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Abstract—HPC applications commonly use Message Passing
Interface (MPI) and SHMEM programming models to achieve
high performance in a portable manner. With the advent of the
Intel MIC processor technology, hybrid programming models
that involve the use of MPI/SHMEM along with threading models
(such as OpenMP) are gaining traction. However, most current
generation MPI implementations are not poised to offer high
performance communication in highly threaded environments.
The latest MIC architecture, Intel Knights Landing (KNL),
also offers MCDRAM - a new on-package memory technology,
along with complex NUMA topologies. This paper describes the
current status of the Cray MPI and SHMEM implementations for
optimizing application performance on Cray XC supercomputers
that rely on KNL processors. A description of the evolution
of WOMBAT (a high fidelity astrophysics code) to leverage
“Thread-Hot” RMA in Cray MPI is included. Finally, this
paper also summarizes new optimizations in the Cray MPI and
SHMEM implementations.

I. INTRODUCTION AND MOTIVATION

Multi-/Many-core processor architectures and high perfor-
mance networks are enabling the development of highly
capable supercomputers from a hardware perspective. The
latest Many Integrated Core (MIC) processor, the Knights
Landing (KNL) [1], offers at least 64 compute cores per
chip, while offering more than 2 TF double precision floating
point performance. However, these trends introduce a new
set of challenges and opportunities to improve the perfor-
mance of parallel applications and system software stacks on
modern supercomputers. Over the last two decades, scientific
applications have been successfully implemented, tuned and
scaled out to tens of thousands of processors using the
MPI model. With increasing number of processor cores per
compute node, a simple way to effectively utilize the available
compute density is to pack as many MPI processes as possible
on each compute node. However, on modern architectures,
this approach shrinks the fraction of hardware resources that
are available for each process and this can potentially limit
the overall performance and scalability of parallel scientific
applications. In addition, the performance characteristics of a
MIC processor is quite different from those of a contemporary
Intel Xeon processor. While the KNL processor offers support
for wide vector instructions, the processor cores operate at
slower clock frequencies and also offer slower scalar process-
ing capabilities. Considering that MPI processing is largely
scalar, the MPI-only model alone might not deliver efficient
performance on next generation supercomputers.

Recently, hybrid programming models that use MPI in
conjunction with threading models (such as OpenMP [2]) are
gaining traction. Parallel applications are being redesigned to
utilize threading models to leverage multiple compute cores
to accelerate computation, while continuing to use MPI [3]
to implement inter-process communication and synchroniza-
tion operations. Hence, hybrid programming models allow
parallel applications to utilize the computing power offered
by modern multi-/many-core systems, while also allowing
MPI processes to own sufficient hardware resources. How-
ever, there are several important design considerations that
can significantly affect the performance of a hybrid parallel
applications. An existing parallel application can be converted
to adopt the hybrid programming paradigm by identifying
specific blocks of compute that are amenable for threading
models. The OpenMP runtime can optimize such blocks of a
given parallel application by scheduling work across multiple
threads. However, adopting such a “bottom-up” approach
might not always ensure the best performance on modern
compute architectures. Recent studies have demonstrated that
a “top-down” MPI/OpenMP approach can lead to improved
performance and scalability when compared to an approach
where OpenMP pragmas are applied to specific independent
blocks of compute [4].

A Single Program Multiple Data (SPMD) MPI/OpenMP
programming approach follows a “top-down” concept and
increases the scope of code that are executed by multiple
threads and this may result in multiple threads calling MPI
operations concurrently. However, most current generation
MPI implementations rely on a single global lock to ensure
thread safe communication. If multiple user-level threads
concurrently perform MPI operations, they all compete for
a single global lock within the MPI runtime layer and this
poses a significant performance bottleneck on modern multi-
/many-core processors. With increasing core counts per node,
adopting a highly threaded development approach has the
potential to achieve very good computation scaling. However,
if a large number of user-level threads contend for a single
global lock and the MPI library is fully serialized, it is not fea-
sible to achieve high performance communication for hybrid
applications. Because of this limitation, hybrid applications
are typically developed to allow a single thread to perform
all MPI communication operations. While designing hybrid
applications in this manner minimizes the overheads associated
with thread synchronization and scheduling, an MPI process



relies on a single processor core to progress all communication
operations. On emerging processor architectures such as the
Intel KNL, this design choice will not be able to offer good
communication performance. Hence, current generation MPI
libraries and application software layers are not poised to
effectively utilize the large number of compute cores on a
many-core processor. It is critical to optimize MPI imple-
mentations to offer “Thread-Hot” communication, the ability
to allow multiple threads to concurrently issue and progress
communication operations with minimal synchronization and
locking overheads. Furthermore, it is also necessary to re-
design hybrid applications in a “top-down” manner to improve
computation efficiency and also allow multiple user-level
threads to concurrently perform MPI operations.

This paper describes new solutions that are being designed
in the Cray MPI software stack to improve the support for
multi-threaded MPI communication on modern multi-/many-
core processors. In addition, the design, performance and
scalability characteristics of WOMBAT, a high performance,
scalable astrophysics application is also discussed. WOMBAT
is being developed to utilize the MPI/OpenMP model and ex-
tensively relies on MPI-3 RMA operations to implement data
movement and synchronization operations. It follows a “top-
down” MPI/OpenMP model and allows multiple user level
threads to concurrently issue MPI-3 RMA operations. This
paper studies the performance characteristics of WOMBAT
by comparing the default Cray MPI implementation which
uses the global lock against the proposed optimized Cray
MPI implementation that offers thread-hot capabilities for
MPI-3 RMA operations. Preliminary studies demonstrate an
improvement of up to 18% in the overall execution time of the
WOMBAT application on the Cray XC supercomputer when
using the optimized thread-hot Cray MPI implementation.
The WOMBAT performance data is based on weak scaling
experiments with 34,848 processor cores. These performance
benefits are primarily because of the new multi-threading
optimizations for MPI-3 RMA operations available in the
Cray MPI software stack. The results included in this paper
refer to the benefits seen on current generation Cray XC
systems with Intel Xeon processors. However, initial studies
on experimental KNL hardware have also shown significant
promise.

The KNL processor also offers MCDRAM [5], a new mem-
ory technology that is designed to improve the performance
of memory bandwidth bound applications. The MCDRAM
technology can significantly benefit applications that can be
modified to fit their entire data sets, or their most commonly
used memory regions in the MCDRAM memory. In addition
to offering superior memory bandwidth, KNL also offers
complex memory hierarchies and NUMA modes. Hence, in
order to fully leverage the performance capabilities of this
hardware capability, system software stacks (such as MPI and
SHMEM [6]) and application software layers must evolve.
The Cray SHMEM implementation is being extended to offer
new APIs to allow users manage the memory affinity of
various memory segments. The Cray MPI implementation is

also exposing such controls by extending the existing MPI
functions such as MPI Alloc mem and MPI Win allocate.
Specifically, the new features focus on allocating and man-
aging memory regions that are backed by huge-pages on the
MCDRAM device. This paper provides an overview of the on-
going work in Cray MPI and Cray SHMEM software stacks
in this direction. Cray MPI and Cray SHMEM software stacks
are available as a part of the Cray Message Passing Toolkit [7]
product on Cray Supercomputer.

Finally, this paper also includes a brief summary of a broad
range of new features and performance optimizations in Cray
MPI and Cray SHMEM software products to improve the per-
formance and memory scalability of parallel applications on
Cray XC series supercomputers. To summarize, the following
are the major contributions of this paper:

1) New solutions within Cray MPI to improve the multi-
threaded communication performance of hybrid parallel
applications.

2) A description of the design of WOMBAT, a high perfor-
mance astrophysics application that relies on optimized
multi-threaded MPI-3 RMA implementation in Cray
MPI.

3) A summary of proposed enhancements in Cray MPI and
Cray SHMEM software stacks to help users best utilize
the MCDRAM memory on KNL.

The rest of this paper is organized as follows. Sections II
and III describe the major problems being addressed in this
paper and present the relevant background material. Sec-
tions IV-C and IV-D describe the proposed set of API changes
in Cray MPT to facilitate the usage of huge pages on KNL’s
MCDRAM memory. Sections IV-A and IV-B describe the
on-going efforts in Cray MPT to improve communication
performance for multi-threaded applications. A detailed de-
scription of the design and development methodologies of
WOMBAT is presented in Section IV-E. Section V describes
the experimental evaluation for the proposed multi-threading
optimizations across various communication benchmarks and
for the WOMBAT application on a Cray XC supercomputer.

II. PROBLEM STATEMENT

This section describes the major problems being addressed
in this paper.

A. Multi-Threaded MPI Communication

A brief description of MPI threading modes and the cur-
rent state-of-the-art for multi-threaded MPI communication is
included in Section III-A. As discussed in Section I, MPI
libraries that rely on a single global lock to ensure thread
safe communication are not poised to offer the best multi-
threaded communication performance. Clearly, new solutions
are required within the MPI stack to improve the performance
of an emerging class of hybrid applications.

Figures 1 (a) and (b) describe two possible alternatives in
designing an optimized MPI stack that can offer improved
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communication performance for hybrid applications. If an
application relies on the MPI THREAD MULTIPLE mode,
best communication performance can be achieved if the MPI
implementation allows multiple threads to drive network trans-
fer operations in a concurrent manner while sharing minimal
resources and corresponding locks. This is feasible if the MPI
implementation allows each thread to own a different pool
of hardware and software resources, which can be accessed
with minimal locking and synchronization requirements, as
shown in Figure 1 (a). An alternate approach is to follow an
“Enqueue-Dequeue” model as described in Figure 1 (b) [8].
Multiple user-level threads enter the MPI library to create
and enqueue communication tasks. However, only one thread
progresses the communication operations. While this approach
can eliminate the need for per-object locks and also reduce
the contention for the single global lock, only one processor
core can be used by the MPI implementation to progress
communication operations. The MPI implementation may be
designed to rely on idle OpenMP threads (if any), or on a pool
of internal helper threads executing on independent processor
cores to accelerate communication progress. However, in this
design alternative, the overall performance may depend on
the availability of user-level threads, and idle processor cores.
If an internal thread pool is utilized to drive communica-
tion across multiple cores, the library will require locking
mechanisms to ensure thread safety. This paper takes a closer
look at the design and implementation issues involved in
designing optimized implementations for MPI-3 RMA and
the MPI Alltoall collective operations based on the solution
described in Figure 1(a).
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Fig. 1. Design Alternatives for Thread-Safe MPI Implementations

B. KNL On-Package Memory (MCDRAM)

Section III-D provides a brief summary of the on-package
memory on KNL, along with a high-level description of the
existing support that allows users to manage memory on

the MCDRAM. Section III-C discusses the importance of
managing critical memory regions by leveraging huge pages
on Cray supercomputers. On Cray XC systems with KNL,
users can continue to load a specific huge-page module in
the programming environment and relink the application code
to allocate huge-page backed memory on the DDR if they
are allocating memory via “malloc()”, or “posix memalign()”
calls. However, allocating and managing memory regions that
are backed by huge-pages on the MCDRAM are inherently
more complex. Loading a specific huge-page module in the
programming environment and re-linking the application code
does not guarantee huge-page backed memory region if the
user is relying on the Memkind library [9] via “hbw malloc()”
to allocate memory on the MCDRAM. As discussed in Sec-
tion III-C, the Memkind library offers basic support for allocat-
ing memory regions that are backed by huge-pages. Depending
on the memory access pattern of a given application, the
level of support offered by the Memkind library might not
be sufficient to offer the best communication performance on
the Cray XC. Clearly, solutions within programming models
that allow users to allocate specific memory regions to be
backed by a range of huge-page sizes and memory kinds is
necessary. Programming models must also handle scenarios
where the KNL nodes are configured to expose only a part
of the MCDRAM as a separate NUMA node. Under such
configurations, sufficient memory might not be available to
offer specific huge-page support for the entire application.
Programming models must either transparently fall back to
allocating memory on the DDR, or report a fatal error in such
cases. In addition, a SHMEM implementation must also ex-
pose an appropriate level of support to allocate the symmetric
memory regions on the MCDRAM with a consistent huge-
page size across all KNL nodes. This paper describes our on-
going efforts to address these requirements.

III. BACKGROUND

This section presents the relevant background information
for the various concepts covered in this paper.

A. Support for MPI THREAD MULTIPLE in CRAY MPICH

MPI offers three threading modes –
MPI THREAD SERIALIZED, MPI THREAD FUNNELED
and MPI THREAD MULTIPLE. In the SERIALIZED
and FUNNELED modes, only one thread is allowed
to issue and progress MPI communication operations.
MPI THREAD MULTIPLE enables parallel applications
to allow multiple threads to perform MPI operations
concurrently.

Most MPI implementations (including the default Cray
MPI implementation) rely on a single global lock to guaran-
tee thread-safety for the MPI THREAD MULTIPLE mode.
Each communicating thread must acquire the global lock
to perform any MPI operations. Cray MPI also offers an
alternate library that relies on fine-grained “per-object” locking
mechanisms [10]. In this approach, communicating threads
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can concurrently enter the MPI library and acquire separate
locks that protect different critical sections. This flavor of
Cray MPI also uses the global lock to ensure thread-safety for
specific components and data structures. Hence, this approach
improves the level of concurrency within the MPI library.
On current generation Cray XC systems, the fine-grained
per-object locking approach delivers significant performance
improvements for multi-threaded MPI point-to-point commu-
nication benchmarks. A prototype implementation of the Cray
MPI library that minimizes the need for the global locks
is under development. Brief-Global is another approach to
locking that involves using a single global-lock carefully
with smaller critical sections. While this design alternative
can greatly simplify the implementation details and code
maintenance the MPI implementation is still largely serialized.

B. Optimized implementations for MPI Alltoall(v) and MPI-3
RMA in Cray MPI

Cray MPI offers highly optimized implementations for
heavy data moving collectives such as MPI Alltoall and
MPI Alltoallv. These implementations have been demon-
strated to significantly outperform the pair-wise exchange
algorithm that is available in the ANL MPICH implementation
on the Cray XE and XC systems [10]. Cray MPI uses a novel
communication and synchronization algorithm by directly re-
lying on the low-level uGNI [11] library to optimize the com-
munication performance of MPI Alltoall and MPI Alltoallv
operations. This also allows the implementation to bypass
the netmod layer to implement the data transfer operations.
However, the Alltoall(v) implementations require all the par-
ticipating processes to exchange meta-data information about
the Alltoall operations, which includes the memory addresses
of the communication buffers and the corresponding network
registration handles with each other prior to implementing the
uGNI communication operations. This meta-data exchange is
done at the start of each MPI Alltoall(v) operation and is
handled by the netmod layer in the Cray MPI stack. This
implementation is ideally suited for use cases where only one
thread is performing the Alltoall operation because it relies on
a single global lock to ensure thread safety.

Cray MPI also offers an optimized implementation for
MPI-3 RMA operations leveraging DMAPP [11], the low-
level communication library for one-sided data transfers.
The DMAPP optimized RMA implementation has also been
demonstrated to significantly outperform the basic MPI-3
RMA implementation that is available in the ANL MPICH
software stack. This implementation also relies on a single
global lock to ensure thread safety and is not poised to offer
high performance communication for hybrid applications.

Section IV includes a summary of new optimizations to
improve the performance of MPI-3 RMA operations and
MPI Alltoall in multi-threaded environments. Cray MPI 7.3.2
already offers the advanced support for “thread-hot” MPI-
3 RMA operations and allows multiple user-level threads to
concurrently perform RMA operations in a high performance

and scalable manner.

C. Significance of using huge pages on Cray Supercomputers

On the Cray XC series systems, it is important to man-
age frequently accessed memory regions by backing them
with huge pages. Memory regions that are backed by huge
pages significantly reduce the pressure on the Aries TLB
and this can improve network communication performance.
The Cray programming environment allows users to load
a specific huge page module and re-link their codes to
automatically gain the benefits of using huge page backed
memory regions. Furthermore, Cray MPI automatically man-
ages several internal communication buffers by using huge
pages to improve communication performance. In addition,
Cray MPI also allows users to allocate memory backed
by huge pages of specific sizes via the MPI Alloc mem()
interface. Users can call MPI Alloc mem() and set the
“MPICH ALLOC MEM HUGE PAGES” environment vari-
able to instruct the MPI implementation to allocate
memory regions that are backed by huge pages. The
MPICH ALLOC MEM HUGE PAGES variable is not set by
default, and a call to MPI Alloc mem() defaults to using
malloc(). If the variable is set, the Cray MPI implementation
allocates memory that is backed by huge pages and the
default page size is 2MB. The page size can be configured by
setting “MPICH ALLOC MEM HUGEPG SZ”. The reader
is advised to refer to the Cray MPI man pages for additional
details about these environment variables.

D. KNL MCDRAM and support for Huge page backed mem-
ory regions

The KNL processor offers a specialized on package memory
called Multi-Channel DRAM (MCDRAM) in addition to the
traditional DDR memory. MCDRAM is a high-bandwidth, low
capacity memory device that can be configured as a third-
level cache, or a distinct NUMA node. When the MCDRAM
is configured as a distinct NUMA node in the “flat” mode,
applications can benefit if their entire dataset, or the frequently
accessed datasets have affinity to the MCDRAM memory.
Application developers have four ways of setting memory
affinity to the MCDRAM memory: (a) using directives spec-
ified by compilers, (b) numactl, or (c) using libraries such as
Memkind [9], or (d) by managing memory via OS system
calls such as mmap() and mbind(). The Memkind library also
offers preliminary support for allocating memory regions that
are backed by huge pages. This support is currently limited to
either 2MB or 1GB page sizes, and may require changes to
the OS kernel. Depending on the memory access pattern of a
given application, huge pages with 2 MB page size might not
be sufficient to achieve high performance communication on a
Cray XC system. Allocating all memory regions to be backed
by huge pages of 1GB page size is also not a viable solution.
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E. WOMBAT

WOMBAT is a shock capturing magneto-hydrodynamic
(MHD) code used to study a number of astrophysical phenom-
ena including outflows from super-massive black holes [12],
the evolution of galactic super-bubbles, and MHD turbulence
in environments such as the intra-cluster medium in galaxy
clusters. Additional components available in the code can be
enabled to incorporate the effects of static and time-dependent
gravity, acceleration and aging of cosmic rays, and radiative
cooling. New development is extending the capabilities of
the code to cosmological simulations with the addition of a
particle-mesh dark matter solver and full multi-grid solver
for gravity. This work is being done to support science
goals of studying MHD turbulence in galaxy clusters over
cosmological scales at very high resolution using a combina-
tion of static and adaptive mesh-refinement (SMR and AMR
respectively) strategies. WOMBAT is being developed through
a collaboration between Cray Inc. Programming Environments
and the University of Minnesota - Minnesota Institute for
Astrophysics.

IV. DESIGN

A. Optimized MPI THREAD MULTIPLE support for MPI-3
RMA in Cray MPI

Thread-hot MPI-3 RMA is designed both for high band-
width, high message rate multi-threaded communication, as
well as contention-free communication and message comple-
tion. This last point is important, as it allows the user to
flush outstanding messages on one thread while other threads
continue to make uninterrupted progress driving further com-
munication.

The optimized Cray MPI allocates network resources to
threads in a dynamic manner. In the proposed implementation,
the pool of network resources available to each rank is static
and resources cannot be shared between ranks. Since network
resources are not statically assigned to each thread, the design
can scale up to any number of threads per rank. If the
number of threads per rank that are simultaneously driving
communication exceeds the number of network resources
available to threads on that rank, then there will be contention
for network resources; otherwise, the design is contention-free.
This is true even when various threads are simultaneously
making both communication and message completion calls,
such as MPI Win flush. Epoch synchronization calls, such
as MPI Win complete and MPI Win fence, are thread-safe,
but not intended to be used in a thread-hot manner; multiple
threads calling, say, MPI Win start and MPI Win complete
will open and close multiple RMA epochs, rather than using
multiple threads to speed up a single epoch synchronization.

All RMA communication calls, including request-based
versions, are thread-hot. So are MPI Win flush and related op-
erations. Thread-hot communication is possible using any type
of epoch synchronization, but passive synchronization is likely

the best fit for thread-hot communication; MPI Win flush can
be used to complete messages in a multi-threaded code region
without forcing bulk-synchronization of all outstanding mes-
sages, and MPI Win flush all can complete all outstanding
messages without blocking other threads from communicating
or completing messages. MPI Win flush(win, rank) will com-
plete all outstanding messages on ”win” that targeted ”rank”,
and that were initiated before the call to MPI Win flush. It
is the responsibility of the user to ensure proper ordering of
calls by multiple threads to RMA communication functions
and MPI Win flush, whether through locks, atomic counters,
or some other means.

B. Optimized MPI THREAD MULTIPLE support for
MPI Alltoall in Cray MPI

As discussed in Section III-B, Cray MPI software offers a
high performance, scalable implementation for MPI Alltoall
and MPI Alltoallv collective for single threaded use cases.
The design objectives of thread-hot MPI Alltoall collective
operation is to allow multiple user-level threads to concurrently
issue and progress the collective with minimal locking and
synchronization requirements. This approach can potentially
improve the performance of a “top-down” MPI/OpenMP hy-
brid application that performs the MPI Alltoall collective in
a multi-threaded code region.

The proposed thread-hot optimization for MPI Alltoall is
based on concepts discussed in Figure 1 (a) and is consistent
with the proposed thread-hot designs for MPI-3 RMA in
Section IV-A. The design allocates a pool of network resources
for each rank. Each communicating thread is dynamically
assigned a set of network resources to allow multiple threads
to simultaneously drive communication operations without the
need for additional locking and synchronization mechanisms.
The number of hardware resources that are allocated per MPI
process can be configured via an environmental variable. If
the number of communicating threads exceeds the number of
available network resources, the design relies on a fine-grained
lock to ensure thread-safety. Lock contention is observed only
in the scenario where the number of communicating threads
exceeds the available set of hardware resources.

The proposed thread-hot implementation significantly re-
duces the need for locks during the data movement operations.
However, the optimized implementation requires the use of
locks around the meta-data exchange phase (Section III-B)
of the Alltoall implementation because it is handled by the
Cray MPI netmod layer. The overheads associated with this
phase of the Alltoall implementation depends on the number of
user level threads concurrently posting the Alltoall operation,
along with the level of load imbalance across the threads.
The meta-data exchange can be implemented in a thread-
hot manner if the underlying netmod layer in Cray MPI
can also be re-designed to allow multiple threads to make
concurrent progress with minimal locking requirements. These
optimizations are currently under investigation and will be
available in the future. Additionally, the meta-data exchange
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phase can be eliminated if the MPI standard offers the use
of persistent collectives [13]. This can allow multiple user-
level threads to start, progress and complete their Alltoall
operations with minimal locking requirements to offer high
performance communication in highly multi-threaded environ-
ments. Section V-B compares the performance of the proposed
thread-hot implementation when compared to the default uGNI
Alltoall implementation in Cray MPI for varying number of
MPI processes and threads per MPI process.

C. API Extensions and Environment Variables in Cray MPI
to support KNL MCDRAM

As discussed in Sections III-D and II, the programming
environment and the WLM offer support to allow users to
allocate memory on the MCDRAM, when the MCDRAM is
either configured fully or partially in the “flat” mode. However,
the current level of support is insufficient to offer memory
regions that are bound to the MCDRAM, and are also backed
by huge pages of a specific page size. Upcoming Cray MPI
releases will offer this feature.

Cray MPI will allow users to request a huge page
backed memory region that is bound to the MCDRAM
with a specific page size. This feature will be exposed
via the MPI Alloc mem() and the MPI Win allocate()
operations. A brief description of the environment variables
and their usage is described in Figure 2. Section III-C
described the MPICH ALLOC MEM HUGE PAGES
and MPICH ALLOC MEM HUGEPG SZ environment
variables. The official Cray MPI release for KNL will
slightly modify these environment variables to better
suit the various memory kinds and policies available on
KNL. Hence, the MPICH ALLOC MEM HUGE PAGES
and MPICH ALLOC MEM HUGEPG SZ variables
will soon be deprecated. A new environment variable
MPICH ALLOC MEM AFFINITY allows users to set the
affinity of a requested memory region to either “DDR” or
“MCDRAM”. The MPICH ALLOC MEM POLICY allows
users to specify a memory allocation policy on the KNL
architecture – “Preferred”, “Mandatory” or “Interleave”.
Finally, the MPICH ALLOC MEM PG SZ variable allows
users to specify the page size for the MPI Alloc mem()
and MPI Win Allocate() operations. Users are allowed to
request a page size in the following range: 4K, 2M, 4M, 8M,
16M, 32M, 64M, 128M, 256M and 512M. This feature will
initially be exposed to users via environment variables. Future
releases of Cray MPI will offer info key support for finer
grain control of memory placement, page sizes and memory
policy.

By default, MPICH ALLOC MEM PG SZ is set to 4KB.
If the user requests memory affinity to be set to MCDRAM (by
setting MPICH ALLOC MEM AFFINITY to MCDRAM), if
sufficient MCDRAM is available, the MPI library will return a
memory region that is backed by 4KB pages and bound to the
MCDRAM device. If the user adjusts the page size to 128MB,
Cray MPI implementation will return a memory region that

is backed by 128MB huge pages, on the MCDRAM device.
On current KNL systems, MPICH ALLOC MEM POLICY
defaults to “Preferred”. This allows a parallel job to run to
completion even if sufficient memory is not available on the
MCDRAM device. This setting can be overridden by setting
the memory policy to “Mandatory” to trigger a fatal error if
sufficient memory is not available on the MCDRAM device
to service a specific memory allocation request.

On KNL nodes that are configured to use SNC2 and
SNC4 NUMA modes, the Cray MPI library will allo-
cate memory on the closest memory node, regardless of
the MPICH ALLOC MEM AFFINITY value. For exam-
ple, if the KNL is configured in the SNC4 mode ,
MPICH ALLOC MEM PG SZ is set to 128MB and the
memory affinity is set to MCDRAM. If an MPI process is
scheduled on core id 55, the MPI library will allocate memory
on the MCDRAM device that is closest to core id 55 (which
is NUMA NODE 8). In addition, this memory region will be
backed by 128MB huge pages.

If MPICH ALLOC MEM PG SZ is not set, the Cray MPI
library will return memory regions that are backed by 4KB
base pages either on DDR or MCDRAM, depending on the
MPICH ALLOC MEM AFFINITY value. In this scenario,
the MPICH ALLOC MEM POLICY variable has no effect.

MPICH_ALLOC_MEM_AFFINITY = MCDRAM or DDR 

      If set to DDR, MPI_Alloc_mem() allocates memory  

      with affinity set to DDR.   

      If set to MCDRAM, memory affinity is set to MCDRAM 

      (Default: DDR) 

             

Use MPICH_ALLOC_MEM_PG_SZ to adjust the page sizes 

(Default: 4KB (base pages).  Allowed values: 2M, 4M, 8M, 16M, 32M, 64M, 

128M, 256M, 512M) 

 

MPICH_ALLOC_MEM_POLICY = M/P/I  

         M: Mandatory  (Fatal error if MCDRAM allocation fails) 

    P: Preferred     (Fall back to using DDR if MCDRAM unavailable) 

    I : Interleaved   (memory affinity is set to interleave across MCDRAM  

          NUMA nodes) 

   (Default: P ) 

 

If  base pages are used, ALLOC_MEM_POLICY defaults to PREFERRED.  

 

 

 
Fig. 2. Env. Variables offered by Cray MPI to manage Huge page backed
memory regions on KNL

D. API Extensions in Cray SHMEM to support KNL MC-
DRAM

This section describes the joint efforts of Cray and Intel
to define an OpenSHMEM API that will provide a portable
way of allocating and using heterogeneous memory kinds
on future processor architectures. Specifically, this section
concerns the development of new API that targets the on-
package MCDRAM memory on the Intel KNL processor.
Figure 3 offers a high-level description of the proposed API.
This capability allows the user to utilize different page sizes
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across the DDR and the MCDRAM memory kinds on the
KNL. The proposed API extension offers new environment
variables to allow users to specify the memory character-
istics of one or more symmetric memory partitions. Users
can specify a maximum of SHMEM MAX PARTITIONS,
and the partition numbers may be in the range 1 through
SHMEM MAX PARTITION ID. These environment vari-
ables can be used to specify the size, the kind of memory,
memory policy and the desired page size. The memory kind
may be either “D[efault]” or “F[astmem]”. This API allows the
programming model to offer additional memory kinds depend-
ing on the memory hierarchy of future processor architectures.
“page size” refers to the size of the pages for the specific
memory partition and can be one of the following strings: 4K,
2M and 1G. As discussed in Section IV-C, “policy” allows
the programming model to handle scenarios where sufficient
memory is not available to handle a specific user request.

SMA SYMMETRIC PARTITION1=size=<size>  

                                                      [:kind=<kind>] 

                                                      [:policy=<policy>] 

                                                      [:pgsize=<page size>] 

SMA SYMMETRIC PARTITION2=size=<size>  

                                                      [:kind=<kind>] 

                                                      [:policy=<policy>] 

                                                      [:pgsize=<page size>] 

<size> is the size in bytes for the memory partition.   

  

<kind> can be one of these strings: 

   D[efault]  

   F[astmem] 

 

<policy> can be one of these strings:  

  M[anditory] 

  P[referred] 

  I[nterleaved] 

 

void *shmem kind malloc(size t size, int partition id); 

void *shmem kind align(size t alignment, size t size, int partition id); 

Fig. 3. Proposed SHMEM API Extensions for managing memory on KNL

E. Optimizing WOMBAT for Multi-/Many-Core Architecture

Section III-E provided the relevant background information
for WOMBAT. To achieve the scientific goals for WOMBAT
several challenges must be addressed, and this presented
opportunities to design the code with considerations for future
architectures, such as KNL. The simulations for studying
MHD turbulence in galaxy clusters will require excellent
scaling well beyond 105 cores. Because of this, algorithms
were chosen to avoid the need for global or long distance
communication. Among the time consuming solvers, each is
expressed as nearest neighbor or user-defined local sub-volume
communication only. With communication traffic localized, the
most significant remaining issue is load balancing. Cosmolog-
ical SMR/AMR simulations naturally lead to load imbalance
among MPI ranks when the simulated volume is decomposed
in space.

As dark matter clumps and plasma follows, MPI ranks that
enclose such volumes will have to perform more work due to

the increased density of dark matter particles and refinement
of the grid. Some of this work must be explicitly moved from
overloaded rank to other ranks with less to do. One simple way
to reduce the frequency of load balancing is to decompose the
global grid over fewer MPI ranks and keep the core count
constant by utilizing OpenMP threads. Increasing the sub-
volume of the data grid that each rank operates upon reduces
the effect of additional load relative to the base workload. For
simulations with some level of periodicity in space, such as
cosmology, larger MPI rank sub-volumes also increases the
likelihood of ranks retaining workloads similar to other ranks
over time. If threading is properly implemented, it should then
be trivial to load balance within an MPI rank by utilizing one
of the load balancing OpenMP loop schedules without needing
to explicitly move any data. WOMBAT was designed for this
reason to push OpenMP thread scaling to the limit of a single
MPI rank per node and utilize all cores on a node with threads.

N6 N2 N5

N0 N1

N4 N3 N7

P0 P1 P2 P3 P4

P5 P6 P7 P8 P9

P10 P11 P12 P13 P14

P15 P16 P17 P18 P19

P20 P21 P22 P23 P24

Fig. 4. WOMBAT: Mult-Level Domain Decomposition in 2D

MPI programming often exposes more parallelism than
traditional compute loop-based OpenMP techniques produce.
The top-down model for MPI increases the likelihood of con-
currency between processes down the stack of an application
relative to the use of bottom-up OpenMP threading around
specific time-consuming loops. Unless enough of an appli-
cation has been multi-threaded and that threading eliminates
data motion or synchronization bottlenecks from MPI, it is far
from clear that a hybrid version will perform better than pure
MPI. This issue was central to the design of WOMBAT and
how OpenMP was used. The development methodologies and
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performance characteristics of WOMBAT are also applicable
to other MPI/OpenMP hybrid applications on current and
emerging compute architectures.

The approach for threading in WOMBAT was to move the
OpenMP parallel region to the top of the call stack with all
threads executing nearly all of the code. Data structures were
designed such that a minimum of coordination between threads
was necessary. The most important of these are structures that
decompose an MPI rank’s portion of the world grid by another
level. Figure 4 describes the domain decomposition approach
in WOMBAT with a two-dimensional example. The world grid
is subdivided into domains for each MPI rank. Here a single
domain is focused in the center with neighboring rank domains
labeled N0-N7 around it. Each domain is further decomposed
into sub-grids. In this example a 5x5 decomposition is used
inside each rank domain, labeled P0-P24 for the rank in focus.
These sub-rank grids each have their own boundaries that can
be exchanged within a rank with explicit copies or between
ranks with MPI. The size of these sub-rank grids is tunable,
and typically the number of them (e.g., hundreds) far exceeds
the number of cores on a node (e.g., tens). With each sub-rank
grid being a completely self-contained portion of the world
grid, a significant amount of parallel work is exposed that is
easily threaded and load balanced.

The result of the sub-rank decomposition done in WOMBAT
is a significant increase in the number of MPI messages and
a reduction of the typical message length relative to having a
single large grid within a rank. This pushes the communication
characteristics closer to message rate sensitivity. Since MIC
architectures offer slower serial performance, seeking out an
MPI feature easily optimized for message rate is necessary.
Additionally, the increase in the number of messages may
result in exhaustion of the number of available MPI message
tags. MPI-RMA is ideally suited to addressing both of these
issues. Similar to the compute parallelism exposed by the sub-
rank decomposition, an equal amount of communication paral-
lelism is exposed. The thread-hot MPI-RMA feature available
in Cray MPI allows threads to process this communication
work concurrently, which results in significant performance
improvement. Section V-C provides a detailed experimental
evaluation of WOMBAT on Cray XC supercomputers with
the default Cray MPICH implementation, and the optimized
thread-hot implementation.

V. EXPERIMENTAL EVALUATION

A. MPI THREAD MULTIPLE support for MPI-3 RMA in
Cray MPI

The MPI-3 RMA communication benchmarks that are avail-
able in the OSU Micro Benchmark suite (OMB) have been
modified to allow multiple user-level threads to issue RMA
operations concurrently. The benchmarks have been designed
to use as many as 32 OpenMP threads per MPI process,
each thread performing RMA operations (such as MPI Get,

MPI Put) concurrently with specific source/destination pro-
cesses. The benchmarks report communication bandwidth
for MPI Put and MPI Get operations, with message sizes
ranging from 8 Bytes up to 1 MegaByte. Cray MPI with
MPICH RMA OVER DMAPP enabled is considered as the
baseline for these experiments. In the benchmark, a single rank
with 32 threads targets three separate off-node ranks, but never
itself. For each message size, there is an inner and an outer
loop. The outer loop is an OpenMP “for” loop, with a “guided”
schedule and 4096 iterations. A new target rank is selected at
the beginning of each iteration of the outer loop, and the target
remains consistent throughout the inner loop. The inner loop
has 128 iterations, and each iteration makes a single call to
MPI Put or MPI Get, depending on the benchmark. After the
inner loop completes, MPI Win flush is used to complete all
messages issued during the inner loop.

Figure 5 (a) and (b) demonstrate the improvements ob-
served for the communication bandwidth for MPI Put and
MPI Get across various message lengths. This experiment was
performed with two compute nodes on a Cray XC system with
Intel Broadwell processors, with one MPI process per node.
Each MPI process has 32 communicating threads. Cray MPT
7.2.0 is used as the baseline for this comparison, along with
data from the prototype implementation (Thread-Hot MPT)
described in Section IV-A. These studies demonstrate that the
bandwidth improvements are more pronounced for smaller
message sizes, but there are noticeable improvements even
for larger message sizes. We still expect to see some improve-
ments for small message bandwidth in thread hot MPI RMA
due to further code optimizations, especially through the use of
DMAPP’s “non-blocking implicit”, or NBI, functions, which
chain multiple messages into a single network transaction. The
thread hot RMA designs described in Section IV-A are already
available in the Cray MPT 7.3.0 software package. Future
versions of Cray MPT will include additional optimizations
that rely on DMAPP’s NBI functions. Moreover, the thread
hot optimization for RMA will be available as a part of the
default Cray MPI implementation. This allows users to directly
benefit from this optimization without having to link against
an alternate library, or by enabling any other environment
variables apart from MPICH RMA OVER DMAPP.

B. MPI THREAD MULTIPLE support for MPI Alltoall in
Cray MPI

Section IV-B describes the on-going efforts in Cray MPI to
offer thread hot communication capabilities in Cray MPI soft-
ware. The proposed design is intended for use cases that follow
a “top-down” MPI/OpenMP Hybrid application development
approach that involve multiple user level threads concurrently
performing MPI Alltoall in a concurrent manner on different
communicators. The communication benchmark used for this
study is based on the Alltoall collective benchmark available in
the OSU MPI Benchmark Suite (OMB) [14]. This benchmark
extends the osu alltoall benchmark to allow multiple user-
level threads to perform MPI Alltoall in a concurrent manner.
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Fig. 5. MPI Put and MPI Get Bandwidth comparison: Default Cray MPI (7.2.0) and Prototype Cray MPI implementation with thread hot RMA (a) Small
message lengths (b) Large Message lengths

Since collective operations do not accept tag values, each
thread performs the Alltoall collective on a different MPI
communicator handle. The benchmark calls MPI Comm dup
to duplicate MPI COMM WORLD to create a distinct copy
of MPI COMM WORLD for each communicating thread.
Since each process now relies on multiple threads to perform
the Alltoall operation, the payload size handled by each thread
is a function of the original payload size and the number
of communicating threads per process. Figures 6 compare
the execution time of the multi-threaded Alltoall benchmark
for 64 nodes (256 MPI processes) and 128 nodes (512 MPI
processes), with 4 and 8 threads per MPI process, across a
range of message lengths. These experiments were performed
on a Cray XC system with Intel Broadwell processors. The
“-d” and “-S” aprun options were used to set the affinity of
the MPI processes and their corresponding threads. Figures 6
demonstrate that the proposed thread hot MPI Alltoall imple-
mentation improves the communication latency reported by the
multi-threaded communication benchmark, when compared to
the serial version of the benchmark with one thread executing
the Alltoall operation. In addition, these experiments also
demonstrate that the thread hot implementation outperforms
the Global-Lock and the Per-Object-Lock Cray MPI imple-
mentations. Also of importance is the fact that the MPI
communication latency often degrades when multiple threads
are concurrently performing MPI operations. This is observed
in Figure 6(c), where the global-lock and the per-object-lock
implementations have higher communication latency than the
“default” implementation. This is to be expected because
of lock contention within the MPI library as the number
of user level threads that perform MPI operations increase.
However, the proposed thread hot implementation performs
about 10% better than the default implementation. Additional
optimizations are being performed and this feature will be
released as a part of the Cray MPI implementation in the near
future.

C. Scaling results with WOMBAT on Cray XC systems

This section describes the experimental analysis for WOM-
BAT on Cray XC systems. The performance and scalability
characteristics of WOMBAT is compared between the default
Cray MPI implementation that offers thread safety by relying
on a global lock and the proposed thread hot Cray MPI
implementation described in Section IV-A.

Figure 7 shows an example of WOMBAT strong thread
scaling on a dual socket XC40 Intel Haswell node for a
fixed grid using a single MPI rank, with varying number
of threads. Runs with turbo enabled and disabled (p-state
uncapped or capped at stock frequency) are shown along
with a theoretical linear speed-up curve for reference. This
experiment demonstrates that the WOMBAT performance is
very close to the theoretical speed-up curve when the threads
having affinity to the same NUMA domain. With increasing
number of threads, the number of cross-NUMA transfers
increase, which leads to a slight degradation in the speed-up
when compared to the theoretical baseline.

Figure 8 (a) shows the weak scaling of WOMBAT on an XC
system with Intel Broadwell processors. In this experiment,
a 3-D test problem is considered with the number of MPI
processes ranging from 1 to 968, with each rank having 36
threads. When only a single MPI rank is used there are no
calls to MPI, and boundary exchanges between sub-rank grid
is all done with explicit copies. The number of MPI PUT
and MPI GET calls increases as more ranks are used until
it saturates at 27 ranks (864 cores). Curves for MPT 7.3.1
and the optimized version of Cray MPT that offers the thread
hot MPI-RMA feature are shown. MPT 7.3.1 does not have
the thread hot MPI-RMA feature, and all calls are protected
by a single big lock. The proposed Cray MPI implementation
(future release) introduces the thread hot feature, and the time
to complete an update in the test simulation drops by over
18%. This is direct result of threads being able to process
MPI communication concurrently significantly reducing MPI-
related overhead costs. Cray MPT 7.3.2 already offers the
thread hot MPI-RMA capabilities. Future releases of Cray
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MPT (Q4, 2016) will offer additional optimizations that allow
multiple threads to perform RMA synchronization operations
in a concurrent manner.
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Fig. 7. WOMBAT thread strong scaling on a 32 core XC Haswell node for
a three dimensional test problem run on with a single MPI rank

Figure 8(b) shows how WOMBAT performs for a three
dimensional fixed grid calculation at 34,848 cores going from
MPI only (single thread per rank) to wide OpenMP (36 threads
per rank, single rank per node). WOMBAT spends very little
time in message synchronization, typically around 1%, and
generally achieves very good overlap of computation and
communication. With this property on a fixed grid calculation,
there is no attribute of WOMBAT or the algorithms in use

that prefers threads over ranks. Therefore ideal performance
would show ranks with 36 threads performing just the same
as ranks with just a single thread. Figure 8(b) shows that
performance varies by less than 8% between these two ex-
tremes, which demonstrates that the thread implementation
of both WOMBAT and Cray MPICH MPI-RMA is very
efficient. Additional optimizations to improve concurrency in
RMA synchronization operations are currently in progress in
Cray MPI. This optimization is expected to further reduce the
performance difference between high and low thread counts
shown in Figure 8(b). Ultimately the simulations required for
the science goals of WOMBAT will prefer threads to ranks
for load balancing reasons. Those runs are expected to show
superior performance of very high thread counts over low
thread counts.

Figure 8(c) demonstrates the relative performance improve-
ments observed on the Intel KNL processors on Cray XC
systems. This figure shows the performance improvements
observed with WOMBAT by using the proposed thread hot
MPI-RMA optimizations in Cray MPI, when compared to the
default implementation of Cray MPI that relies on a single
global lock to ensure thread safety. WOMBAT runs with
fewer than 68 cores show no performance benefits because
there are no MPI-RMA operations and all data movement
operations are implemented via memory copies. However, as
WOMBAT is scaled to use larger number of cores on the KNL
processor, the performance offered by the proposed thread
hot MPI-RMA optimization outperforms the default Cray MPI
implementation by about 40% on Cray XC systems based on
the Intel KNL processor. This experiment demonstrates the
significance of developing hybrid parallel applications and the
MPI implementations in a highly optimized manner.

VI. RELATED WORK

The importance of optimizing the performance of multi-
threaded applications is widely recognized. Si [15] et al. have
explored the problem of offering a transparent multi-threaded
MPI communication library for the benefit of applications that
perform MPI operations from a single thread. Amer et al. [16]
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Fig. 8. WOMBAT Application Weak Scaling analysis on XC: (a) Weak Scaling on Cray XC with Intel Broadwell processors, (b) Thread/Rank Comparison
(c) WOMBAT Application Weak Scaling on KNL Processors (Relative Data)

have explored the problem on optimizing thread arbitration
and scheduling on modern processor architectures. Kumar et
al. [17] have also investigated the challenges associated with
optimizing multi-threaded MPI communication on IBM Blue-
Gene systems. Balaji et al. [18] proposed the concept of using
fine-grained locking mechanisms to improve the performance
of multi-threaded applications. The default MPICH library
from ANL relies on a single global lock to ensure thread-
safety. Many MPICH derivatives use the same approach to of-
fer thread safe communication for specific network interfaces.
However, the Cray MPI library also offers preliminary support
for fine-grained multi-threaded communication progress by
utilizing per-object locking mechanisms [10]. Conceptually,
per-object locking mechanisms utilize smaller locks around
specific critical objects. While these locks guarantee correct
multi-threaded access to global MPI objects, they also allow
multiple threads to make concurrent progress within the MPI
library because the size of the critical section is much smaller
when compared to the single global lock implementation. Cray
MPI has extended this design to offer fine-grained multi-
threaded performance on the Cray XC series supercomputer
systems. However, in the current version of the per-object
Cray MPI implementation, the netmod layer is still being
guarded by a global lock. This solution is currently available
as a non-default MPI library. Users can specify a driver flag
to link against the optimized multi-threaded MPI library and
are encouraged to read the Cray MPT man pages to learn
more about this feature. Preliminary experiments have shown
promising results for multi-threaded point-to-point communi-
cation operations. A prototype implementation of the Cray
MPI library that minimizes the need for using a global lock
within the uGNI netmod layer is under development. This
library will be available for experimentation on the Cray XC
series systems in the near future.

VII. SUMMARY AND CONCLUSION

In this paper, we explored the significance of designing
MPI/OpenMP Hybrid parallel applications in a “top-down”
manner to improve the overall computation and communica-
tion efficiency of WOMBAT, a high performance astrophysics

application. We used this case study to motivate the need
for MPI implementations to offer efficient communication
performance for highly multi-threaded applications where
multiple user level threads may call MPI operations concur-
rently. Novel solutions were proposed to implement MPI-3
RMA and MPI Alltoall operations in a “Thread-Hot” manner
to allow multiple threads to independently drive network
communication operations with minimal locking and resource
sharing. Detailed experimental evaluations were performed
on Cray XC supercomputers to understand the performance
characteristics of the proposed thread-hot MPI implementation
with various multi-threaded communication benchmarks with
different processor counts, across various message lengths.
An in-depth study was also included to demonstrate that the
overall execution time of the WOMBAT application can be
improved by more than 18% with more than 34,000 cores
on Cray XC supercomputers based on Intel Haswell and
Broadwell processors. Experiments on early KNL hardware
have demonstrated very promising results with scaling WOM-
BAT with the proposed thread-hot Cray MPI implementation.
In addition, this paper also proposed new API changes in
Cray MPI and Cray SHMEM to facilitate the usage of huge
page backed memory regions on KNL processors. These
features are expected to greatly improve the performance of
applications running on Cray systems based on Intel KNL
processors. A version of thread-hot MPI-3 RMA implemen-
tation is already available in Cray MPT 7.3 version. Future
releases of Cray MPT will offer additional optimizations for
MPI-3 RMA, a thread-hot MPI Alltoall implementation and
the proposed API enhancements for KNL MCDRAM.
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