
ORNL is managed by UT-Battelle 
for the US Department of Energy

FCP: A Fast and 
Scalable Data Copy 
Tool for High 
Performance Parallel 
File Systems

Feiyi Wang (Ph.D.)

Veronica Vergara Larrea

Dustin Leverman

Sarp Oral



2

The Challenge

• Conceptually simple, everyone knows.
• Balance usability, scalability, and performance

– Workload parallelization
– Asynchronous Progress Report
– Chunking
– Checksumming
– Checkpoint & Restart
– Out of Core 
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What Tools Do We Have?

• cp
• bbcp
• grid-ftp
• dcp
• customized rsync (manual or automatic, with GNU parallel

utility)
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Large Scale Profiling
Small file count (<512KiB)

 89.97 %
Large file size (>256MiB) %

 91.19 %
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~ 750 million files
~ 88 million directories
~ 3.4 million files in single directory (max)
~ tens of thousands of files in TB range , 32 TB (max)
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Workload Parallelization: Master Slave

Slave 1 Slave 2 Slave 3 Slave N

Master

/path/to/traversal/root

query
response

Problem: (1) centralized (2) unbalanced
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Workload Parallelization: Work Stealing
Usability Perspective

Pattern: Work Stealing

Key Ideas
Each worker maintains it own work queue
After local work queue is processed, it picks a random worker, and
asks for more work items.

Key attributes
Initial load placement doesn’t matter, self-correction.
Slow worker(s) doesn’t matter, self-pacing.

Question: Without a master process, how do we know when to
terminate?
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Question: Without a master process, how do we know when to terminate?
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Distributed Termination Detection

Edsger W. Dijkstra: Derivation of a termination detection algorithm 
for distributed computations. June 10, 1983

Usability Perspective

Distributed Termination Detection
Edsger W. Dijkstra: Derivation of a termination detection algorithm for distributed
computations. June 10, 1983.

1 The system in consideration is composed of N machines, n0, n1, . . . , nN�1, logically
ordered and arranged as a ring. Each machine can be either white or black. All
machines are initially colored as white.

2 A token is passed around the ring. machine n’s next stop is n + 1. A token can be
either white or black. Initially, machine n0 is white and has the white token.

3 A machine only forwards the token when it is passive (no work)
4 Any time a machine sends work to a machine with lower rank, it colors itself as black.
5 Both initially at n0, or upon receiving a token:

1 if a machine is white, it sends the token unchanged.
2 if a machine is black, it makes the token black, makes itself white, and forward

the token.

Termination condition: white n0 receives a white token.
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Understanding the Algorithm
Usability Perspective

Understanding the Algorithm

Stable state is reached when all machines are passive.
Edge case: a system is composed of one machine: it will send a white token to itself, thus
it meets the termination condition, also it reaches the stable state.
Even a machine becomes passive at time t and forward the token, it can become active
again upon receiving works from others.
When a black token returns to machine n0 or a white token returns to a black machine n0,
a termination conition can not be met. The token forwarding continues.
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Workflow and Division of Labor: A Compromise

A

B FDC E

Local Work Queue

B1 B2 B3 B4 B5 C D1 D2 D3

Parallel Walk Copy B1

Parallel Walk

B1 B2 B3 B4 B5

Chunking

D4

We have a problem of intermixing all three: parallel walk, chunk, and copy
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Async Progress Report

Users want to know the progress, in particular 
when doing a large data transfer.

Yet, this can be difficult in a fully distributed setup environment 

Usability Perspective

Tree Walk and Progress Report

User wants to know the progress, in particular when doing a large data
transfer that could take more than a few hours. For example, during
Spider 1 to Spider 2 transition.

Yet, this can be difficult in a fully distributed task setup environment.

Solution
reduce() callback

Hierarchical
Async
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Adaptive Chunking

file 1

file 2

file N

chunk 1 chunk 2

Large chunks – you may miss the opportunity for parallelization
Small chunks – you may have too much overhead
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Parallel Checksumming

Directory Files

block 1

block 2

block 3

block N

Blocks & Checksums

chksum 1

chksum 2

chksum 3

chksum N

Final 
chksum 

(1) Post copy verification
(2) On-the-fly dataset signature
(3) Post copy dataset signature
(4) Compare two datasets
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Parallel Checksumming: Scaling
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Parallel Checksumming: Scaling
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Checkpoint and Restart

• For serial application, resume would have been trivial.
• For FCP, it is conceptually simple:

– Write checkpoint file periodically
– Read it back and resume the work

• Devil is in the details:
– Fail when doing parallel walk
– Fail before first checkpoint
– Fail during the writing of the checkpoint
– Fail when workload (stealing) message is in flight
– Should each rank have its own checkpoint?
– What if next time users launch differently (e.g. # of mpi)?
– After restart, what bookkeeping needed to show correct progress?
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Extreme Scalability: Out-Of-Core
Each Metadata object = 112 bytes (File system)
Each Chunk object = 64 bytes (Work queue)

500 million objects = 56 GB

Local work queue

expand

Head
Tail

Optimization: queue file objects at the front
directory object at the back for extreme
unbalanced directories

We also considered:

K-V store
Database
Distributed task queue or cache



17

Evaluation: Small Files

• Real application dataset
• 100,000 small as in less than 

4k files, default striping
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Evaluation: Large Files
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• 1TB file
• 32 stripes, np=8
• Stripe matters
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Conclusions

• We presented a parallel data copy tool, under the umbrella 
of a suite of tools developed at OLCF.

• It is built on the core assumptions and principles of:
– Ubiquitous MPI in cluster environment
– Work-stealing pattern
– Distributed termination for scalability and self-stabilization

• It has shown promising results at our production site:
– Large scale profiling
– Large scale parallel checksumming
– Large scale file transfer

• Source availability:
– http://www.github.com/olcf/pcircle


