicate that performance on the new platform will
likely be similar if the code in question is, indeed, purely
memory bandwidth constrained.

3.2 MPI Point-to-Point Operations

Figures 3 and 4 present benchmarked MPI ping-pong la-
tency and bandwidth respectively. For these measurements
we used the Intel MPI Benchmark (IMB). We note that in
all cases the performance improvement of the Cray Aries
interconnect is evident with close to 4X higher performance
at large message sizes while still providing lower latency for
very short messages (those less than 32 bytes). The applica-
tion portfolio at Sandia communicates a very wide range
of message sizes depending on the executing algorithm or
particular class of physics which is being executed. Within
a single application the mixture of physics and numerical
algorithms means that it is not uncommon to have message
sizes range from a single double to tens and hundreds of
kilobytes. At the larger end, hydrodynamics codes within



4

 0.25

 1

 4

 16

 64

 256

 1024

 4096

 16384

1*10e0 3*10e1 1*10e3 3*10e4 1*10e6 3*10e7

P
in

g
 P

o
n

g
 b

a
n

d
w

id
th

 (
M

B
/s

)

Message Size (Bytes)

Cielo
Chama

Trinity (Intra-Group)

Fig. 4. Benchmarked MPI Ping Pong Bandwidth on Cielo, Chama and
Trinity

 4

 16

 64

 256

 1024

 4096

 16384

 65536

1*10e0 3*10e1 1*10e3 3*10e4 1*10e6 3*10e7

O
p

e
ra

ti
o

n
 T

im
e

 (
u

s
)

Message Size (Bytes)

Cielo
Chama

Trinity (Intra-Group)

Fig. 5. Benchmarked MPI 256-Rank Allreduce Operations on Cielo,
Chama and Trinity

the application suite can exchange message sizes into the
megabytes. We present results for Trinity only within a
single DragonFly group so far which is likely to have lower
latency than cross-group communication. When larger in-
stallations permit we will revise the benchmarked values in
a subsequent publication. However, for the purposes of this
study, this limited focus provides insight into the potential
performance improvements that may be seen in codes with
frequent communication.

3.3 MPI Collective Operations

As with many scientific codes, the SIERRA application suite
from Sandia makes frequent use of parallel reductions. In
Figure 5 we show benchmarked results for this class of
operation, again taken from the IMB benchmark. At all
scales reduction on the Aries interconnect out performs
Cielo and Chama, in some cases provided a performance
improvement of up to 4X.

4 APPLICATION AND BENCHMARK CODES

SIERRA [8] is an object-oriented computational framework
and application suite that is currently in production use and
development at Sandia National Laboratories. The SIERRA
framework (which is shared across our engineering appli-
cation suite) is a set of software services and parallel data
structures upon which many mechanics applications can
be written. The main goal is to bring together distributed
mesh management, field management (i.e., the variables),
and mechanics algorithm support services to facilitate rapid

code development and code reuse. The motivation in pur-
suing a shared framework is that the design, debugging,
profiling and porting of modern engineering applications is
particularly challenging. By sharing these components, con-
siderable effort and separation of concerns can be focused
where the need is greatest. Although the shared SIERRA
components and applications are predominantly written in
C++, a number of compute intensive numerical and material
routines are written in Fortran and C.

Complex performant solvers are an important compo-
nent of almost all production codes at Sandia. In a similar
manner to the SIERRA framework (which extracts impor-
tant shared kernels for engineering routines), we utilize the
Trilinos solver library [9] which provides node- and thread-
scalable solvers for production use. For this study we do
not utilize the threading capability as these are still actively
under development.

4.1 SIERRA/SM

SIERRA/SM (Adagio) [10] is a Lagrangian nonlinear finite
element program for use in analyzing the deformation of
solids. It is designed to be MPI parallel and is built upon the
SIERRA finite-element framework, employing the Sandia
ACME library [11] for contact search algorithms as well
as novel native contact algorithms for speed and accuracy.
Although the code can scale to large core counts, typical
production problems routinely execute at a few hundred to
a few thousand cores. Multiple runs of Adagio are often
executed with small input deviations in an uncertainty
quantification regime to provide more accurate problem
analysis.

Adagio provides the following solid mechanics analysis
capabilities: implicit quasistatics, explicit transient dynam-
ics, and implicit transient dynamics. In quasistatic simu-
lations, Adagio assumes inertial affects are small where
material point velocities are retained but time rates of ve-
locities are neglected. In explicit transient dynamics simu-
lations, mass, acceleration, and inertial forces are taken in
account. Explicit transient dynamics does not require a non-
linear solve however is restricted by the Courant time step
typically limiting the time-scales to microseconds. Lastly,
implicit transient dynamics requires a nonlinear solve to
advance in time, has an unconditionally stable time step,
and can be applied to longer duration time scales. Sources of
nonlinearities include nonlinear stress-strain relations, large
displacements, large rotations, large strains, and frictional-
frictionless contact mechanics. Quasistatic equilibrium is
found using a nonlinear solution strategy, which includes
nonlinear conjugate gradients. In this work, we focus on
explicit transient dynamics simulations with contact.

Figure 6 shows two variations of the TLC benchmark
problem, the first (labeled “TLC”) is run at 16-ranks and
represents very small problem analysis that is performed by
analysts during prospective studies. The refined problem
(“TLC-Refined”) is a larger run at 128-ranks which is a
small, but representative, single run within a UQ set. For
the smaller problem Trinity is 46% faster than Cielo and
8.98% faster than the Chama capacity cluster. For the larger
refined problem, Trinity is 41.2% faster than Cielo and 5.7%
faster the Chama.



5

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

TLC TLC-Refined

B
e
n
c
h
m

a
rk

 T
im

e
 (

S
e
c
o
n
d
s
)

Benchmark Problem

Cielo
Chama

Trinity (Haswell)

Fig. 6. Benchmarked Adagio Problems on Cielo, Chama and Trinity

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

NFN9-NetLib NFN9-MKL

B
e
n
c
h
m

a
rk

 T
im

e
 (

S
e
c
o
n
d
s
)

Benchmark Problem

Cielo
Chama

Trinity (Haswell)

Fig. 7. Benchmarked Salinas Problems on Cielo, Chama and Trinity

Adagio spends a considerable amount of execution time
in MPI operations (varying between 20% up to 70% of total
execution time when profiled depending on the MPI rank
being measured and the degree of dynamic behavior in
the problem being studied). This is particularly acute for
problems with complex interactions in the ACME contact
routines which are exercised in the TLC problem decks. A
very large proportion (up to 46%) of the total MPI time is
seen in MPI reductions which mostly occur between 8 or
2048 bytes. The significant improvement in the Aries inter-
connect with respect to MPI performance, particularly small
MPI reductions (Figure 5) provides a strong improvement
in the performance of this benchmark problem.

4.2 SIERRA/SD
SIERRA/SD (Salinas) [11], [12], is an MPI-based massively
parallel implicit structural mechanics/dynamics application
aimed at providing a scalable computational workhorse
for extremely complex finite element (FE) stress, vibration,
and transient dynamics models with tens or hundreds of
millions of degrees of freedom (dofs).

For Salinas we run a single problem (named “NFN9”)
at 120 MPI ranks. This problem is a smaller version of
much larger analyses that will be performed when the full
Trinity comes online to the ASC program. In Figure 7 we
show benchmarked results using an internal version of the
NetLib BLAS and LAPACK routines [13], [14] as well as
benchmark times when the Intel Math Kernel Library (MKL)
is used – note that for this problem the ‘sequential’ (serial)
version of MKL is used. In the NetLib case, Trinity compute
nodes are 43.4% faster than Cielo and 3.6% faster than the

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

Implicit Explicit Hex Mixed

B
e
n
c
h
m

a
rk

 T
im

e
 (

S
e
c
o
n
d
s
)

Benchmark Problem

Cielo
Chama

Trinity (Haswell)

Fig. 8. Benchmarked SIERRA-Aero Problems in Cielo, Chama and
Trinity

Chama cluster; when MKL is utilized (we omit these results
on Cielo because the processor is provided by AMD and
therefore the library may only have limited optimization on
this platform), Mutrino is 19.7% slower than Chama at the
same MPI rank count. We are currently investigating this
issue through further analysis.

Salinas spends roughly 40% of its execution time in MPI
operations when profiled, although the vast majority of this
time (up to 90%) is occupied in waiting for MPI operations
during the main solve phases (of this, roughly half is in
reductions and half split between call to wait and blocking
point-to-point calls). The frequent use of MPI reductions
helps to explain some of the performance improvement over
Cielo.

The focus on NetLib and MKL reflects our profile-based
analysis of differences between execution time on Cielo,
Chama and Trinity. When performing a block-solve, Sali-
nas makes frequent calls to DGEMM and DGEMV to perform
matrix-matrix and matrix-vector operations over small,
dense sub-blocks in the parent matrix. The profile analysis
of these routines shows that execution time on Chama
provides almost all of the performance improvement over
the Trinity compute nodes.

4.3 SIERRA/Aero
SIERRA/Aero is a compressible fluid dynamics application
for turbulent flow simulations [15].

The Aero performance results from Cielo, Chama and
Trinity are shown in Figure 8. We show several performance
relevant benchmark cases – implict and explict solve cases
(that execute at 128 MPI ranks) and Hex and Mixed meshes
executing at 512 MPI ranks. Because the Aero application
scales very well on modern systems the latter results gain
more interest with coding teams and analysts. The Trinity
simulations employed one MPI process per Haswell core.
Because a Trinity compute node has twice as many cores as
the other two platforms, only half as many compute nodes
were needed. For the smaller implict and explicit test cases,
Trinity is 52.3% and 47.2% faster than Cielo and 9.0% and
5.57% faster than Chama, respectively. In the case of the
Hex and Mixed test problems, Trinity is 46.54% and 50.76%
faster than Cielo and 1.12% and 9.8% faster than Chama,
respectively.

For these four simulations, Aero spent between 10%
and 55% of its execution time in MPI operations, the vast



6

majority of which is spent in small reduction or MPI wait
operations. This helps to explain some of the performance
difference between Cielo, and the limited improvement
with Chama. The vast majority of collective operations are
performed at 16 bytes or less which is a particular strong
point for the newer Aries interconnect when compared with
the previous Gemini network.

4.4 Analysis and Discussion
On a node-for-node basis, Trinity compute resources are
twice as dense as both Cielo and Chama (32 processor cores
versus 16). Because our application meshes are typically
resolved as a fixed number of MPI ranks, our benchmarking
evaluation has utilized half as many Trinity compute re-
sources as equivalent runs on Cielo and Chama. When com-
pared machine-to-machine, node density is of interest to the
ASC program, and particularly codes in the SIERRA suite
which operate under Uncertainty Quantification regimes
(where multiple runs are executed in an ensemble to im-
prove prediction accuracy). A 1X performance baseline on
Trinity compared to Cielo or Chama in our results, therefore
really represents a 2X increase in our capability to run more
uncertain quantification ensembles, or put differently, our
ability to utilize half of the machine to perform the same
workload. Given that the memory bandwidth and network-
ing resources of the machine are less than 2X, the perfor-
mance improvements on the Trinity test machines represent
a significant improvement in the capability available to the
production computing users at Sandia.

5 FUTURE WORK

In the past two years Sandia has embarked on a path to
gradually update and modify existing production engineer-
ing codes to utilize shared solver libraries in the form of
the Trilinos framework [9] and the use of Kokkos C++
parallelism/data-structure abstractions [16] to portably har-
ness manycore processors such as KNL. While this activity
is still very much in the early stages, initial ports of the
production applications described in this paper are now
well underway. We expect to have preliminary performance
information available on early KNL test systems that are
to be delivered by Cray under the Trinity Phase-II project.
Future work will utilize the experiences and profiling ap-
proaches described in this paper to assess areas of strength
and weakness on the new Knights Landing platform. We
look forward to future Cray User Group meetings where
we will be able to attend and describe in detail much of
the porting work which has been completed, for both the
SIERRA applications discussed here and additional, diverse
applications for which porting is underway, such as the Xyce
and Charon parallel circuit simulators [17], [18].

6 CONCLUSIONS

The deployment of the Trinity supercomputer marks a new
approach to capability computing within the NNSA. As the
first Advanced Technology System, Trinity will provide a
dual role of production capability computing cycles, while,
at the same time, providing advanced, future-looking hard-
ware features that allow our application and library code

teams to prepare for later generations of Exascale-class ma-
chines. Trinity Phase-I, which is based on Haswell, reflects
a commitment to continue to provide strong production-
capabilities to our code teams, while the later addition, in
Phase-II, of self-hosted many-core Knights Landing proces-
sors, will provide a significant number of novel hardware
features for experimentation, code porting, and additional
performance gains.

In this study we have compared the performance that
our code teams can expect of the Trinity Phase-I partition
with existing codes – note that our commitment to con-
tinue to optimize our applications and libraries for both
Haswell and Knights Landing means we can expect future
performance to be strong still. When compared with the
previous capability computing resource, Cielo, application
performance is 2X on a rank-for-rank basis. The additional
doubling of compute node density means that on a node-
for-node basis an additional performance improvement of
2X is found over Cielo and Chama. Combined, therefore,
our applications can expect aggregate performance im-
provement on the full machine of 4X as we will now be
able to run more jobs, and run each job faster.

Our analysis shows that the performance improvements
are multi-faceted – they come from higher memory band-
width over previous resources as well as a more capable
and higher performing interconnect in the form of the Aries
DragonFly.

In looking towards the arrival of Knights Landing pro-
cessors, our application and library teams are focusing on
the addition of threading to our important kernels and on
ensuring higher levels of vectorization. Many of these bene-
fits will also apply to the Haswell partition benchmarked in
this paper.

As a new computing resource for the stockpile stew-
ardship program, Trinity shows great promise. We will
simultaneously be able to provide important production ca-
pabilities to our application teams while gaining experience
with future technologies on the Knights Landing partition.
These options are an important part of our planning and
commitment to ensure best-of-class engineering analysis to
the NNSA program both for near-term and longer-term
deliverables.

ACKNOWLEDGMENTS

Installing, configuring and testing a new machine deploy-
ment the size and complexity of Trinity is a difficult task.
We are grateful for the support of our colleagues both at
Sandia and Los Alamos who perform these tasks with in-
credible diligence and professionalism, particularly to Ann
Gentile who leads the environment and test system bring
up for Sandia. As always, the support and expertise of
Cray engineers has been outstanding and we look forward
to a deep collaboration with both Phase-I and Phase-II of
the Trinity deployments. We are particularly grateful to
John Levesque, Mike Davis and - new to our team - Gene
Wagenbreth from Cray for their help on our systems. Finally,
we also acknowledge considerable input and help from our
Center of Excellence colleague from Intel, Ron Green, who
has provided deep insight into compiler and environment
issues on our machines. Much of our work builds on inputs



7

from these individuals and we are very pleased to be able
to acknowledge their help in this paper.

Preparation of problem input decks and advice on code
issues/configuration comes from the various developers of
the SIERRA application suite. In particular, support from
Mike Tupek, Nate Crane, Mark Merewether, Travis Fisher,
Jon Clausen, Clark Dohrmann and Mike Glass has made
our activities possible. We thank them for their support and
patience with our (many) questions.

Trinity is the first advanced technology computing sys-
tem (‘ATS’) operated by the National Nuclear Security Ad-
ministration (NNSA) for the purposes of ensuring the safety
and performance of the United States nuclear deterrent.
Access to Trinity and the associated test systems is provided
by the NNSA’s ASC program to Lawrence Livermore, Los
Alamos and Sandia National Laboratories.

Sandia National Laboratories is a multi-program lab-
oratory managed and operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Corporation,
for the U.S. Department of Energy’s National Nuclear Secu-
rity Administration under contract DE-AC04-94AL85000.

REFERENCES

[1] C. Vaughan, M. Rajan, D. Dinge, C. Dohrman, M. Glass, K. Franko,
K. Pierson, and M. Tupek, “Preparation of Codes for Trinity,” in
Cray Users’ Group (CUG) 2015, 2015.

[2] D. Doerfler, M. Vigil, S. Dosanjh, and J. Morrison, “The Cielo
Petascale Capability Supercomputer,” in Cray User Group Meeting,
Fairbanks, Alaska, 2011.

[3] D. W. Doerfler and M. B. Vigil, “The Cielo Petascale Capability
Supercomputer: Providing Large-Scale Computing for Stockpile
Stewardship,” Los Alamos National Laboratory, NM, USA, Tech.
Rep. LA-UR-13-21712, 2013.

[4] R. Alverson, D. Roweth, and L. Kaplan, “The Gemini System
Interconnect,” in 2010 18th IEEE Symposium on High Performance
Interconnects. IEEE, 2010, pp. 83–87.

[5] M. Rajan, D. Doerfler, P. T. Lin, S. D. Hammond, R. F. Barrett,
and C. T. Vaughan, “Unprecedented Scalability and Performance
of the New NNSA Tri-Lab Linux Capacity Cluster 2,” in Interna-
tional Workshop in Performance Modeling and Benchmarking of High
Performance Computer Systems (PMBS12). IEEE, 2012, pp. 417–425.

[6] D. Doerfler, “Trinity: Next-Generation Supercomputer for the ASC
Program,” Sandia National Laboratories (SNL-NM), Albuquerque,
NM (United States), Tech. Rep. SAND 2014-2739C, 2014.

[7] J. D. McCalpin, “Memory Bandwidth and Machine Balance in
Current High Performance Computers,” IEEE Computer Society
Technical Committee on Computer Architecture (TCCA) Newsletter, pp.
19–25, December 1995.

[8] J. R. Stewart and H. C. Edwards, “The SIERRA Framework for
Developing Advanced Parallel Mechanics Applications,” in Large-
Scale PDE-Constrained Optimization. Springer, 2003, pp. 301–315.

[9] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J.
Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski,
E. T. Phipps et al., “An Overview of the Trilinos Project,” ACM
Transactions on Mathematical Software (TOMS), vol. 31, no. 3, pp.
397–423.

[10] J. A. Mitchell, A. S. Gullerud, W. M. Scherzinger, R. Koteras, and
V. L. Porter, “Adagio: Non-Linear Quasi-Static Structural Response
using the SIERRA Framework,” 2001.

[11] M. Bhardwaj, K. Pierson, G. Reese, T. Walsh, D. Day, K. Alvin,
J. Peery, C. Farhat, and M. Lesoinne, “Salinas: A Scalable Software
for High-Performance Structural and Solid Mechanics Simula-
tions,” in Proceedings of the 2002 ACM/IEEE Conference on Super-
computing. IEEE Computer Society Press, 2002, pp. 1–19.

[12] M. K. Bhardwaj, G. M. Reese, B. Driessen, K. F. Alvin, and D. M.
Day, “Salinas – An Implicit Finite Element Structural Dynamics
Code developed for Massively Parallel Platforms,” Sandia Na-
tional Labs., Albuquerque, NM (US), Tech. Rep., 2000.

[13] S. Browne, J. Dongarra, E. Grosse, and T. Rowan, “The Netlib
Mathematical Software Repository,” D-Lib Magazine, Sep, 1995.

[14] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen, LAPACK Users’ Guide. SIAM, 1999, vol. 9.

[15] K. J. Franko, T. C. Fisher, P. Lin, and S. W. Bova, “CFD for Next
Generation Hardware: Experiences with Proxy Applications,” in
Proceedings of the 22nd AIAA Computational Fluid Dynamics Confer-
ence, June 22–26, 2015, Dallas, TX, AIAA 2015–3053.

[16] H. C. Edwards, D. Sunderland, V. Porter, C. Amsler, and S. Mish,
“Manycore Performance-Portability: Kokkos Multidimensional
Array Library,” Scientific Programming, vol. 20, no. 2, pp. 89–114,
2012.

[17] S. Hutchinson, E. Keiter, R. Hoekstra, A. WATERS, T. Russo,
R. Schells, S. Wix, and C. Bogdan, “THE Xyce Parallel Electronic
Simulation - An Overview,” Parallel Computing, p. 165, 2000.

[18] G. L. Hennigan, D. Fixel, J. P. Castro, and P. Lin, “Charon Parallel
Semiconductor Device Simulator,” Sandia National Laboratories,
Tech. Rep. SAND2010-3905, 2008.


