
FCP: A Fast and Scalable Data Copy Tool
for High Performance Parallel File Systems

Feiyi Wang, Verónica G. Vergara Larrea, Dustin Leverman, Sarp Oral
National Center for Computational Sciences

Oak Ridge National Laboratory, Oak Ridge, TN, USA
Email:{fwang2, vergaravg, leverman, oralhs} at ornl.gov

Abstract—The design of HPC file and storage systems
has largely been driven by the requirements on capability,
reliability, and capacity. However, the convergence of large-
scale simulations with big data analytics have put the data,
its usability, and management back on the front and center
position. One of the most common and time consuming data
management tasks is the transfer of very large datasets within
and across file systems.

In this paper, we are introducing the FCP tool, a file
system agnostic copy tool designed at the OLCF for scalable
and high-performance data transfers between two file system
endpoints. It provides an array of interesting features such
as adaptive chunking, checksumming on the fly, checkpoint
and resume capabilities to handle failures, and preserving
stripe information for Lustre file system among others. It is
currently available on the Titan supercomputer at the OLCF.
Initial tests have shown that FCP has much better and scalable
performance than traditional data copy tools and it was capable
of transferring petabyte-scale datasets between two Lustre file
systems.

I. INTRODUCTION

The design of HPC file and storage systems has largely
been driven by the requirement on capability, reliability, and
capacity. Data manageability and usability often take the
back seat in the grand scheme of options and restrictions.
However, the convergence of large-scale simulations with
big data analytics have put the data, its usability, and
management back on the front and center position. Among
many tasks related to data management, data integrity and
file system profiling are paramount to file system users
and operators. Few, if any, production-ready tools can take
advantage of a cluster-based infrastructure to truly tackle
large scale datasets as often seen in HPC environments. This
technical deficiency prompted the design and implementa-
tion of a suite of efficient and scalable file system tools to
help with everyday user and administrator needs.

In this paper, we will introduce the FCP tool, as a
part of a file system tool suite under development at Oak
Ridge Leadership Computing Facility (OLCF). The FCP
tool is a file system agnostic tool designed for scalable
and high-performance data transfers between two file system
endpoints. In addition, it provides an array of interesting
features such as adaptive chunking, checksumming on the
fly, checkpoint and resume capabilities to handle failures,

and options of preserving stripe information for Lustre file
systems. The FCP tool is currently available on the Titan
supercomputer environment at the OLCF. Our initial tests
have shown that FCP has much better performance and
scalability than traditional data copy tools and that it is
capable of transferring petabyte-scale datasets between two
Lustre file systems. The FCP tool is built on top of pCircle,
a parallelization engine, and uses MPI to take advantage of
existing infrastructure and maximize the efficiency of the
transfer.

There are multiple efforts published in the literature
aiming to increase the efficiency and ease use of handling
large data sets. Among these, streaming parallel distributed
copy (spdcp) [1] was designed from scratch and uses MPI to
parallelize data transfers between two POSIX file systems
using multiple nodes. spdcp was file system agnostic, but
optionally was able to preserve and replicate the source’s
data set Lustre striping pattern on the target file system.
MCP [2], [3] functions in a similar fashion, however, it uses
the GNU coreutils as a basis and provides cp-like command
line interface to the users.

Ong, Lusk, and Gropp [4] also investigated the same topic
and they presented a family of parallelized everyday Linux
commands using MPI, called Parallel Unix Commands.
Parallel copy (ptcp) was one of the proposed tools in the
family. ptcp was designed as a tool to replicate a set of
files from a local file system to a selected set of nodes.
Other work can also be found in the literature, such as [5],
[6], which focuses on providing an efficient mechanism for
transferring data sets between a local parallel file system
and a remote HPSS archive system. Both efforts [5], [6]
catalog the data sets, analogue to the Unix tar utility, before
transferring to the HPSS. While [6] uses a single node with
multiple threads to achieve high performance, [5] uses MPI
over multiple nodes to achieve even a higher tar and copy
aggregate performance to HPSS.

Several other works are built on top of widely-adopted
tools such as rsync [7], [8], [9]. One potential issue with
this approach is that rsync was designed in an era in which
network bandwidth was a limited and premium resource.
The delta calculation allows only the data difference per
file to be transferred over the network to achieve the higher



performance and greater efficiency. This is not the case with
most data centers where the internal network bandwidth is
often over-provisioned comparing to disk bandwidth. On
top of it, with the rysnc approach the underlying patching
mechanism does not apply the data difference to the destina-
tion file “in-place.” The rsync utility rather reconstructs the
destination file which is equivalent to reading the old data,
modifying it in memory, and writing the new data to the
destination file. From the I/O perspective, this read-modify-
write operation sequence can be expensive. We evaluated the
rsync algorithm as one of the supported transfer modes in
the FCP (instead of brute-force overwrite method which we
currently employ), and our experiments showed with large-
scale (particularly large file size) data sets, the rysnc method
is not efficient.

Our work differs from existing works in multiple fronts.
First, we organize and parallelize the transfers over adap-
tively defined chunks instead of files between two POSIX
endpoints, using the parallel tree walk algorithm discussed
in [10]. By parallelizing over chunks, we can achieve even
greater degrees of parallelism and performance. Second, pre-
vious effort such as spdcp adopted a master-slave approach
where a single master coordinates the copy tasks, whereas
FCP is completely decentralized for better load balancing
and scalability. Our work is both motivated and derived
from [11] but written from scratch in Python for greater
flexibility without sacrificing performance.

II. DESIGN, IMPLEMENTATION, AND OPTIMIZATION

Much of user-level file system activities can boil down
to a tree walk to visit each node of interest and perform
operations along the way. Tree walking is a trivial operation
and there are well-understood graph algorithms for this pur-
pose. For scalability to billions of nodes, however, we need
a parallelized solution in order to distribute the workload.
Lafon’s work [10] forms the foundation, FCP [12] can be
thought as a derivative solution. This section provides a
high-level overview of the core ideas as well as engineering
optimizations we have done to make FCP a viable tool in a
production environment.

A. Workload Parallelization Engine

There are three core building blocks pertaining our im-
plementation of workload parallelization. The first of which
is the work-stealing pattern load balancing technique, in
which, an idle worker requests (or steal) work from other
busy workers. This method is well-known and can be found
in implementations such as Intel’s Cilk Plus and Intel’s
Thread Building Blocks (TBB) [13]. This pattern is partic-
ularly important for large scale data transfers, in that, when
scanning and working on a file system as large as Spider 2,
with 50 millions directories and half a billion files, any single
process might generate contention or even get stuck on
particular directory tree. An evenly distributed workload will

suffer from the slowest worker syndrome, which inevitably
slows down the overall progress and reduces efficiency.
The work-stealing pattern allows FCP to overcome this
bottleneck and self-balance the system to maximize the
efficiency.

A second building block is on distributed termination.
This is a fundamental problem in distributed computing.
Its goal is to determine if distributed computation has
completed. It is a non-trivial task because no process has
complete knowledge of the global state, and you can not
assume a global time either. There are many algorithms
to attack this problem and our current implementation is
the Dijkstra-Scholten algorithm[14] and summarized as the
following:

1) The system in consideration is composed of N ma-
chines, n0, n1, . . . , nN−1, logically ordered and ar-
ranged as a ring. Each machine can be either white
or black. All machines are initially colored as white.

2) A token is passed around the ring. Machine n’s next
stop is n + 1. A token can be either white or black.
Initially, machine n0 is white and has the white token.

3) A machine only forwards the token when it is passive
(no work).

4) Any time a machine sends work to a machine with
lower rank, it colors itself as black.

5) Both initially at n0, or upon receiving a token:
a) if a machine is white, it sends the token unchanged.
b) if a machine is black, it makes the token black, makes

itself white, and forwards the token.
The algorithm itself is not particularly difficult to im-

plement. However, coupled with the messaging and work-
stealing pattern does make the system behavior non-
deterministic and a challenge to debug at scale.

B. Asynchronous Progress Report: A Compromise

Generally speaking, we need to handle two type of nodes
when walking a file system tree: files and directories. For
files, we need to decide how to break them up (chunking) for
more parallelism, and for directories, we scan all its entries.
The most logical and efficient approach would be doing the
parallel walk, chunking, and copying at the same time. To
summarize:

1) Given a file node, break it into chunks, and put each
chunk into the local work queue.

2) Given a chunk, perform copy operation.
3) Given a directory, scan and put each file or directory

into the local work queue.
As we can see, this is an efficient solution that intermixes

the copy operation with the scanning operation. The problem
with this approach is more of a usability issue: the end
user has no idea how far the copy has progressed. The best
feedback information that can be given is how many files
and directories have been scanned thus far. This is often not



enough when users are copying a large dataset, which could
take tens of hours or more to transfer. A percentage value is
more comforting. It also implies we need to have an idea of
not only how many total files/directories there are, but also
periodic gathering of summarization information from all
processes involved. For MPI-based messaging, this means
a collective operation in which all processes have to stop
processing the local queue and report its status, which is a
suboptimal solution.

0

1 2 3

4 5 6 7 8 9

reduce 
request

reduce 
request

reduce 
response

Figure 1. Async notification of work progress

This is where non-blocking collective operations come
to the rescue (though we are not relying on the presence
of MPI-3). We first form a k-degree tree out of all ranks.
Each intermediate node is responsible of sending a query
(asynchronous) and collecting the status report from its
children. It only relays the summary information to its
parent when all of its children have reported. The summary
information is ready when the root node receives the report.
This process is illustrated in Figure 1.

This mechanism allows each process to proceed on its
work without a global stop and synchronization step, thus
improving the overall efficiency and performance of the
transfer. The user-configurable progress report interval is
a soft guidance. The actual output might differ due to its
asynchronous report nature, but it rarely matters in practice.
However, though the percentage report from a full scan of
the tree provides a better user experience, it compromises
on efficiency.

C. Adaptive Chunking

Conventional file system tools are not particularly adept
at handling large files. In a production HPC storage and file
system, large files are a norm rather than an exception. A
recent profiling study using fprof [15] for OLCF Spider 2
system shows a distinct dichotomy of a very large number
of small files and a relatively small number of large files,
shown in Figure 2. More specifically, even though 85% or
more files are less than 256 KiB, they are less than 1% of
total file size. This indicates that systems such as Spider 2
are hosting few number of very big files. In fact, a recent
tally shows at least 18,000 files with size above 128 GiB

89.97%

8.81%

10.03%

91.19%

0%

20%

40%

60%

80%

100%

File	Count File	Size

File Count and Size Distribution

Small	File	(<	256	kB) Large	File	(>	4	GB)

Figure 2. Profiling Atlas File System At Scale (500 million files plus 43
million directories)

file 1

file 2

file N

chunk 1 chunk 2

Figure 3. Breaking Large File Into Chunks

each, and a few hundred with size 4 TiB and beyond. For
data transfers of such dataset, chunking, i.e, breaking up
each file into a sequence of chunks as shown in Figure 3, is
absolutely necessary to increase the parallelism.

Each chunk object is self-contained, in the sense that it
carries all the necessary offset information for the processes
to handle them independently even when the workload has
migrated from one process to another. Regarding to the size
of the chunk, there are at least two design considerations.
First, if we make the chunk small, parallelism increases at
the cost of both processing and metadata overhead associated
with each chunk. The return of the parallelism will diminish
as the chunk size decreases. If we increase the chunk size too
much, we might miss out on the opportunity for increasing
parallelism for files with size just below the chunking thresh-
old. On the other hand, making the chunk size completely
file dependent has consequences on checksumming as well,
which we will discuss in the next section. Sufficient to say,
there is no one size that fits all. Our current design allows
the user to specify a chunk size of their choice based on
knowledge of data size distributions. By default, FCP will
parallel scan all files under transfer and adaptively pick a
chunk size that represents the balance of total chunks and
total file size.



D. Parallel Checksumming and Verification

One of the major concerns of curating large scientific
dataset is the integrity, both during the data generation and
after the data movement. The bit rotten syndrome has been
observed by users at OLCF facility before. Conventional
checksumming tools are file-based, whereas scientific users
prefers a single signature for the entire dataset. It is obvi-
ously unwieldy to carry hundreds or even thousands individ-
ual signatures for large datasets. To that end, FCP provides
on-the-fly checksumming and dataset- based checksumming
as an option.

A parallel block checksumming can piggyback along the
copy task in the sense that the block of data has already
been read into the memory from the disk. All we need is a
slice of compute time for the checksum. More importantly,
the checksum itself as a result can be used for verification.
However, the verification phase must happen after the copy
job is completed. At that point, we can re-read the data from
the destination and checksum it against original checksums
we have computed and saved.

We also consider the option of checksumming before
the copy job completes, i.e. as soon as the block data
are written. The problem lies in the fact that without a
data sync or close operation, we cannot be certain that the
subsequent read will reflect the data residing on the disk.
Yet, such sync operation for each block at this frequency
can be dangerously expensive. Therefore, the design is to
carry out this task in a separate phase, after the copy job
is completely finished. Ideally, we would like to overlap
copy, checksumming, and verification operations. However,
the nature of distributed operation implies we do not have
the global awareness to know if a file has been completely
copied until the entire copy is done. There might be some
further optimizations we could do in this area, but this
remains to be explored.

E. Checkpointing and Restart

Large scale data transfer takes time. OLCF provides a
dedicated cluster known as Data Transfer Nodes (DTN)
that handles the data movement. However, this dedicated
resource has to be shared among all facility users. Let
us assume a medium-size (e.g. 200 TB) data transfer job,
allocated with a default set of 4 transfer nodes. We can
further assume each transfer node can do roughly 1 GB/s.
Then, the job would require at least 14 hours to finish.
There are many scenarios under which a transfer job can
fail midway and resume capability is truly preferred. In the
case of single thread operations, this would have been trivial
as there is a centralized view on how much work has been
done thus far. In distributed computation, this is no longer
the case. FCP is designed just as any large scale scientific
application running on an HPC cluster: it periodically writes
out checkpoint files for a snapshot of the work completed (or

remaining to be completed). In the event of failures, users
can restart the job and resume the data transfer.

This is more or less a conceptually straightforward process
with two caveats. The first is related to when it fails. Since
FCP walks the tree prior to the actual copy stage, if a failure
occurs in the middle of the tree walking stage, we do not
have enough information to do a snapshot yet, and the tree
walk cannot be restarted. The second caveat is related to
choosing an in-core or out-of-core solution for scalability,
which we will elaborate further in the next section.

F. Extreme Scalability: In-Core and Out-of-Core

FCP was originally designed as an in-core solution: all
metadata are kept in memory. There are at least two ad-
vantages when every thing are kept in core: the obvious
one is performance; secondly, it makes the checkpointing
easy. At any point of time, the local work queue and its
queuing items represent a snapshot of the remaining works.
However, in the case of extreme scale datasets, we start to
face memory pressure. The memory usage comes primarily
from two sources:

• metadata information such as path, mode, size, uid and
gid, etc. collected during the tree walk.

• local work queue, which holds source, destination,
checksum, offset etc.

Each metadata object takes about 112 bytes. For a 500
million objects, this requires an estimated 56 GB. Each
chunk object takes about 64 bytes. The length of the local
work queue is dynamic: it depends on both the size of the
files (how many chunks are needed) and the number of files
within a directory. One of the worst case scenarios are large
flat directories with millions of files underneath. To curtail
the size of the local work queue, we can perform a small
optimization by inserting newly scanned file objects to the
front of the queue, and newly scanned directory objects to
the tail of the queue, as shown in Figure II-F. This effectively
limits the queue size (order wise) to be the largest number
of files within a directory.

Local work queue

expand

Head
Tail

Figure 4. Local work queue head-tail optimization

If one can assume that the directory tree is largely
balanced and a reasonable number of nodes are used for



transfer, then the memory pressure will be lower. Short of
this assumption, we will have to consider the extreme case
of a single node with limited memory transferring extreme
scale datasets. In this case, we would have to resort to an
out-of-core solution, i.e., persisting metadata information as
well as queue to a backend persistent storage such as a key-
value or database store. One of the issues we encountered
was the complicated handling of checkpointing: the database
state no longer represents the last known state of remaining
work items. For example, there is no guarantee that the last
n work items from persistent store have been completed, if
the failure occurs in the middle of the transfer.

III. EVALUATION

Before exposing a new tool to users, all features must
be thoroughly tested for performance, functionality, and
usability. We completed a performance evaluation of the
tool, and in addition verified the functionality of FCP’s
Lustre stripe preservation and checksumming features.

All the experiments conducted during the evaluation were
run on the OLCF’s data transfer node (DTN) cluster. The
DTN cluster is comprised of 8 nodes each with an 8-core
1.8 GHz Intel Xeon CPU E5-2603 processor, and is tuned
specifically for wide-area network data transfers. The DTNs
are connected to Spider 2 via FDR InfiniBand interconnect
which provides a peak bandwidth of 6.75 GB/s.

A. Single-Node Performance Testing

To verify the performance of FCP, we chose to use our
eight scheduled data transfer nodes (DTNs), which have the
center-wide Spider 2 file systems mounted. We identified
four data sets to use for our testing:

• Data set 1: Single 1TB file of zeros
• Data set 2: Single 100GB file of zeros
• Data set 3: One-thousand 100MB files of zeros
• Data set 4: Mixed small file data set (real data with

100k files with sizes ranging from 4KB - 100MB)
To eliminate caching effects from the storage system, we

pre-created the data sets for all of the runs and dumped the
caches on the storage servers. After each of the runs of the
scheduled DTNs, we would drop all caches before and after
each run as part of the job submission script.

Many tools are used to move data around within the
OLCF, namely: cp, rsync, DCP [11], and FCP. We ran
tests using all four of these tools to move all four of the data
sets mentioned above. Results from our tests are shown in
Table I and Fig. 5.

In every single-client test case except for the small file
case, FCP was the fastest, substantially outperforming all
other tools. FCP was about 8 seconds slower in the transfer
of the small file dataset, which could be attributed to the
very large number of files that were involved in the tree
walk step.

Table I
SINGLE LUSTRE 2.7 CLIENT PERFORMANCE (AVERAGE)

Dataset Description cp rsync dcp (np 8) fcp (np 8)
Single 1TB file 3556s 7474s 2871s 1653s

Single 100GB file 193s 545s 203s 123s
1000x 100MB files 290s 574s 212s 107s
Mixed small files 436s 321s 76s 84s

0

500

1000

1500

2000

2500

3000

3500

4000

Single	  1TB	  file Single	  100GB	   file 1000x	  100MB	  
files

Mixed	  Small	  Files
Ti
m
e	  
(s
ec
on
ds
)

File	  Copy	  Tool	  Performance	  (single	  node)

cp

rsync

dcp	  (np8)

fcp	  (np8)

Figure 5. Average transfer time single Lustre 2.7 client performance

B. Multi-node performance on the OLCF’s Spider 2 Lustre
file system

To better understand the performance of FCP on parallel
file systems, we designed tests that used different Lustre file
stripe counts and ran across 1, 2, 4, and 8 nodes on the
OLCF’s DTN cluster. The same data sets used in section
III-A were used for all the multi-node performance tests.

The default stripe count on Spider 2, the Lustre parallel
file system at the OLCF, is set to 4 and was chosen to balance
between small and large I/O operations. In addition to the
default stripe count of 4, copy operations with 1, 32, and
512 stripe counts were conducted. Figures 6 to 9 show the
performance results obtained from FCP transfers completed
for all test data sets with varying stripe counts.

As Fig. 6 shows, the performance of FCP scales up as
more nodes are used for the transfer. This is particularly
evident in the single large file (1TB) case, in which, the copy
operation using 8 DTN nodes is approximately 6X faster
than using a single node. Furthermore, the results show that
for single 1 TB file transfers it is best to use a stripe count
of 32, and as many transfer nodes as available. The speedup
observed starts to tail off between the 4 and 8 node cases,
which indicates that for files in the 1 TB - 10 TB range,
adding more than 8 nodes to the transfer is not necessary.
For cases with larger files, for example in the 10s - 100s of
TB range, it is recommended to use a larger stripe count.



Another thing to note from Fig. 6 is the 1 stripe case, in
which the transfer speed does not improve as more nodes
are added. Similar results are observed from the medium file
size transfers conducted, in which a single 100 GB file was
copied under the same configurations described above. Like
with the 1 TB file case, FCP performance in the 100 GB
case is fastest when 4 nodes and 32 stripes are used.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1	  stripe 4	  stripes 32	  stripes 512	  stripes

Ti
m
e	  
(s
ec
)

Stripe	  Count

Stripe	  Count	  Performance	  1TB	  file

1	  node

2	  nodes

4	  nodes

8	  nodes

Figure 6. Average transfer time multi-client performance of a single 1 TB
file

0

50

100

150

200

250

300

350

400

450

500

1	  stripe 4	  stripes 32	  stripes 512	  stripes

Ti
m
e	  
(s
ec
)

Stripe	  count

Stripe	  Count	  Performance	  100	  GB	  file

1	  node

2	  nodes

4	  nodes

8	  nodes

Figure 7. Average Transfer Time Multi-client Performance of a single 100
GB file

The results from multi-node tests with data sets 3 and
4 indicate that for many small files, on the order of 100
MB or less, FCP has similar performance with 1, 4, and 32
stripes. In both cases, the transfer speed continues to improve
with the addition of more nodes, and the best performance
is obtained when using a single stripe or the default stripe
count of 4.

For the mixed small files test case (Data Set 3), using 512

stripes was a challenge. When files are small, spreading each
file across that many stripes results is generally not recom-
mended. In addition, as we can see in Fig. 8, the transfer
speed on a single node using 512 stripes is approximately
5X slower than a transfer of the same data set when using a
32 stripes. Although performance does improve when more
nodes are used, the best measurement we obtained with 512
stripes for data set 3 was about 2X slower than the 32 stripe
count case.

0

100

200

300

400

500

600

700

1	  stripe 4	  stripes 32	  stripes 512	  stripes

Ti
m
e	  
(s
ec
)

Stripe	  Count

Stripe	  Count	  Performance	  1000	  100MB	  files

1	  node

2	  nodes

4	  nodes

8	  nodes

Figure 8. Average transfer time multi-client performance of 1,000 x 100
MB files

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1	  stripe 4	  stripes 32	  stripes

Ti
m
e	  
(s
ec
)

Stripe	  Count

Stripe	  Count	  Mixed	  Small	  File

1	  node

2	  nodes

4	  nodes

8	  nodes

Figure 9. Average transfer time multi-client performance of mixed small
files

The multi-node tests allowed us to measure the scalability
of FCP. Our results show that the performance obtained is
dependent on the type of data set being copied. It has also
helped us identify guidelines that could be helpful for the
user community when attempting to transfer data sets.



C. Testing checksum feature

As section II-D describes, FCP is capable of verifying
the integrity of a data set on the fly. To test the correct
functionality of the checksumming feature, we used the
data sets described in III-A in conjunction with an in-house
tool designed to corrupt files. The following scenarios were
benchmarked for each data set:

• Measure a baseline performance with the checksum
feature disabled.

• With the checksum feature turned on, transfer the data
set and verify the transfer was successful.

• With the checksum feature enabled, start a transfer,
corrupt the data, and verify that FCP detects the data
corruption.

For each scenario, a single node with 8 processes per
node was used, and the transfer time and transfer rate
were measured. The results from the checksum verification
transfers are shown in Figures 10 and 11.

As expected, enabling the checksum feature results in a
performance penalty. The greatest penalty is observed in data
set 3 at about 2X runtime increase. Interestingly, in data set
4, the mixed small files case, the performance of FCP is less
impacted by enabling the checksumming. The performance
penalty in that case is approximately 15%. This could be
attributed to the fact that checksumming a small file is not
as expensive as checksumming a larger file. In the large file
scenarios, we see approximately a 200% increase in transfer
time for the 100 GB case, and about a 60% in the 1 TB case.
In addition, the results show about a 10% penalty when FCP
is transferring and verifying a corrupted file.

The experiments show that FCP is able to accurately
detect when a transfer has been corrupted. However, because
the checksum operation is expensive, users should expect
longer transfer times. The impact of the checksumming step
could potentially be mitigated by using additional nodes.
Future work will further expand the test plan to include
multi-node checksumming verification tests.

IV. CONCLUSION

This paper introduced a fast and scalable data copy tool
known as FCP. Different from several past efforts of building
parallelism on top of existing tools such as rsync, FCP is
based on the principle of work-stealing pattern for parallel
workload distribution and balancing. It takes advantage of
ubiquitous MPI in clustered computing environments to go
beyond single node limitation for scalability. FCP offers a
multitude of features such as on-the- fly checksumming,
checkpoint and restart that makes it a viable and attractive
option for large scale data movement.

Based on the experimental results, FCP outperforms com-
monly used data copy tools, such as cp, rsync, and DCP,
in all data sets used except the mixed small files scenario.
Through detailed testing, we have verified that FCP is able

0

500

1000

1500

2000

2500

3000

3500

4000

1000x100MB 1x100GB 1x1TB Mixed	  Small	  
Files

Ti
m
e	  
(s
)

Data	  Set

Runtime	  with	  Checksumming	  Enabled

Baseline

Uncorrupted

Corrupted

Figure 10. Average transfer time with checksumming feature enabled

0

100

200

300

400

500

600

700

800

900

1000

1000x100MB 1x100GB 1x1TB Mixed	  Small	  
Files

Ra
te
	  (M

B/
s)

Data	  Set

Transfer	  Rate	  with	  Checksumming	  Enabled

Baseline

Uncorrupted

Corrupted

Figure 11. Average transfer rate with checksumming feature enabled

to complete transfers obtaining good performance, while
preserving the stripe count in Lustre file systems. The results
obtained here can serve as guidance for FCP users to allow
them to choose the best parameters for their transfers on
Lustre file systems.

ACKNOWLEDGMENT

The authors would like to thank Suzanne Parete-Koon,
Jason Hill and Matt Belhorn for their contributions to the
design of the FCP test plan, and its execution. This research
used resources of the Oak Ridge Leadership Computing
Facility, which is a DOE Office of Science User Facility
supported under Contract DE-AC05-00OR22725.

REFERENCES

[1] K. Matney, S. Canon, and S. Oral, “A first look at scalable
I/O in linux commands,” in Proceedings of the 9th LCI In-



ternational Conference on High-Performance Clustered Com-
puting, 2008.

[2] P. Z. Kolano and R. Ciotti, “High performance multi-node file
copies and checksums for clustered file systems,” in LISA,
2010.

[3] P. Z. Kolano, “Transparent optimization of parallel file system
i/o via standard system tool enhancement,” in Parallel and
Distributed Processing Symposium Workshops & PhD Forum
(IPDPSW), 2013 IEEE 27th International. IEEE, 2013, pp.
1963–1970.

[4] E. Ong, E. Lusk, and W. Gropp, “Scalable unix commands
for parallel processors: A high-performance implementation,”
in Recent Advances in Parallel Virtual Machine and Message
Passing Interface. Springer, 2001, pp. 410–418.

[5] G. K. D. Matney Sr and G. Shipman, “Parallelism in system
tools,” in Proceedings of the Cray User Goup conference
(CUG 2011), 2011.

[6] G. Enterprises, “Hpss tar man page.”

[7] M. Stearman, “Sequoia data migration experiences,” in Lustre
User Group (LUG) 2013, 2013.

[8] A. Loftus, “Parallel synchronization of multi-pebibyte file
systems,” in Proceedings of the 2nd International Workshop
on the Lustre Ecosystem: Enhancing Lustre Support for
Diverse Workloads, 2016.

[9] R. Wagner, “Lustre data mover: Because file systems are
rooted trees and rsync must die,” in Lustre User Group (LUG)
2016, 2016.

[10] J. LaFon, S. Misra, and J. Bringhurst, “On distributed file tree
walk of parallel file systems,” in International Conference
on High Performance Computing, Networking, Storage and
Analysis (SC), Nov 2012, pp. 1–11.

[11] File utilities for distributed systems. [Online]. Available:
http://fileutils.io/

[12] F. Wang. (2016) Fcp: A fast and scalable data copy tool.
[Online]. Available: https://rawgit.com/olcf/pcircle/master/
man/fcp.8.html

[13] M. McCool, A. D. Robison, and J. Reinders, Structured
Parallel Programming: Patterns for Efficient Computation.
Morgan Kaufmann, 2013.

[14] W. Fokkink, Distributed Algorithms: An Intuitive Approach.
MIT Press, 2013.

[15] F. Wang. (2016) A parallel file system profiler. [Online].
Available: https://rawgit.com/olcf/pcircle/master/man/fprof.8.
html


