
ORNL is managed by UT-Battelle 
for the US Department of Energy

FCP: A Fast and 
Scalable Data Copy 
Tool for High 
Performance Parallel 
File Systems

Feiyi Wang (Ph.D.)

Veronica Vergara Larrea

Dustin Leverman

Sarp Oral



2

The Challenge

• Conceptually simple, everyone knows.
• Balance usability, scalability, and performance

– Workload parallelization
– Asynchronous Progress Report
– Chunking
– Checksumming
– Checkpoint & Restart
– Out of Core 



3

What Tools Do We Have?

• cp
• bbcp
• grid-ftp
• dcp
• customized rsync (manual or automatic, with GNU parallel

utility)



4

Large Scale Profiling
Small file count (<512KiB)

 89.97 %
Large file size (>256MiB) %

 91.19 %

0

10

20

30

40

4.
00

_K
iB

8.
00

_K
iB

16
.0

0_
Ki

B
32

.0
0_

Ki
B

64
.0

0_
Ki

B
12

8.
00

_K
iB

25
6.

00
_K

iB
51

2.
00

_K
iB

1.
00

_M
iB

2.
00

_M
iB

4.
00

_M
iB

16
.0

0_
M

iB
32

.0
0_

M
iB

64
.0

0_
M

iB
12

8.
00

_M
iB

25
6.

00
_M

iB
51

2.
00

_M
iB

1.
00

_G
iB

4.
00

_G
iB

64
.0

0_
Gi

B
12

8.
00

_G
iB

25
6.

00
_G

iB
51

2.
00

_G
iB

1.
00

_T
iB

4.
00

_T
iB

4.
00

Pl
us

_T
iB

Buckets

Pe
rc

en
t o

f (
Fi

le
 C

ou
nt

, F
ile

 S
ize

)

~ 750 million files
~ 88 million directories
~ 3.4 million files in single directory (max)
~ tens of thousands of files in TB range , 32 TB (max)



5

Workload Parallelization: Master Slave

Slave 1 Slave 2 Slave 3 Slave N

Master

/path/to/traversal/root

query
response

Problem: (1) centralized (2) unbalanced



6

Workload Parallelization: Work Stealing
Usability Perspective

Pattern: Work Stealing

Key Ideas
Each worker maintains it own work queue
After local work queue is processed, it picks a random worker, and
asks for more work items.

Key attributes
Initial load placement doesn’t matter, self-correction.
Slow worker(s) doesn’t matter, self-pacing.

Question: Without a master process, how do we know when to
terminate?

Feiyi Wang (NCCS/ORNL) HPC-Storage March, 2015 33 / 38

Usability Perspective

Pattern: Work Stealing

Key Ideas
Each worker maintains it own work queue
After local work queue is processed, it picks a random worker, and
asks for more work items.

Key attributes
Initial load placement doesn’t matter, self-correction.
Slow worker(s) doesn’t matter, self-pacing.

Question: Without a master process, how do we know when to
terminate?

Feiyi Wang (NCCS/ORNL) HPC-Storage March, 2015 33 / 38

Question: Without a master process, how do we know when to terminate?



7

Distributed Termination Detection

Edsger W. Dijkstra: Derivation of a termination detection algorithm 
for distributed computations. June 10, 1983

Usability Perspective

Distributed Termination Detection
Edsger W. Dijkstra: Derivation of a termination detection algorithm for distributed
computations. June 10, 1983.

1 The system in consideration is composed of N machines, n0, n1, . . . , nN�1, logically
ordered and arranged as a ring. Each machine can be either white or black. All
machines are initially colored as white.

2 A token is passed around the ring. machine n’s next stop is n + 1. A token can be
either white or black. Initially, machine n0 is white and has the white token.

3 A machine only forwards the token when it is passive (no work)
4 Any time a machine sends work to a machine with lower rank, it colors itself as black.
5 Both initially at n0, or upon receiving a token:

1 if a machine is white, it sends the token unchanged.
2 if a machine is black, it makes the token black, makes itself white, and forward

the token.

Termination condition: white n0 receives a white token.

Feiyi Wang (NCCS/ORNL) HPC-Storage March, 2015 34 / 38

Usability Perspective

Distributed Termination Detection
Edsger W. Dijkstra: Derivation of a termination detection algorithm for distributed
computations. June 10, 1983.

1 The system in consideration is composed of N machines, n0, n1, . . . , nN�1, logically
ordered and arranged as a ring. Each machine can be either white or black. All
machines are initially colored as white.

2 A token is passed around the ring. machine n’s next stop is n + 1. A token can be
either white or black. Initially, machine n0 is white and has the white token.

3 A machine only forwards the token when it is passive (no work)
4 Any time a machine sends work to a machine with lower rank, it colors itself as black.
5 Both initially at n0, or upon receiving a token:

1 if a machine is white, it sends the token unchanged.
2 if a machine is black, it makes the token black, makes itself white, and forward

the token.

Termination condition: white n0 receives a white token.

Feiyi Wang (NCCS/ORNL) HPC-Storage March, 2015 34 / 38



8

Understanding the Algorithm
Usability Perspective

Understanding the Algorithm

Stable state is reached when all machines are passive.
Edge case: a system is composed of one machine: it will send a white token to itself, thus
it meets the termination condition, also it reaches the stable state.
Even a machine becomes passive at time t and forward the token, it can become active
again upon receiving works from others.
When a black token returns to machine n0 or a white token returns to a black machine n0,
a termination conition can not be met. The token forwarding continues.

P0

P1

P3

P4

P2

Initial State

P0

P1

P3

P4

Send work to j < i
turn black

P2

work

P0

P1

P3

P4

Color token black 
if itself is black

P2

P0

P1

P3

P4

P2 forwards the token,
color itself white

P2

Feiyi Wang (NCCS/ORNL) HPC-Storage March, 2015 35 / 38

P0

P1

P3

P4

P2

Initial State

P0

P1

P3

P4

Send work to j < i
turn black

P2

work

P0

P1

P3

P4

Color token black 
if itself is black

P2

P0

P1

P3

P4

P2 forwards the token,
color itself white

P2



9

Workflow and Division of Labor: A Compromise

A

B FDC E

Local Work Queue

B1 B2 B3 B4 B5 C D1 D2 D3

Parallel Walk Copy B1

Parallel Walk

B1 B2 B3 B4 B5

Chunking

D4

We have a problem of intermixing all three: parallel walk, chunk, and copy



10

Async Progress Report

Users want to know the progress, in particular 
when doing a large data transfer.

Yet, this can be difficult in a fully distributed setup environment 

Usability Perspective

Tree Walk and Progress Report

User wants to know the progress, in particular when doing a large data
transfer that could take more than a few hours. For example, during
Spider 1 to Spider 2 transition.

Yet, this can be difficult in a fully distributed task setup environment.

Solution
reduce() callback

Hierarchical
Async

0

1 2 3

4 5 6 7 8 9

reduce 
request

reduce 
request

reduce 
response

Feiyi Wang (NCCS/ORNL) HPC-Storage March, 2015 37 / 38

0

1 2 3

4 5 6 7 8 9

reduce 
request

reduce 
request

reduce 
response



11

Adaptive Chunking

file 1

file 2

file N

chunk 1 chunk 2

Large chunks – you may miss the opportunity for parallelization
Small chunks – you may have too much overhead



12

Parallel Checksumming

Directory Files

block 1

block 2

block 3

block N

Blocks & Checksums

chksum 1

chksum 2

chksum 3

chksum N

Final 
chksum 

(1) Post copy verification
(2) On-the-fly dataset signature
(3) Post copy dataset signature
(4) Compare two datasets



13

Parallel Checksumming: Scaling

319.05

160.52

86.95
65.72 63.23

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

8m8p 8m16p 8m32p 8m64p 8m128p

Ti
m

e 
(m

in
ut

es
)

Running Scales: 8 hosts, 8 processes to 128 processes

23.17 TiB Dataset (Processing Time)



14

Parallel Checksumming: Scaling

1.24

2.46

4.55

6.02 6.25

0

1

2

3

4

5

6

7

8m8p 8m16p 8m32p 8m64p 8m128p

Ra
te

 (G
iB

/s
)

Running Scales: 8 hosts, 8 processes to 128 processes

23.17 TiB Dataset (Processing Rate) 



15

Checkpoint and Restart

• For serial application, resume would have been trivial.
• For FCP, it is conceptually simple:

– Write checkpoint file periodically
– Read it back and resume the work

• Devil is in the details:
– Fail when doing parallel walk
– Fail before first checkpoint
– Fail during the writing of the checkpoint
– Fail when workload (stealing) message is in flight
– Should each rank have its own checkpoint?
– What if next time users launch differently (e.g. # of mpi)?
– After restart, what bookkeeping needed to show correct progress?



16

Extreme Scalability: Out-Of-Core
Each Metadata object = 112 bytes (File system)
Each Chunk object = 64 bytes (Work queue)

500 million objects = 56 GB

Local work queue

expand

Head
Tail

Optimization: queue file objects at the front
directory object at the back for extreme
unbalanced directories

We also considered:

K-V store
Database
Distributed task queue or cache



17

Evaluation: Small Files

• Real application dataset
• 100,000 small as in less than 

4k files, default striping

0

500

1000

1500

2000

1 node 2 nodes 4 nodes 8 nodes

Ti
m

e 
(s

ec
on

ds
)

Scaling for Small Files



18

Evaluation: Large Files

0

500

1000

1500

2000

1 node 2 nodes 4 nodes 8 nodes

Ti
m

e 
(S

)
Scaling of Large File

• 1TB file
• 32 stripes, np=8
• Stripe matters



19

Conclusions

• We presented a parallel data copy tool, under the umbrella 
of a suite of tools developed at OLCF.

• It is built on the core assumptions and principles of:
– Ubiquitous MPI in cluster environment
– Work-stealing pattern
– Distributed termination for scalability and self-stabilization

• It has shown promising results at our production site:
– Large scale profiling
– Large scale parallel checksumming
– Large scale file transfer

• Source availability:
– http://www.github.com/olcf/pcircle


