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TDS at ZIB

Test & Development System: mostly exclusive usage.

16 XC30 compute nodes, 10-core IvyBridge Xeon, 32 GiB
memory.

8 DataWarp nodes, 2x1.6 TiB SSDs, very quiet, persistent &
striped (8MiB) & scratch.

2 Lustre (80 OST/2.3 PiB, 48 OST/1.4 PiB), production us-
age, no striping.

Perfect for Big Data!
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Approach

Hadoop, Spark and Flink as common data processing engines on CCM.

TeraSort, Streaming and SQL Join as well understood big data applications.

: Robust but lots of I/O because of shuffle.

: Great scaling but many IOPS (as we’ve heard multiple times this week
already, and will again in 10 minutes).

: Flink? Think Spark with support for true stream processing, off-heap
memory and support for iterations.
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Suddenly: Reality
Tuning with that many parameters (TeraSort/Streaming/SQL, YARN, HDFS,
Hadoop/Spark/Flink on DataWarp/Lustre) quickly becomes a life task.

We’ll take you on a lightweight version of our journey top-down, let’s start with
TeraSort on Hadoop and DataWarp (i.e. HDFS data and Hadoop temporary
directories).
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Between 4h34m to 0h49m,
around 30 MiB/s per-node
throughput.
(Lustre: 3h18m to 0h25m,
around 50 MiB/s per-node
throughput.)
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Is it I/O? Hadoop FS Counters?
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Maybe? But looking at
the counters ...
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Maybe? But looking at
the counters ...

We should see at least 2
TiB of read/write every
run.
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We must go deeper ...
DVS & Lustre FS counters to the rescue!
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Aha! Between 2 and 3 TiB
read/write, so apparently
Hadoop FS counters only
count shuffle and spill.
DVS counter issues:

• Total no. of
read/written bytes.

• Reported max.
read/write sizes of 64
KiB vs. calculated avg.
read/write sizes 192
KiB to 2 MiB.

No. of reads/writes DW vs.
Lustre?
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What about Spark?
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Fail completely on two
nodes.

Between 9h36m and
2h30m, 2x - 3x slower
than Hadoop.
(Lustre: 2h18m and
0h25m, almost like
Hadoop.)
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Fail completely on two
nodes.

Between 9h36m and
2h30m, 2x - 3x slower
than Hadoop.
(Lustre: 2h18m and
0h25m, almost like
Hadoop.)

Bummer, but at least it
scales better.
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Count the counters
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2x - 3x less data
read/written, 1 TiB each
is the minimum.

Same number of writes.

1000x the number of
reads.

That’s 100 bytes per
read.

2.5x - 5x the number of
opens (not shown).
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Flink
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Between 5h14m and
0h37m.
(Lustre: 5h12m and
0h11m.)

At least it’s a bit faster,
half of the time.
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Counting on Flink
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Very constant I/O
profile.

Why 2 TiB of data
read/written? 1 TiB
each should be enough,
see Spark.

Almost exactly same I/O
for 14 nodes as Hadoop,
so operators must be
more efficient.
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Fast-forward two more benchmarks

... Flink wins throughput during TeraSort, Hadoop comes in 2nd, Spark is 3rd.1

... Spark wins throughput during Streaming benchmarks1, Flink wins latency.

... Spark wins throughput during SQL1, Flink comes in 2nd2, Hadoop is 3rd.

... DataWarp configuration always loses to corresponding Lustre configuration,
always.

1for the configurations it does not crash on
2its Table API is still beta though
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Conclusions ... well, experiences.

Small site, more disk spill than necessary, however this helps our file system
comparison tests.

Absolute results are bad, relation between frameworks and file systems nonetheless
significant:
There are use cases for each framework, highly configuration dependent.
Don’t use DataWarp without caching and small transfer sizes.

CCM can be difficult to work with.

R/W memory mapped files are not supported on DataWarp.

Spark fails to run successfully a surprising number of times.

IOR with 64 KiB reads/writes roughly agrees with Hadoop FS counters.
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What we don’t yet know

Why are there more reads/writes on Lustre than on DataWarp?

Why do the DVS counters report inconsistent values in one case?

Where does Flink’s I/O come from?

How do IPC Rx/Tx bytes relate to actually read/received data?

When do we get DataWarp Stage 2?
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