
Making Scientific Software Installation Reproducible
On Cray Systems Using EasyBuild

Petar Forai
Research Institute of
Molecular Pathology

Dr Bohrgasse 7
A-1030 Vienna, Austria

petar.forai@imp.ac.at

Kenneth Hoste
Ghent University

Krijgslaan 281, S9
B-9000 Ghent, Belgium

kenneth.hoste@ugent.be

Guilherme Peretti-Pezzi
Swiss National

Supercomputing Centre
Via Trevano, 131

6900 Lugano, Switzerland
peretti@cscs.ch

Brett Bode
National Center for

Supercomputing Applications
University of Illinois
1205 W. Clark St.
Urbana, IL 61801

brett@illinois.edu

ABSTRACT
Cray provides a tuned and supported OS and programming
environment (PE), including compilers and libraries inte-
grated with the modules system. While the Cray PE is
updated frequently, tools and libraries not in it quickly be-
come outdated. In addition, the amount of tools, libraries
and scientific applications that HPC user support teams are
expected to provide support for is increasing significantly.
The uniformity of the software environment across Cray sites
makes it an attractive target for to share this ubiquitous
burden, and to collaborate on a common solution.

EasyBuild is an open-source, community-driven framework
to automatically and reproducibly install (scientific) soft-
ware on HPC systems. This paper presents how EasyBuild
has been integrated with the Cray PE, in order to leverage
the provided optimized components and support an easy
way to deploy tools, libraries and scientific applications on
Cray systems.

We will discuss the changes that needed to be made to Easy-
Build to achieve this, and outline the use case of providing
the Python distribution and accompanying Python packages
on top of the Cray PE, to obtain a fully featured ‘batter-
ies included’ optimized Python installation that integrates
with the Cray-provided software stack. In addition, we will
outline how EasyBuild was deployed at the Swiss National
Supercomputing Centre CSCS and how it is leveraged to
obtain a consistent software stack and installation workflow
across multiple Cray (XC, CS-Storm) and non-Cray HPC
systems.

1. INTRODUCTION
The job of High-Performance Computing (HPC) support
teams is to enable the productive and efficient use of HPC
resources. This ranges from helping out users by resolving
issues like login problems or unexpected software crashes,
providing detailed answers to both simple and deeply tech-
nical questions, installing requested software libraries, tools
and applications, to providing services such as performance
analysis and optimization of scientific software being devel-
oped.

One particularly time-consuming task for HPC support teams
is installing (scientific) software. Due to the advanced na-
ture of supercomputers (i.e., multiple multi-core processors,
high performance network interconnect, need for most re-
cent compilers and libraries, etc.), compiling software from
source on the actual operating system and for the system
architecture that it is going to be used on is typically highly
preferred, if not required, as opposed to using readily avail-
able binary packages that were built in a generic way.

Support teams at HPC sites worldwide typically invest large
amounts of time and manpower tackling this tedious and
time consuming task of installing the (scientific) software
tools, libraries, and applications that researchers are re-
questing, while trying to maintain a coherent software stack.

EasyBuild is a recent software build and installation frame-
work that intends to relieve HPC support teams from the
ubiquitous burden of installing scientific software on HPC
systems. It supports fully automating the (often complex)
installation procedure of scientific software, and includes fea-
tures specifically targeted towards HPC systems while pro-
viding a flexible yet powerful interface. As such, it has
quickly grown to become a platform for collaboration be-
tween HPC sites worldwide. We discuss EasyBuild in more
detail in Section 2.

The time-consuming problem of getting scientific software
installed also presents itself on Cray systems, despite the
extensive programming environment that Cray usually pro-
vides. Both HPC support teams and end users of Cray
systems struggle on a daily basis with getting the required
tools and applications up and running (let alone doing so

in a somewhat optimal way). While a policy for providing
software installations in a consistent way to end users is a
common goal, the reality more often than not is that short-
cuts are being taken to speed up the process, resulting in a
software stack that is organised in a suboptimal (and some-
times outright confusing) manner, with little consistency in
the software stacks provided on different systems beyond
what is provided by Cray. Hence, it is clear that EasyBuild
could also be useful on Cray systems.

Originally, the main target of EasyBuild was the standard
GNU/Linux 64-bit x86 system architecture that is common-
place on today’s HPC systems. On these systems there typ-
ically is an abundant lack of a decent (recent) basic software
stack, i.e., compilers and libraries for MPI, linear algebra,
etc., to build scientific applications on top of. EasyBuild was
designed to deal with this, by supporting the installation
of compilers and accompanying libraries, and through the
toolchain mechanism it employs (see Section 2.2.4). As such,
it was not well suited to Cray systems, where a well equipped
programming environment is provided that is highly recom-
mended to be used.

In this paper, we present the changes that had to made to
EasyBuild to provide stable integration with the available
programming environment on Cray systems (see Section 3).
In addition, we outline the use case of installing Python and
several common Python libraries using EasyBuild on Cray
systems (Section 4), and discuss how EasyBuild deployed
at the Swiss National Supercomputing Centre CSCS (Sec-
tion 5).

2. EASYBUILD
EasyBuild [17–19] is a tool for building and installing scien-
tific software on HPC systems, implemented in Python. It
was originally created by the HPC support team at Ghent
University (Belgium) in 2009, and was publicly released in
2012 under an open-source software license (GPLv2). Soon
after, it was adopted by various HPC sites and an active
community formed around it. Today, it is used by institu-
tions worldwide that provide HPC services to the scientific
research community (see Section 2.4).

2.1 Goals
The main goal of EasyBuild is to fully automate the task
of building and installing (scientific) software on HPC sys-
tems, including taking care of the required dependencies and
generating environment module files that match the instal-
lations. It aims to be an expert system with which all as-
pects of software installation procedures can be performed
autonomously, adhering to the provided specifications.

In addition, EasyBuild serves as a platform for collaboration
where different HPC support teams, who likely apply differ-
ent site policies concerning scientific software installations,
can efficiently work together to implement best practices and
benefit from each others expertise.

It aims to support achieving reproducibility in science, by
enabling to easilyreproduce software installations that were
performed previously. It allows sharing of installation recipes
in order to enable others to perform particular software in-
stallations. Several features are available in EasyBuild to
facilitate that; see also Section 2.3.5.

EasyBuild intends to be flexible where needed so that HPC
support teams can implement their own site policies, ranging
from straightforward aspects like the installation prefix for
software and module files, to the module naming scheme

and the particular compiler and libraries being employed;
see also Section 2.3.6.

2.2 Terminology
Before going into more detail, we introduce some terminol-
ogy specific to EasyBuild that will be used throughout this
paper.

2.2.1 EasyBuild framework
The EasyBuild framework is the core of the tool that pro-
vides the functionality that is commonly needed for building
and installing scientific software on HPC systems. It consists
of a collection of Python modules that implement:

• the eb command line interface

• an abstract software installation procedure, split up
into different steps including configuring, building, test-
ing, installing, etc. (see Section 2.3.1)

• functions to perform common tasks like downloading
and unpacking source tarballs, applying patch files, au-
tonomously running (interactive) shell commands and
capturing output & exit codes, generating module files,
etc.

• an interface to interact with the modules tool, to check
which modules are available, to load modules, etc.

• a mechanism to define the environment in which the
installation will be performed, based on the compiler,
libraries and dependencies being used (see also Sec-
tion 2.2.4)

2.2.2 Easyblocks
The implementation of a particular software installation pro-
cedure is done in an easyblock, a Python module that defines,
extends and/or replaces one or more of the steps of the ab-
stract procedure defined by the EasyBuild framework. Easy-
blocks leverage the supporting functionality provided by the
EasyBuild framework, and can be viewed as ‘plugins’.

A distinction is made between software-specific and generic
easyblocks. Software-specific easyblocks implement a proce-
dure that is entirely custom to one particular software pack-
age (e.g., OpenFOAM), while generic easyblocks implement
a procedure using standard tools (e.g., CMake, make).

Each easyblock must define the configuration, build and in-
stall steps in one way or another; the EasyBuild framework
leaves these steps purposely unimplemented since their im-
plementation heavily depends on the tools being used in the
installation procedure. Since easyblocks are implemented in
an object-oriented scheme, the step methods implemented
by a particular easyblock can be reused in others through
inheritance, enabling code reuse across easyblocks.

For each software package being installed, the EasyBuild
framework will determine which easyblock should be used,
based on the value of the easyblock parameter, or the name
of the software package if no easyblock is specified.

2.2.3 Easyconfig files
Easyconfig files contain sets of key-value definitions for the
parameters that are supported by the EasyBuild framework,
which are also referred to as easyconfig parameters.

They specify what software package and version should be
installed, which compiler toolchain should be used to per-
form the installation (see also Section 2.2.4), and which spe-
cific versions of the required dependencies should be made
available. In addition, they provide some basic metadata
(short description, project homepage, . . .), allow to specify
custom settings for the build, and so on.

An example of an easyconfig file is shown in Listing 3.

2.2.4 Toolchains
A compiler toolchain, or simply toolchain for short, is a set of
compilers (typically for C, C++, & Fortran) typically com-
bined with special-purpose libraries to support specific func-
tionality, for example an MPI library for distributed com-
puting, and libraries that provide heavily tuned routines for
commonly used mathematical operations (e.g., BLAS, LA-
PACK, FFT).

For each software package being installed with EasyBuild,
a particular toolchain is being used. The EasyBuild frame-
work prepares the build environment for the different toolchain
components, by loading their respective modules and defin-
ing environment variables to specify compiler commands
(e.g., via $CC), compiler and linker options (e.g., via $CFLAGS
and $LDFLAGS), etc. Easyblocks can query which toolchain
components are being used and steer the installation proce-
dure to be performed accordingly.

2.3 Features
We briefly present the main features of EasyBuild below;
for a more detailed overview we refer to [17–19] and the
EasyBuild documentation [2].

2.3.1 Step-wise installation procedure
Each installation is performed in several steps that are de-
fined in the EasyBuild framework, see Figure 1. The whole
chain of steps is executed for each of the provided easyconfig
files and, if necessary and desired, also for each of the miss-
ing dependencies (see Section 2.3.3). If a problem occurs
during one of the steps, the remaining steps are cancelled.

After parsing the easyconfig file, the build directory is cre-
ated by obtaining and unpacking the source files, and ap-
plying specified patch files (if any). Next, the build envi-
ronment is set up based on the toolchain and dependen-
cies being used. Subsequently, the common configure-build-
install cycle is performed; if a test mechanism to verify the
build is supported (e.g., make check) it is run before the
‘install’ step. For software packages that support the notion
of ‘extensions’, e.g., Python (packages), Perl (modules), R
(libraries), etc., the listed extensions are also installed. The
‘sanity check’ step performs a couple of small checks to ver-
ify the installation, i.e., checking whether prescribed files
and directories are present, and whether simple check com-
mands (e.g., importing a Python package) can be executed
successfully. If the sanity check passes, the build directory
is cleaned up and an environment module file that matches
the installation is generated. Finally, a couple of final (op-
tional) steps are performed: changing of permissions (e.g.,
to protect the installation for a particular group of users, or
the make it read-only), creating a package (e.g., an RPM)
for the installed software, and running test cases (if any are
specified) just like a user would.

Important to note is that each installation is done in a sepa-
rate installation prefix, enabling multiple versions and builds
of the same software package to be installed side-by-side.

2.3.2 Generating module files
For each successful software installation the EasyBuild frame-
work generates a corresponding module file, which specifies
the changes to the environment that are required to use the
software. In addition to being the canonical way of giving
users access to the installed software, these modules are also
employed by EasyBuild itself to resolve dependencies (see
Section 2.3.3).

The generated module file specifies updates to environment
variables like $PATH, $LD_LIBRARY_PATH, etc. to make bina-
ries and libraries available. The EasyBuild framework does
this automatically by checking for standard sub-directories
like bin, lib, etc. Additional non-standard paths to be con-
sidered can be specified in easyblocks or easyconfig files.
Likewise, additional environment variables that should be
manipulated by the generated module file can be specified.

The module naming scheme to be used can be implemented
in a simple Python module that prescribes how a module
name should be constructed based on a set of easyconfig pa-
rameters. A couple of common module naming schemes are
provided out-of-the-box, including the one used by default
(<name>/<version>-<toolchain>-<versionsuffix>).

2.3.3 Dependency resolution
The dependency resolution mechanism that is part of the
EasyBuild framework makes it trivial to install a software
application and all requires dependencies (including com-
piler toolchain) with a single command.

For each dependency, EasyBuild will check whether a corre-
sponding module file is available to resolve that dependency.
If not, and the ‘robot’ mode is enabled, it will search for a
matching easyconfig file for each missing dependency, in a
set of locations that can be controlled by the user. The easy-
config files for the missing dependencies are then processed
in the order prescribed by the directed graph that was con-
structed based on the dependency specifications, to perform
the required installations.

2.3.4 Logging
EasyBuild keeps a thorough log of how an installation was
performed. This can be used in case of problems during the
installation to debug the problem at hand, or to re-evaluate
a successful installation procedure later, for example when
problems emerged with the installed software. During the
installation, the log file is kept in a temporary location that
is clearly mentioned in the output of the ‘eb’ command.
After a successfull installation, the log file is copied to a
sub-directory of the installation directory.

EasyBuild log files are well structured: each log message
starts with a specific prefix tag (to distinguish it from out-
put of shell commands being executed), and includes a time
stamp and the location in the code where the log mes-
sage was sent from. Additional useful information is pro-
vided in particular cases, like the location where shell com-
mands were run, environment variables that were defined,
exit codes of shell commands, etc.

2.3.5 Reproducibility
One of the design goals of EasyBuild is to allow for easily re-
producing an installation that was performed earlier, a base
requirement for reproducible science. Although there are
potential external influences that EasyBuild does not con-
trol (yet), all major aspects of the installation procedure are
strictly defined somewhere. Global settings like the prefix

IV: unpack sources

V: apply patches

VI: prepare

VII: configure

VIII: build

IX: test

X: install

XI: extensions

XII: sanity check

XIII: cleanup

XIV: env. module

III: check readiness XV: permissions

II: fetch sources XVI: packaging

I: parse easyconfig XVII: test cases

Figure 1: Step-wise installation procedure performed by EasyBuild.

path for software installations are specified in the EasyBuild
configuration, while aspects specific to the particular soft-
ware being installed and its installation procedure are en-
coded in the easyblock and easyconfig file. The easyconfig
file may in addition also define parameters that are specific
to the particular software version or toolchain being used.

With this approach it becomes very easy to reproduce a par-
ticular installation, since it basically comes down to using
the same easyconfig file as was used before. For this rea-
son, the easyconfig file is copied to the installation directory
for each successful installation. In addition, it implies that
sharing easyconfig files and updates to easyblocks is typi-
cally sufficient to enable others to replicate an installation.
This has been a major factor influencing the growth of the
EasyBuild community (see also Section 2.4).

2.3.6 Flexibility
Another important design goal of EasyBuild is to provide
ample flexibility so HPC sites can implement their own site
policies. This is reflected in several ways: how EasyBuild
can be configured, by the dynamic nature of the EasyBuild
framework, and in the different features that provide control
over the installation procedures that will be performed.

First of all, EasyBuild can be configured in different ways:
via system-level and user-level configuration files, through
environment variables, and using the command line interface
(CLI). These different configuration levels precede one an-
other in an intuitive way, i.e., environment variables overrule
settings defined in configuration files, while settings speci-
fied using the CLI get preference over the value of the cor-
responding environment variables. This allows putting a
central EasyBuild configuration in place, without limiting
the ability to reconfigure EasyBuild easily on a per (shell)
session basis for testing or experimental purposes.

Next, the EasyBuild framework is very dynamic in the sense
that it can be easily extended or enhanced at runtime, by
providing additional or customized Python modules that can
overrule existing ones. Through this mechanism, specific
easyblocks, compiler toolchains, module naming schemes,
etc. can be dynamically included, which will be picked up as
needed by the EasyBuild framework, regardless of whether
they are part of the EasyBuild installation being used or not.

Finally, EasyBuild supports different ways to tweak its de-
fault behaviour. This ranges from providing a wealth of

configuration settings to control different aspects of the in-
stallation procedure, to being able to specify alternate paths
that should be considered (first) when searching for easycon-
fig files, to even redefining or altering particular functionality
of the EasyBuild framework using custom implementations;
for example, the module naming scheme being used.

2.3.7 Transparency
A common concern is that EasyBuild may be too much of
a ‘black box’. To address this, the EasyBuild framework
provides a number of features to improve transparency. In
particular, it supports the notion of performing a ‘dry run’
installation, i.e., reflecting what EasyBuild would do given a
current configuration and (set of) provided easyconfig file(s).

The dependency resolution mechanism can be queried to get
an overview of the full dependency graph, to see where the
various dependencies come into play and for which of them
matching module files are already available. Additionally,
the installation procedure that would be performed by Easy-
Build for a given easyconfig file can be consulted in detail,
in a matter of seconds. Not only does this provide a way
to gain confidence in EasyBuild itself and in the employed
workflow using the tool, it is also useful when developing,
debugging and evaluating easyblocks and easyconfig files.

2.4 EasyBuild Community
One other, non-technical, feature of EasyBuild is its active
and quickly growing community. Shortly after the first pub-
lic release in 2012, EasyBuild was picked up by HPC user
support teams desperately looking for a better way to deal
with their daily struggles of getting scientific software in-
stalled.

Today, EasyBuild is used by HPC sites around the world,
ranging from small sites all across Europe, large European
sites like Jülich Supercomputing Centre (Germany) and the
Swiss National Supercomputing Centre (CSCS, see also Sec-
tion 5), several institutions outside of Europe including Stan-
ford University (US), Ottawa Hospital Research Institute
(OHRI, Canada), New Zealand eScience Infrastructure (NeSI),
etc., to even large commercial companies like Bayer (Ger-
many).

Not only is the EasyBuild userbase already substantial and
ever expanding, a lot of the HPC sites using it are also active
in the community by participating in discussions, attending
meetings, etc., and are actively contributing back in various

0"

20"

40"

60"

80"

100"

120"

140"

160"

180"

Feb+12" Aug+12" Mar+13" Oct+13" Apr+14" Nov+14" May+15" Dec+15"

#"
su
bs
cr
ib
er
s"

Figure 2: Number of subscribers to the EasyBuild mail-
ing list, over time.

0"

10"

20"

30"

40"

50"

60"

70"

80"

90"

Feb/12" Aug/12" Mar/13" Oct/13" Apr/14" Nov/14" May/15" Dec/15"

#"
un

iq
ue

"c
on

tr
ib
ut
or
s"

framework" easyblocks" easyconfigs"

Figure 3: Number of (unique) contributors to the differ-
ent central EasyBuild repositories, over time.

ways, by reporting and fixing bugs, sending back enhance-
ments to easyblocks/easyconfigs and adding new ones, and
also sharing ideas for (and implementations of) additional
features in the EasyBuild framework.

Figures 2 and 3 give a quantified view of the growth of
the EasyBuild community, in terms of subscribers to the
EasyBuild mailing list and unique contributors to the cen-
tral EasyBuild repositories where resp. the framework, easy-
blocks and easyconfig files are being hosted.

2.4.1 Features for and by the community
The community-oriented aspect of EasyBuild is also reflected
in some of its features. As already discussed in Sections 2.1
and 2.3, various features were included to provide amply
control over EasyBuild’s behaviour and to support imple-
menting local site policies.

Additionally, there are also several features that were imple-
mented as a reaction to the many contributions being sent
back. In particular, there is a tight integration with the
GitHub platform where the EasyBuild code repositories are
hosted. Support is available to obtain easyconfig files from
GitHub pull requests, to send back test reports for those pull
requests, review pull requests, and even to create and update
pull requests straight from the ‘eb’ command line interface,
in an attempt to lower the bar to entry and streamline the
workflow for contributing back.

Many of the features in place today were also either imple-
mented by popular request from the community, or even by
members from the community themselves. This confirms
that EasyBuild has grown beyond a tool for the community,

into a tool by the community and truly serving as a platform
for collaboration.

3. EASYBUILD ON CRAY SYSTEMS
EasyBuild supports bringing up an entire software stack
from the ground up, including compilers and accompanying
libraries. However, this is not the approach recommended
by the system vendor on platforms where a well equipped
and optimized software stack of basic tools and libraries is
readily provided.

On Cray systems, the Cray Programming Environment (Cray
PE) provides a robust software environment that is tuned to
the underlying hardware, including different compiler suites,
the Cray MPT library, and various additional tools and li-
braries that were optimized by Cray.

In this section, we will discuss in detail what changes needed
to be made in EasyBuild to provide stable support for in-
stalling scientific software on top of the readily available soft-
ware stack provided on Cray systems.

3.1 Cray Programming Environment
Before going into detail, we outline the aspects of the Cray
Programming Environment (or Cray PE, for short), some-
times also referred to as Cray Application Developer’s En-
vironment (CADE), that are relevant to the subsequent dis-
cussion. For more details, we refer to the Cray documenta-
tion [20].

3.1.1 Modules interface
The Cray PE is implemented through the well-established
concept of environment module files [14,15,21,24]. Although
the logic encoded in these modules can be quite complex, end
users are not exposed to this thanks to the simple interface
provided by the module command. Except maybe through
the large number of modules that are loaded by default when
logging in to a Cray system; unlike other HPC systems,
having at least 20 modules loaded at any given time is very
common.

Even though the set of module files provided by the Cray
PE is well structured and reasonable in size, it can be daunt-
ing to navigate this environment, for a number of reasons.
First of all, the provided modules form a large combinato-
rial space since multiple versions are typically available for
most of them. Since different (sets of) modules also interact
with each other in complex ways, extensive manual load-
ing, unloading and swapping of these modules sometimes
leads to unexpected problems. Also, as the Cray PE release
gets updated as often as monthly, additional modules will
be added and older ones may be removed (depending on site
policies). Cray does a good job of providing a sane, coor-
dinated default set of modules, but users are on their own
piecing together the components for a non-default release,
and are expected to constantly re-evaluate which modules
they employ, as sites typically recommend recompiling soft-
ware after a new Cray PE release is rolled out.

In our experience, significant care must be taken when in-
teracting with these modules. We found out the hard way
that using module purge to start afresh does not work as
expected, in the sense that it is close to impossible to manu-
ally reconstruct a properly working environment afterwards.
Additionally, reloading modules that are already loaded may
have unexpected side effects, so this should be avoided at all
times.

3.1.2 The programming environment module PrgEnv
The most prominent set of modules that is provided, at least
for the sake of this discussion, are the PrgEnv modules.

For each of the compiler suites supported by Cray, a corre-
sponding PrgEnv module is available:

• PrgEnv-cray, for Cray Compiling Environment (CCE)

• PrgEnv-gnu, for GNU Compiler Collection (GCC)

• PrgEnv-intel, for Intel compiler suite

• PrgEnv-pgi, for PGI compiler suite

Each of these modules prepare the environment for using the
respective compiler suite, by configuring the generic Cray
compiler wrappers and loading additional modules that ei-
ther provide additional software components or further tweak
the environment as needed. For example, the craype mod-
ule that corresponds to that particular version of the PrgEnv
module gets loaded, which results in (re)defining a set of
$PE-prefixed environment variables that influence the se-
mantics of other modules being loaded afterwards.

Depending on the particular PrgEnv module being loaded,
a module for the corresponding compiler suite will also be
loaded. For example, loading PrgEnv-gnu will result in the
Cray-provided gcc module being loaded as well; likewise for
the other supported compiler suites. In addition, the cray-
libsci module will also be loaded, which provides optimized
numerical routines (BLAS, LAPACK, etc.), among others.
Note that this is fairly similar to the EasyBuild toolchain
mechanism explained in Section 2.2.4; however there are
some key differences, see Section 3.2.3.

It is important to note here that although multiple versions
of the different PrgEnv modules are available, the compiler
and cray-libsci modules they load are always loaded with-
out specifying a particular version, i.e., whichever version is
the default version for those modules (as indicated by the
site maintainers) will be loaded. As we will discuss in Sec-
tion 3.3.4, this raises concerns w.r.t. reproducibility, since
the default module versions tend to change over time as
Cray PE updates are being made available.

3.1.3 Additional tools and libraries
Next to the basic programming environment, additional mod-
ules are available for libraries and 3rd party software. A
prominent one is the cray-mpich module for the Cray MPT
library providing support for distributed computations. Other
examples include the fftw module that provides libraries
with optimized FFT routines, and the cray-hdf5 and cray-
netcdf modules providing tuned versions of the established
HDF5 and netCDF I/O libraries, respectively.

Not only do these modules make additional tools and li-
braries available, they also further configure the compiler
wrappers provided via the PrgEnv module by defining vari-
ous environment variables.

3.2 Integrating EasyBuild with the Cray PE
In order to integrate EasyBuild with the Cray PE, a number
of issues needed to be dealt with. We briefly outline them
in this section, before presenting how these were resolved in
Section 3.3.

3.2.1 Leveraging the Cray PE modules
The most significant required feature was to enable Easy-
Build to leverage the modules provided by the Cray PE.
As mentioned in Section 2.3.2, EasyBuild not only gener-
ates module files for the installations being performed, it
also heavily relies on those modules for resolving dependen-
cies and preparing the build environment. The EasyBuild
framework needed to be enhanced to allow for using the
so-called ‘external’ modules provided by the Cray PE, see
Section 3.3.1.

3.2.2 Better awareness of session environment
Some minor enhancements needed to be made to the mecha-
nism for generating module files and the way in which Easy-
Build interacts with the modules tool, in order to properly
deal with the sensitive nature of the Cray-provided modules
briefly discussed in Section 3.1.1.

This consists of taking into account already loaded mod-
ules and unloading/swapping conflicting modules if required,
eliminating the use of module purge, and preventing Cray
PE modules from being loaded again if they are already
loaded.

These issues are discussed in Sections 3.3.2 through 3.3.4.

3.2.3 Version pinning of toolchain components
Traditional toolchains employed by EasyBuild have explicit
versions specified for each of the toolchain components, ex-
actly like dependencies of software packages. This stands
in stark contrast with the closely related PrgEnv module
files provided by the Cray PE, where the version of mod-
ules corresponding to what would be toolchain components
(compiler, numerical libraries) are deliberately not specified
(see also Section 3.1.2).

To adhere to the EasyBuild goal of enabling reproducible
installations, this needed to be dealt with; this is covered in
Section 3.3.4.

3.3 Enhancements to EasyBuild
In this section, we present the changes that were made to
EasyBuild to deal with the concerns outlined in Section 3.2.

The development of these features started early 2015, lead-
ing to the experimental Cray support included in EasyBuild
version 2.1.0 (Apr’15). Although progress was rather slow
due to limited initial interest from Cray sites, the support
from the CSC team in Finland, the feedback and contribu-
tions by CSCS staff members, and the testing of EasyBuild
on Blue Waters at NCSA helped significantly in working to-
wards stable support for using EasyBuild on top of the Cray
PE.

The features discussed here are all part of the most recent
EasyBuild release to date, version 2.7.0 (Mar’16). All to-
gether about 500 extra lines of code (LoC) were required to
implemented these changes, on top of the existing codebase
of about 50, 000 LoC. Hence, in hindsight the required effort
in terms of implementation was very limited, illustrating the
maturity of the EasyBuild framework.

3.3.1 Support for external modules
As mentioned earlier, EasyBuild relies on the module files it
generated during subsequent installations, see Section 2.3.3.
When resolving dependencies, EasyBuild will check whether
the corresponding module files are already available, and

dependencies = [
('pandas', '0.17.1'),
('cray-hdf5/1.8.13', EXTERNAL_MODULE),

]

Listing 1: Example list of dependencies illustrating the use
of external modules.

load them before initiating the installation; if not, it will
search for easyconfig files that can be used to install the miss-
ing dependency. An important detail here is that the mod-
ules generated by EasyBuild contain information about the
installed software they correspond to, that may be used dur-
ing subsequent installations. In particular, the installation
prefix and software version are provided through EasyBuild-
specific environment variables, respectively named ‘$EBROOT*’
and ‘$EBVERSION*’.

In order to let EasyBuild leverage modules that were pro-
vided some other way, for example as part of the Cray PE,
the notion of ‘external modules’ was introduced. Basically,
this comes down to supporting that a dependency can be
specified using only a module name and a marker indicating
that it should be resolved directly via the specified mod-
ule, as opposed to a standard dependency specification that
includes the software name and software version, and op-
tionally an additional label (a.k.a. ‘version suffix’) and the
(sub)toolchain it should be installed with. Marking a de-
pendency as an external module instructs EasyBuild that
it should not attempt to search for an easyconfig file that
can be used to install that dependency; if a module with the
specified name is not available, it should simply report an
error stating that the dependency could not be resolved.

The example list of dependencies extracted from a (fictional)
easyconfig file shown in Listing 1 illustrates the difference be-
tween a standard dependency specification and one marked
to be resolved by an external module. While the depen-
dency on version 0.17.1 of the pandas Python package will
be resolved the standard way, i.e., by letting EasyBuild de-
termine the module name, checking whether the module is
available and falling back to searching for an easyconfig file if
needed, only the specified version of the cray-hdf5 module
will be considered to resolve the dependency on the HDF5
library.

Additionally, support was added to supply metadata for ex-
ternal modules, so that EasyBuild can be made aware of
what they provide: the software name(s), version(s) and
installation prefix corresponding to external modules of in-
terest can be specified in one or more configuration files.

An example of metadata for external modules is shown in
Listing 2. It specifies that:

• the cray-hdf5/1.8.13 and cray-hdf5-parallel/1.8.13

modules both provide HDF5 version 1.8.13 1, and that
the installation prefix can be obtained via the $HDF5_DIR
environment variable that is defined by these modules;

• the cray-netcdf/4.3.2 module provides both netCDF
4.3.2 and netCDF-Fortran version 4.3.2, and their com-
mon installation prefix can be determine via $NETCDF_DIR;

1EasyBuild makes the distinction between serial and parallel
builds of HDF5 differently, i.e., through compiler toolchain that
was used and whether or not it includes MPI support.

[cray-hdf5/1.8.13]
name = HDF5
version = 1.8.13
prefix = HDF5_DIR

[cray-hdf5-parallel/1.8.13]
name = HDF5
version = 1.8.13
prefix = HDF5_DIR

[cray-netcdf/4.3.2]
name = netCDF, netCDF-Fortran
version = 4.3.2, 4.3.2
prefix = NETCDF_DIR

[fftw/3.3.4.3]
name = FFTW
version = 3.3.4.3
prefix = FFTW_INC/..

Listing 2: Example metadata for external modules.

• the fftw/3.3.4.3 module provides FFTW version 3.3.4.3,
and the top-level installation directory is one level up
from the path specified in $FFTW_INC, i.e. $FFTW_INC
should be combined with the relative path ‘..’

The installation prefix can also be hardcoded with an abso-
lute path, in case it can not be derived from an environment
variable set by the external module.

Note that EasyBuild will not attempt to interpret the names
of external modules in any way; it solely relies on the pro-
vided metadata. Also, EasyBuild will only interact with
external modules via the modules tool, to load them and
check for their availability; it will not try to parse or inter-
pret their contents.

Since EasyBuild version 2.7.0, a file containing metadata for
selected modules provided by the Cray PE is included. This
is sensible only because the Cray-provided module files are
known to be identical across Cray sites, if they are present.
Moreover, it enables Cray sites to quickly get started with
EasyBuild.

It is worth noting that the support in EasyBuild for using
external modules is in no way specific to Cray systems. The
feature was deliberately implemented in a generic way, in or-
der to also make it useful on other platforms where the need
for integrating with existing module files arises. For more
details on using external modules, we refer to the EasyBuild
documentation 2.

3.3.2 Generating more sophisticated module files
Motivated by the sometimes unpredictable behaviour of the
modules files provided by the Cray PE, induced by the com-
plex logic that is encoded in them, the mechanism in the
EasyBuild framework for generating module files needed to
be extended slightly.

Support for including ‘module unload’ and ‘module swap’
statements, optionally guarded by a condition that checks
whether a particular module is loaded or not, had to be
implemented. We explain the need for this in more detail in
Section 3.3.4.

2http://easybuild.readthedocs.org/en/latest/Using_
external_modules.html

http://easybuild.readthedocs.org/en/latest/Using_external_modules.html
http://easybuild.readthedocs.org/en/latest/Using_external_modules.html

3.3.3 Eliminating the use of module purge
EasyBuild controls the environment in which installations
are being performed, in order to increase the likelihood of
being able to reproduce it later. This was done by recording
the environment in which EasyBuild is running, frequently
purging the modules that were loaded by the EasyBuild
toolchain mechanism (for dependencies, toolchain, etc.), and
restoring the initial environment in the sanity check step and
before initiating a new installation.

Since running ‘module purge’ in an environment defined us-
ing Cray PE modules can not be done reliably, the purging
of modules was replaced by simply restoring the initial en-
vironment instead, which is a better approach anyway of
controlling the environment.

3.3.4 Cray-specific compiler toolchains
Defining and supporting Cray-specific compiler toolchains
was another major enhancement that had to be made. This
involved changes to the toolchain mechanism of the Easy-
Build framework, and a custom easyblock to consume easy-
config files that specify particular instances of Cray-specific
toolchains.

Overview of Cray-specific toolchains. In the current im-
plementation, three different Cray-specific toolchains have
been defined. Each of them corresponds directly to one of
the PrgEnv modules we discussed in Section 3.1.2:

• CrayCCE for PrgEnv-cray

• CrayGNU for PrgEnv-gnu

• CrayIntel for PrgEnv-intel

The equivalent toolchain for the PrgEnv-pgi module was
missing at the time of writing because the PGI compiler is
not supported yet as a toolchain component in EasyBuild
version 2.7.0.

In each of these, the toolchain consists of the respective com-
piler suite (CCE, GCC, Intel) together with the Cray MPT
library (provided by the cray-mpich module) and Cray Lib-
Sci libraries (cray-libsci).

Framework support for Cray toolchains. The toolchain
mechanism in the EasyBuild framework needed to be made
aware of the different components that are part of the Cray*
toolchains, in order to support the provided toolchain in-
trospection functionality that is used in various easyblocks,
and to properly define the build environment based on the
selected toolchain.

For the compiler component of the toolchains, we leverage
the compiler wrappers provided by the Cray PE. The com-
piler commands to are used by EasyBuild are identical re-
gardless of which specific Cray* toolchain is used, i.e. cc (C),
CC (C++) and ftn (Fortran). The readily available support
for the GCC and Intel compilers was reused where relevant
for the CrayGNU and CrayIntel toolchains, e.g., for the com-
piler flags to control floating-point precision. A limited set
of toolchain options was defined to steer the compiler wrap-
pers where needed, for example to disable dynamic linking
which is enabled by default and is controlled by defining

the $CRAYPE_LINK_TYPE environment variable, or to produce
verbose output (which is useful for debugging).

For the Cray MPT library, the existing support for the
MPICH MPI library was leveraged to inform the toolchain
mechanism how to deal with the MPI component of the
Cray* toolchains. Again, we leave the heavy lifting up to
the CrayPE compiler wrappers.

Finally, for the Cray LibSci library a stub implementation
of a library providing BLAS/LAPACK support was added.
Just like for the compiler and MPI toolchain components,
the EasyBuild framework relies mostly on the CrayPE com-
piler wrappers, other than making sure that the installation
prefix of LibSci is obtained via the $CRAY_LIBSCI_PREFIX_DIR
environment variable, so it can be used if required.

Custom easyblock for Cray toolchains. EasyBuild re-
quires a module file to be available for every compiler toolchain
to be used. For traditional toolchains, these typically only
include straightforward ‘module load’ statements for each
toolchain component; the logic for actually using the toolchain
is implemented in the toolchain support of the EasyBuild
framework.

To obtain a module file for a particular version of a Cray-
specific toolchain, a custom CrayToolchain easyblock was
implemented that redefines part of the module generation
step of the install procedure. This is required since the en-
vironment in which these toolchains will be employed is sig-
nificantly more tedious to operate in than usual. Care must
be taken that already loaded conflicting modules are un-
loaded, or that they are swapped with an equivalent module
that is part of the toolchain being used. This comes back to
the issues discussed in Section 3.1.1.

More specifically, the module file for a Cray* toolchain must:

• make sure that the correct PrgEnv module is loaded,
after making sure that any other PrgEnv module is un-
loaded; it is worth noting that the seemingly straight-
forward option of swapping whatever PrgEnv module
is loaded with the one that should be loaded was found
to be unreliable

• load the specific module version for each toolchain com-
ponent that is specified in the easyconfig file for the
toolchain (see below), or swap whichever version is
loaded with the required one

Note that this module is not only used by EasyBuild itself
during the installation to prepare the build environment,
but also whenever a module corresponding to a software
installation is loaded by users, since these include a ‘module
load’ statement for the toolchain module that was used to
install the software.

Definition of Cray toolchains. The actual definition of a
particular version of a Cray-specific toolchain is expressed
in an easyconfig file, just like for traditional toolchains.

An example is shown in Listing 3. The toolchain name and
version are specified to be CrayGNU and 2015.11, respec-
tively. EasyBuild is instructed to process this easyconfig file
using the CrayToolchain easyblock (see previous section),

and some basic information is provided through the home-
page and description parameters; this will be included in
the generated module file to populate the output of module
help.

While specifying a toolchain in each easyconfig file is strictly
enforced by the EasyBuild framework, it is irrelevant in the
case of installing a module file for a compiler toolchain, since
only the step of the install procedure where the module is
being generated is performed by the CrayToolchain easy-
block; all other steps are skipped. Thus, a so-called ‘dummy’
toolchain is specified here.

The remainder of the easyconfig file defines the actual toolchain
composition. First, the PrgEnv-gnu module is listed as the
base of the compiler toolchain; the EasyBuild framework
will verify whether this aligns correctly with the toolchain
name. The specified module name is deliberately left ver-
sionless here, as was recommended to us by Cray support.
The PrgEnv modules are intended to be mostly backwards
compatible in terms of functionality, and the latest available
version should be loaded at all times.

The subsequent entries of the dependencies list specify a
particular version of a toolchain component. These versions
collectively define this particular version of the CrayGNU com-
piler toolchain.

Note that the date-like format of the toolchain version, 2015.11
in this example, is strongly connected to the CrayPE release
it was created for, indicated by the year and month. The
actual versions of the toolchain components that define a
particular toolchain version are selected based on the rec-
ommendations made by Cray for the corresponding CrayPE
release. Our evaluation has shown that there is no need to
discriminate between different types of Cray systems (e.g.
XC vs XE/XK).

The intention of version pinning the toolchain components
is to allow for reproducible software installations on top of
the Cray PE. If the toolchain definitions can be decided
upon in mutual consensus between different Cray sites, it
provides a solid base for collaboration. This stands in stark
contrast with today’s lack of efficiently sharing expertise in
a structured way on getting scientific software installed on
Cray systems.

If desired, sites can define local variants of a toolchain by
slightly modifying the versions of the toolchain components
according to the availability of Cray PE modules. Such a
custom toolchain can be tagged with an additional label (via
the versionsuffix easyconfig parameter) to discriminiate it
from the standard toolchain definiition.

Details of the Cray toolchain module file. To summa-
rize, we now take a detailed look at the generated module
file for a Cray-specific toolchain, and explain how it is able
to reliably modify the complex environment defined by the
Cray PE it gets loaded in.

Listing 4 shows a part of the CrayGNU module file that is
generated by EasyBuild for the easyconfig file shown in List-
ing 3; other parts of the module file not relevant to the dis-
cussion here have been omitted.

First, the PrgEnv-gnu module that forms the base of the
CrayGNU toolchain is dealt with. This is done through i) un-
load statements for all other possible PrgEnv modules that

easyblock = 'CrayToolchain'

name = 'CrayGNU'
version = '2015.11'

homepage = 'http://docs.cray.com/books/S-9407-1511'
description = """Toolchain for Cray compiler wrapper,
using PrgEnv-gnu see: PE release November 2015)."""

toolchain = {'name': 'dummy', 'version': 'dummy'}

dependencies = [
('PrgEnv-gnu', EXTERNAL_MODULE),
('gcc/4.9.3', EXTERNAL_MODULE),
('cray-libsci/13.2.0', EXTERNAL_MODULE),
('cray-mpich/7.2.6', EXTERNAL_MODULE),

]

moduleclass = 'toolchain'

Listing 3: Easyconfig file for CrayGNU version 2015.11

may be loaded (note that unloading is always safe to do, even
if the specified module is not loaded); ii) a guarded (ver-
sionless) load statement for the PrgEnv-gnu module. The
condition on the negation of ‘is-loaded PrgEnv-gnu’ is re-
quired to ensure that the PrgEnv-gnu does not get loaded
again, since that may result in unwanted side effects.

Note that when this first section of the module file has been
processed when this toolchain module is being loaded, a par-
ticular version of some of the toolchain components will al-
ready be loaded since the PrgEnv module loads the default
module for the compiler and cray-libsci modules (see also
Section 3.1.2).

The remainder of Listing 4 shows the logic used to load the
specified version of each of the toolchain components. De-
pending on whether a module for that particular toolchain
component is already loaded or not, a swap or load opera-
tion will be performed to ensure that the specified version
gets loaded.

3.3.5 Cross-compilation and target architecture
It is quite common on Cray systems that the Cray develop-
ment and login (CDL) nodes have a different processor ar-
chitecture than the actual compute nodes of the system, and
even that different partitions exist in the system that differ
in processor architecture. If so, software compilation should
be done via cross-compilation for a different target architec-
ture, to achieve optimal performance. The Cray PE provides
a set of craype-<arch> modules for this purpose, which con-
figure the compiler wrappers provided via the PrgEnv mod-
ule to generate binary code for a particular architecture.

This is strongly related to the optarch configuration option
that is available in EasyBuild, which allows for specifying
which compiler flags should be used that control the target
architecture.

For Cray toolchains specifically, we redefined the meaning
of optarch to indicate which craype-<arch> module must
be loaded in the build environment. That is, if optarch is
defined to be ‘haswell’, then EasyBuild will make sure the
craype-haswell module is loaded; if it is not (potentially
because another craype-<arch> module is loaded), it will
exit with an error. A possible enhancement to this may be
to automatically swap to the correct craype-<arch> module

#%Module

module unload PrgEnv-cray
module unload PrgEnv-intel
module unload PrgEnv-pgi

if { ![is-loaded PrgEnv-gnu] } {
module load PrgEnv-gnu

}

if { [is-loaded gcc] } {
module swap gcc gcc/4.9.3

} else {
module load gcc/4.9.3

}

if { [is-loaded cray-libsci] } {
module swap cray-libsci cray-libsci/13.2.0

} else {
module load cray-libsci/13.2.0

}

if { [is-loaded cray-mpich] } {
module swap cray-mpich cray-mpich/7.2.6

} else {
module load cray-mpich/7.2.6

}

Listing 4: Partial generated module file for version 2015.11

of the CrayGNU toolchain

instead.

Also, in order to use a Cray toolchain optarch must be
specified, while with other toolchains it is an optional set-
ting that can be used to override of the (usually sensible)
default of targeting the host architecture. If it is not speci-
fied, EasyBuild will currently exit with a clear error message
explaining that it should be defined and correspond to an
available craype-<arch> module.

3.4 Testing & evaluation
The support in EasyBuild version 2.7.0 for integrating with
the Cray PE has been tested and evaluated on various Cray
systems, using multiple established scientific applications.
This section provides a short overview.

3.4.1 Systems

Piz Daint & co – CSCS, Switzerland. See Section 5 for
a detailed discussion on evaluating EasyBuild on Cray (and
non-Cray) systems at CSCS.

Sisu – CSC, Finland. Sisu is a 1,688 compute node Cray
XC40 series system hosted at the IT Center for Science
(CSC) in Finland; more information is available at https:
//research.csc.fi/csc-s-servers.

Swan – Cray. Swan is a Cray XC40 series system hosted at
Cray. Swan is an early access test bed system for Cray tech-
nologies. As such it is comprised of compute nodes using the
Intel Broadwell, Intel Haswell and Intel Ivybridge processors
next to hybrid nodes equipped with Nvidia K20X GPUs at
time of writing.

Blue Waters – NCSA, US. Blue Waters is the largest Cray
XE6/XK7 class system ever built with 26,864 compute nodes.
4,228 of the nodes are XK7 nodes which have half the mem-
ory and CPUs in exchange for an NVIDIA K20X GPU ac-
celerator. Blue Waters serves a very broad range of high-end
computational science as awarded by the National Science
Foundation in the U.S, and primarily uses AMD Interlagos
processors on both the compute and external service nodes,
along with older AMD processors on the service nodes and
test system login node. More information about Blue Waters
is available at https://bluewaters.ncsa.illinois.edu/.

Titan – ORNL, US. Titan is a Cray XK7 system oper-
ated by the Oak Ridge Leadership Computing Facility for
the United State Department of Energy. Titan has 18,688
compute nodes each containing an AMD Interlagos proces-
sor and an NVIDIA K20X GPU accelerator; see https:
//www.olcf.ornl.gov/titan/ for more information.

3.4.2 Software applications

HPL. The HPL LINPACK benchmark version 2.1 served
as the initial test case for the Cray support in EasyBuild,
and was installed using two different versions of the cur-
rently supported Cray-specific toolchains, i.e. the 2015.06
and 2015.11 versions of the CrayCCE, CrayGNU and CrayIn-
tel toolchains.

CP2K. The quantum chemistry and solid state physics soft-
ware package CP2K was installed using the CrayGNU toolchain.
The multi-threaded (popt) variant of CP2K version 2.6.0
was tested, as well as the distributed (psmp) variant of CP2K
version 3.0. For the FFTW dependency the Cray-provided
fftw module was used, while the other dependencies (Libint,
libxc) were resolved via EasyBuild.

GROMACS. Installing the distributed variant of version
4.6.7 of the popular molecular dynamics software GROMACS
was tested using the CrayGNU and CrayIntel toolchains.

WRF. Version 3.6.1 of the Weather Research and Forecast-
ing (WRF) Model was installed using both the CrayGNU and
CrayIntel toolchains, on top of the cray-netcdf and cray-
hdf5-parallel modules provided by the Cray PE. Even
though the installation procedure of WRF is highly custom,
no changes were required to the WRF-specific easyblock that
was already avaialble to install it on top of the Cray PE.

Python. Various recent versions of Python together with
popular Python packages were installed using the different
versions of the CrayGNU toolchain; we discuss the Python use
case in detail in Section 4.

DCA++ dependencies. DCA++ is Dynamical Cluster Ap-
proximation software implemented in C++ to solve the 2D
Hubbard model for high-temperature superconductivity. The
developers used EasyBuild to install the dependencies re-
quired for DCA++ that are not provided by the Cray PE,
on different Cray systems and using the CrayGNU toolchain.
More specifically, easyconfig files were composed for the NFFT,
spglib and MAGMA libraries; the generic ConfigureMake

https://research.csc.fi/csc-s-servers
https://research.csc.fi/csc-s-servers
https://bluewaters.ncsa.illinois.edu/
https://www.olcf.ornl.gov/titan/
https://www.olcf.ornl.gov/titan/

easyblock turned out to be sufficient for each of them. Where
applicable, Cray-provided modules are leveraged, i.e., cud-
atoolkit for MAGMA, fftw for NFFT and cray-hdf5 to
resolve the HDF5 requirement of DCA++ itself.

It is worth noting that the easyconfig files were composed
and tested on Piz Daint (CSCS), and then used to trivially
reproduce the installations on both Titan (ORNL) and Sisu
(CSC), clearly highlighting the potential value of employing
EasyBuild on Cray systems.

4. USE CASE: PYTHON ON CRAY
In this section, we discuss the use case of providing an opti-
mized installation of the standard Python distribution and
additional Python packages on Cray systems, on top of the
Cray-provided software stack.

4.1 Motivation
The Python programming language and platform is becom-
ing increasingly more popular in traditional scientific do-
mains. As a result of this, the expectation of today’s sci-
entific researchers is that a fully featured and heavily opti-
mized Python installation is made available on modern HPC
systems.

However, at the time of writing Cray does not yet provide
such a high performance ’batteries included’ Python dis-
tribution as a part of the provided software stack, despite
the increasing demand for it. The only Python environment
that is readily available on the recent versions of Cray Linux
Environment (CLE) is the one provided through the SuSE
Linux Enterprise Server (SLES) distribution. Although it
is mostly functional, it does not leverage the heavily tuned
software stack provided by Cray PE, nor was it tuned to the
underlying Cray system architecture.

As a consequence, Cray sites are required to take care of
an optimized Python installation themselves. Next to in-
stalling the standard Python distribution itself in a fully fea-
tured way, additional Python packages for scientific comput-
ing need to be included. This typically includes the heavily
tuned SciPy stack consisting of popular libraries like numpy,
scipy, matplotlib, pandas, and sympy, as well as Python
packages leveraging these base libraries, like scikit-learn
for machine learning and the Python Imaging Library (PIL).
In addition, Python interfaces to established native libraries
like MPI (mpi4py), HDF5 (h5py) and netCDF (netcdf4-
python), domain-specific packages like BioPython and pow-
erful interactive tools like IPython are frequently requested.

4.2 Python support in EasyBuild
EasyBuild includes extensive support for installing Python
and Python packages out-of-the-box.

The (non-trivial) installation procedure of the standard Python
distribution is encoded in a custom software-specific easy-
block. It takes care of correctly configuring the build pro-
cess, mostly related to picking up on optional dependencies
like libreadline & ncurses, Tcl & Tk, OpenSSL, etc., and
carefully checks whether the obtained Python installation is
fully featured as intended.

For installing Python packages, a generic PythonPackage
easyblock is available that implements the standard setup.py
based installation procedure, and performs a trivial sanity
check by testing whether the installed Python package can
be imported. This generic easyblock can be leveraged to

both install Python packages as a part of a Python instal-
lation, yielding a so called ‘batteries included’ installation,
and to install stand-alone modules for (bundles of) Python
packages; see also Section 4.4.

In addition, a number of software-specific easyblocks for
individual Python packages are also available. Particular
examples are the easyblocks for NumPy and SciPy, which
implement the tedious install procedure for these respective
Python packages, on top of the heavily tuned BLAS and LA-
PACK libraries provided by the compiler toolchain. They
also include various checks to verify that the installation
was indeed performed correctly and optimally, like running
the provided test suites and performing a simple speed test
for the numpy.dot routine by computing the dot product of
two random 1000x1000 matrices, which is usually sufficient
to detect misconfigurations since the performance difference
between a basic and an optimized NumPy installation differs
by over an order of magnitude.

Several Python-related easyconfig files are available: for ‘bare’
installations containing only the standard Python distribu-
tion, installations featuring a list of Python packages that
should be installed as extensions, and for individual Python
packages or bundles thereof.

4.3 Installing Python on top of the Cray PE
To install Python in an optimized way on top of the Cray
PE, the existing EasyBuild support for both Python itself
and Python packages could be easily combined with the
Cray-specific compiler toolchains presented in Section 3.3.4.
The relevant easyblocks were already sufficiently generic,
such that no changes needed to be made to make the in-
stallations work.

It was sufficient to create the necessary easyconfig files that
specify to EasyBuild the exact versions of Python itself, its
dependencies and those of the Python packages to be in-
cluded, and which Cray-specific toolchain should be used to
install them. Except for specific Python packages like h5py
where the HDF5 installation provided by the cray-hdf5-
parallel module can be leveraged, all dependencies other
than the toolchain components are resolved through Easy-
Build.

Figure 4 shows the dependency graph for h5py 2.5.0 and
Python 2.7.11 on top of version 2015.11 of the CrayGNU
toolchain (versions of the dependencies not relevant to the
discussion were omitted). Installations performed using Easy-
Build are depicted using ovals, dependencies resolved via the
‘external’ modules provided by the Cray PE are shown as
rectangles and marked with ‘EXT’; additional Python pack-
ages that are included as extensions in the Python installa-
tion are indicated using dashed lines.

The entire software stack for h5py and Python shown in
Figure 4, including required dependencies and specified ex-
tension Python packages, can be installed on top of the Cray
PE with a single EasyBuild command, assuming that Easy-
Build was installed and configured properly and that the
necessary easyconfig files are available:

$ eb h5py-2.5.0-CrayGNU-2015.11-Python-2.7.11.eb -r

It suffices to specify the name of the easyconfig file to the
eb command, and enable the dependency resolution mecha-
nism using the -r command line option. After verifying that

cray-mpich/7.2.6 (EXT)

bzip2

cray-libsci/13.2.0 (EXT) PrgEnv-gnu (EXT)

Python 2.7.11

zlib

freetype
libreadline

ncurses

cray-hdf5-parallel/1.8.14 (EXT)

gcc/4.9.3 (EXT)

libpng

CrayGNU 2015.11

h5py 2.5.0

numpy 1.10.4

scipy 0.16.1

mpi4py 1.3.1

pandas 0.17.1

matplotlib 1.5.1

Figure 4: Complete dependency graph for Python with included extensions, and h5py on top of it.

the easyconfig files required to construct the entire depen-
dency graph are available, EasyBuild will install any missing
dependencies and generate modules for them, and subse-
quently install Python and the specified extensions; after-
wards, h5py itself will be installed on top of the obtained
Python installation.

This is done fully autonomously and leveraging the relevant
parts of the Cray PE, resulting in the intended ‘batteries
included’ Python installation that is optimized for the ar-
chitecture of the target Cray system.

4.4 Managing Python packages
A number of different options are supported by EasyBuild
to manage Python packages.

As already mentioned, the Python installation can be done
with ‘batteries included’, meaning that additional Python
packages can be installed in the same installation prefix as
Python. If updates for particular Python packages become
available later, additional stand-alone modules on top of the
Python module can be installed that overrule their outdated
equivalent that is part of the Python installation.

These stand-alone module can be either for individual Python
packages, or bundles of Python packages that are somehow
related to each other.

Additionally, users can manage their own Python packages
on top of the centrally provided Python installation, if they
so desire. For this, the standard Python installation tools
like pip can be employed.

5. EASYBUILD AT CSCS
Founded in 1991, the Swiss National Supercomputing Centre
(CSCS) develops and provides large scale supercomputing
infrastructure to the international research community. The
CSCS infrastructure consists of both standard Linux HPC
clusters and different generations of Cray systems, including
the recent Cray XC30 system Piz Daint, which is currently
ranked 7th on the Top500 list (Nov’15).

Until recently, installing scientific software on the diverse
pool of HPC systems hosted at CSCS was done with little or
no automation. Instead, the support team mostly resorted
to manual installations, and the expertise on installing com-
plex applications was scattered across various individuals,
personal scripts, support tickets, and non-centralized notes.
By consequence, updating software installations was tedious
and error-prone and a huge burden on the support team, and
the software stack provided to end users was wildly inconsis-
tent across the different systems and even within the same
system.

Motivated by the need to improve the consistency of the
user experience when switching between various systems and
reducing the efforts involved in providing scientific applica-
tions, EasyBuild was evaluated as a potential platform for
fulfilling these aspirations.

CSCS began evaluating EasyBuild with release of version 2.1
(Apr’15), when the first experimental support for Cray PE
integration was included, by providing an optimized fully
featured installation of Python on various systems hosted
at CSCS. The experience was very positive, as Python and
a set of additional Python packages were provided to end
users in a matter of days, across both Cray and non-Cray
systems in a consistent way and with limited effort. This,
and the welcoming and supportive EasyBuild community,
convinced the CSCS support team to integrate it into their
daily workflow, see below.

5.1 CSCS systems using EasyBuild
Today, EasyBuild is deployed on a center-wide central shared
file system (GPFS) on most of the production and test sys-
tems at CSCS, including:

• Piz Daint: Cray XC30 with 5, 272 compute nodes (In-
tel Sandy Bridge + NVIDIA Tesla K20X)

• Piz Dora: Cray XC40 with 1, 256 compute nodes (Intel
Haswell); extension to Piz Daint

• Santis & Brisi: Test and Development Systems (TDS)
for Piz Daint and Piz Dora

• Pilatus: Linux HPC cluster with 44 compute nodes
(Intel Sandy Bridge-EP)

• Mönch: Linux HPC cluster with 440 compute nodes
(Intel Ivy Bridge)

• Kesch & Escha: two Cray CS-Storm cabinets operated
for MeteoSwiss (Intel Haswell + NVIDIA Tesla K80);
see also Section 5.3

For more details, we refer to http://www.cscs.ch/computers.

5.2 Consistency for users and support team
EasyBuild has helped significantly in providing more con-
sistency for both users and the CSCS support team, across
various HPC systems hosted at CSCS.

It serves as a uniform interface for maintaining the software
stack on both Cray and non-Cray systems, and allows main-
taining a central repository where installation recipes (easy-
config files and customized easyblocks) are hosted. This
approach could also be used to enable sharing of expertise
w.r.t. installing scientific software across Cray sites.

On most Cray systems the Cray-specific toolchains discussed
in Section 3.3.4 are used (one exception being the CS-Storm
system, see Section 5.3); on the Linux HPC clusters, ‘regu-
lar’ compiler toolchains included in EasyBuild like foss and
intel are employed.

Providing software installations through EasyBuild and reusing
compiler toolchains where applicable (e.g. CrayGNU on Piz
Daint and Piz Dora) results in a consistent software stack
being provided across the different systems, which is more
appealing to end users.

Although the CSCS support team only provides full sup-
port for a select set of applications, EasyBuild has enabled
to provide additional limited support to users for installing
other software as well, by providing easyconfig files and let-
ting users maintain their own software stack on top of what
is centrally provided through EasyBuild.

5.3 Use case: EasyBuild on Cray CS-Storm
MeteoSwiss, the Swiss national weather forecasting service,
hosts their dedicated production systems at CSCS. For their
most recent platform Cray CS-Storm systems were deployed,
i.e. Kescha & Escha [11], with CSCS being responsible for
getting the system production-ready and for provisioning of
the software stack.

The software environment on the CS-Storm system is differ-
ent to the XC and XE/XK line of systems, in the sense that
for the particular deployment only PrgEnv-cray based part
of the Cray PE release is supported. Therefore, CSCS opted
to install their own software stack from scratch. However,
when building the software for MeteoSwiss [25] on this sys-
tem, it became clear that the provided GCC-based compiler
stack was unable to assemble optimized (AVX2) instructions
for system’s Intel Haswell processors.

While this issue was being discussed with Cray support, it
became clear that most of the software required by Me-
teoSwiss was already supported in EasyBuild. Moreover,
it turned out that the problem with the Haswell support of

the standard compiler stack was already solved in the recent
compiler toolchains defined by the EasyBuild community,
by including a more recent version of GNU binutils, the set
of tools that includes the GNU assembler as employed by
GCC.

As a result, the support ticket opened with Cray was closed,
and the software stack required by MeteoSwiss was provided
via EasyBuild within a matter of days. This not only re-
sulted in a more efficient workflow and a solution to com-
piling the required software stack optimized for the target
architecture, it also further aligned the workflow for software
installations with other CSCS systems where EasyBuild was
being used.

5.4 Testing via continuous integration
During the life cycle of an HPC system, updates to the soft-
ware environment are inevitable. Cray PE updates appear
as frequently as every month. The accumulated set of mod-
ules that were installed as a part of various Cray PE releases
may quickly result in about 1000 modules.

Qualifying software and hardware updates on dedicated test
and development systems is considered good practice and
should happen as frequently as possible, and ideally as an
continuous process. In order to accomplish this, all involved
steps of the process should be designed to run fully auto-
mated. A recent comparison of existing continuous integra-
tion and deployment tools that were evaluated within the
context of performance monitoring is available in [23].

CSCS decided on using the Jenkins project as the platform
of choice for implementing continuous validation techniques
within the scope of testing applications delivered to end
users through EasyBuild.

Jenkins is oriented around projects that define a set of in-
structions that are automatically executed upon user de-
fined triggers like commits to central source code reposito-
ries. The project defined by CSCS for continuously test-
ing installations takes a list of easyconfigs and performs the
installations on selected systems. The Jenkins dashboard
allows every stakeholder to quickly understand the capac-
ity of the entire software stack to be reinstalled on every
system the center operates. In addition to being the central
source of information about the current state of the deployed
software stack, provenance and history on the information
about previous failures or success for builds can easily be
stored and accessed upon interest.

Another benefit of employing continuous and immediate ver-
ification of every piece of software supported by the team
is the feedback loop introduced into the change processes,
and the increased capability to pinpoint sources of problems
more quickly and with higher confidence.

The Jenkins project was designed to mimic the user experi-
ence for installing applications on production systems, pro-
viding an additional bonus of being able to understand the
experience perceived by the end user.

The approach outlined in this section enables a completely
new approach to testing and deployment of requested appli-
cations: the user support team prepares the easyconfig files
and provides them to Jenkins, which verifies the installations
before they are deployed.

http://www.cscs.ch/computers

6. RELATED WORK
Over the recent years, various tools similar to EasyBuild
have been made available. We briefly discuss the most preva-
lent ones here, highlighting the similarities and key differ-
ences with EasyBuild.

6.1 Spack
The most relevant tool in the context of this discussion is
definitely Spack [16, 27], a package management tool cre-
ated at Lawrence Livermore National Laboratory (LLNL).
In terms of design and functionality, it is quite similar to
EasyBuild: it is implemented in Python, has the notion of
‘packages’ which are basically equivalent to a combination of
easyblocks and easyconfig files, and was created to deal with
the daily struggle of dealing with software installations on
HPC systems. Like EasyBuild, a community has emerged
around it that is actively contributing to the project.

There are a couple of key differences however. The most
striking difference is the flexible support for specifying the
software dependency graph. Spack consumes a so-called ab-
stract spec that is a partial specification of what should be
installed, which is then transformed in a concrete spec (basi-
cally through constraint solving) before the actual installa-
tion is performed. This allows for easily navigating the com-
binatorial space of dependency versions and build variants,
and appeals to the main target audience of Spack: software
developers of large scientific applications that need to juggle
with lots of dependencies. As a result of this, Spack does
not have a concept like compiler toolchains. In comparison,
EasyBuild is more focused on making software installations
easy to reproduce across HPC sites, and mainly targets HPC
user support teams that need to provide a consistent soft-
ware stack for scientists.

The Spack development team was actively working on inte-
gration with the Cray PE at the time of writing, in collab-
oration with the National Energy Research Scientific Com-
puting Center (NERSC).

6.2 Other installation tools for HPC systems
SWTools [22, 26] and its successor Smithy [13] were devel-
oped by Oak Ridge National Laboratoy (ORNL). Smithy is
implemented in Ruby, follows the Homebrew style of ‘formu-
las’ defining software installation procedures, and provides
support to leverage the Cray PE. From a design point of
view, Smithy is less of a framework compared to EasyBuild
or Spack; there is little code reuse across different formulas,
which also include a hardcoded template for module files.
To the best of our knowledge, Smithy is only used by the
HPC support team at ORNL.

HeLmod (Harvard Extensions for Lmod deployment) [28] is
a software management system developed by FAS Research
Computing (FASRC) department at Harvard University. It
is built on top of Lmod, a modern alternative to the tradi-
tional environment modules tool, and consists of a collection
of RPM spec files that implement software installation pro-
cedures and include the accompanying module file. As such,
it is prone to lots of code duplication, as opposed to Easy-
Build that takes a more centralized approach where code
reuse is actively pursued. To the best of our knowledge, it
does not provide any integration with the Cray PE.

Maali [8] (previously iVEC Build System or iBS) is a soft-
ware build system developed by the Pawsey Supercomputing
Centre. It is implemented in the Bash scripting language,
and provides basic support for automatically installing soft-
ware packages. Although it includes support for installing

software on Cray systems, the functionality it provides is
fairly basic – for example, there is not support (yet) for re-
solving dependencies, and it provides a limited flexibility –
a lot of the configuration aspects are hardcoded in it.

6.3 More generic software installation tools
Next to software installation framework and tools targeted
towards HPC systems, there are also several other projects
worth mentioning in this context.

Two recent similar projects are Nix [5, 12] and GNU Guix
[3,9], both so-called functional package managers. They take
a radically different approach to building and installing soft-
ware, and have reproducible builds as their main focus, to
the point where they strive for making builds bit-wise re-
producible. Some noteworthy features include performing
builds in an isolated environment, transactional upgrades,
per-user profiles and portability of packages across different
operating systems. Recent work [10] promotes the use of
these tools on HPC systems; however, there is a lack of inte-
gration with established practices like environment modules
and stringent requirements to ensure true isolation (due to
reliance on chroot and requiring a running daemon that
performs the actual build), leading to limited adoption in
the HPC community thus far.

The Hashdist environment management system [4] is a soft-
ware build and installation tool to manage the installation
of large software projects on Linux, OS X and Windows;
it used by the FEniCS project, for example. It provides
support for defining software profiles in YAML syntax.

Portage [7] is the official package management and distribu-
tion system for the Gentoo Linux distribution. pkgsrc [6]
is a framework for building third-party software on NetBSD
and other UNIX-like systems. Both of these tools distinguish
themselves from other Linux distribution package managers
by their focus on building from source.

Conda [1] is a package/environment management system
for Linux, OS X and Windows. It was originally created
for Python, but now supports other software as well. The
Anaconda project leverages conda and provides an extensive
Python distribution that includes over 150 scientific Python
packages. Although it has some support for leveraging opti-
mized libraries like Intel MKL, it’s primary focus is easy of
use rather than highly optimized software installations.

To the best of our knowledge, none of these projects provide
integration with the Cray PE.

7. CONCLUSIONS
We motivated the need for automating the process of in-
stalling (scientific) software on HPC systems, and on Cray
systems in particular, with the requirement of being able to
easily reproduce software installations later or on different
systems in mind.

EasyBuild was presented as a software installation frame-
work that has been successfully deployed on HPC sites around
the world for this purpose. After introducing EasyBuild,
we discussed how it was successfully integrated with limited
effort with the Cray Programming Environment, through
the support for external modules and defining Cray-specific
compiler toolchains.

The use case of providing an optimized ‘batteries included’
Python installation on Cray systems using EasyBuild was

discussed in detail, and we outlined how EasyBuild has been
deployed at CSCS to efficiently deal with providing software
installations in a consistent way across the large amount and
variety of (both Cray and non-Cray) systems.

We hope this work is the start of a revolution in how scien-
tific software is installed on top of the Cray-provided soft-
ware stack, and that it forms the base for a collaboration
across Cray sites to benefit from each others work and ex-
pertise in providing users with the scientific software stack
they require.

8. ACKNOWLEDGEMENTS
We would like to thank Cray, the IT Center for Science
(CSC) in Finland – in particular Olli-Pekka Lehto, and the
the Swiss National Supercomputing Centre (CSCS) for pro-
viding us with exploratory access to their Cray systems, and
for their valuable feedback on our work.

The development of EasyBuild is supported by Ghent Uni-
versity, the Flemish Supercomputer Centre (VSC), the Flem-
ish Research Foundation (FWO) and the Flemish Govern-
ment, department EWI.

This research is part of the Blue Waters sustained-petascale
computing project, which is supported by the National Sci-
ence Foundation (awards OCI-0725070 and ACI-1238993)
and the state of Illinois. Blue Waters is a joint effort of the
University of Illinois at Urbana-Champaign and its National
Center for Supercomputing Applications.

9. REFERENCES
[1] Conda. http://conda.pydata.org/docs/.
[2] Easybuild documentation.

http://easybuild.readthedocs.org.
[3] Gnu guix package manager.

https://www.gnu.org/software/guix/.
[4] Hashdist – build it once.

https://hashdist.github.io/.
[5] Nix – the purely functional package manager.

https://nixos.org/nix/.
[6] pkgsrc – portable package build system.

https://www.pkgsrc.org/.
[7] Portage. https://wiki.gentoo.org/wiki/Portage.
[8] P. S. Centre. Maali – pawsey supercomputing centre

build system. https://github.com/Pawseyops/maali.
[9] L. Courtès. Functional package management with

guix. CoRR, abs/1305.4584, 2013.
[10] L. Courtès and R. Wurmus. Reproducible and

user-controlled software environments in hpc with
guix. In Euro-Par 2015: Parallel Processing
Workshops, pages 579–591. Springer, 2015.

[11] CSCS. Piz kesch cs-storm system description. http:
//www.cscs.ch/computers/kesch_escha/index.html.

[12] A. Devresse, F. Delalondre, and F. Schürmann. Nix
based fully automated workflows and ecosystem to
guarantee scientific result reproducibility across
software environments and systems. In Proceedings of
the 3rd International Workshop on Software
Engineering for High Performance Computing in
Computational Science and Engineering, pages 25–31.
ACM, 2015.

[13] A. DiGirolamo. The smithy software installation tool,
2012.
http://anthonydigirolamo.github.io/smithy/.

[14] J. L. Furlani. Providing a Flexible User Environment.
In Proceeding of the Fifth Large Installation System
Administration (LISA V, pages 141–152, 1991.

[15] J. L. Furlani and P. W. Osel. Abstract yourself with
Modules. In Proceeding of the Tenth Large Installation
System Administration (LISA ’96, pages 193–204,
1996.

[16] T. Gamblin, M. LeGendre, M. R. Collette, G. L. Lee,
A. Moody, B. R. de Supinski, and S. Futral. The spack
package manager: Bringing order to HPC software
chaos. In Proceedings of the International Conference
for High Performance Computing, Networking,
Storage and Analysis, ser. SC, volume 15, 2015.

[17] M. Geimer, K. Hoste, and R. McLay. Modern scientific
software management using easybuild and lmod. In
Proceedings of the First International Workshop on
HPC User Support Tools, pages 41–51. IEEE Press,
2014.

[18] K. Hoste, J. Timmerman, A. Georges, and
S. De Weirdt. Easybuild: Building software with ease.
In High Performance Computing, Networking, Storage
and Analysis (SCC), 2012 SC Companion:, pages
572–582. IEEE, 2012.

[19] HPC-UGent. Easybuild – building software with ease.
http://hpcugent.github.io/easybuild/.

[20] C. Inc. Cray programming environment user’s guide.
http://docs.cray.com/books/S-2529-116//S-2529-
116.pdf.

[21] Environment Modules Project.
http://modules.sourceforge.net.

[22] N. Jones and M. R. Fahey. Design, Implementation,
and Experiences of Third-Party Software
Administration at the ORNL NCCS. In Proceedings of
the 50th Cray User Group (CUG08), 2008.

[23] V. G. V. Larrea, W. Joubert, and C. Fuson. Use of
continuous integration tools for application
performance monitoring. In Proceedings of the 57th
Cray User Group (CUG15), 2015.

[24] J. Layton. Environment Modules – A Great Tool for
Clusters. Admin HPC. http://www.admin-
magazine.com/HPC/Articles/Environment-Module.

[25] MeteoSwiss. The new weather forecasting model for
the alpine region.
http://www.meteoswiss.admin.ch/home/latest-
news/news.subpage.html/en/data/news/2016/3/
the-new-weather-forecasting-model-for-the-
alpine-region.html.

[26] SWTools, 2011. https:
//www.olcf.ornl.gov/center-projects/swtools.

[27] Todd Gamblin. Spack.
http://scalability-llnl.github.io/spack/.

[28] F. R. C. H. University. Harvard extensions for lmod
deployment (helmod), 2013.
https://github.com/fasrc/helmod.

http://easybuild.readthedocs.org
https://www.gnu.org/software/guix/
https://hashdist.github.io/
https://nixos.org/nix/
https://www.pkgsrc.org/
https://wiki.gentoo.org/wiki/Portage
https://github.com/Pawseyops/maali
http://www.cscs.ch/computers/kesch_escha/index.html
http://www.cscs.ch/computers/kesch_escha/index.html
http://anthonydigirolamo.github.io/smithy/
http://hpcugent.github.io/easybuild/
http://docs.cray.com/books/S-2529-116//S-2529-116.pdf
http://docs.cray.com/books/S-2529-116//S-2529-116.pdf
http://modules.sourceforge.net
http://www.admin-magazine.com/HPC/Articles/Environment-Module
http://www.admin-magazine.com/HPC/Articles/Environment-Module
http://www.meteoswiss.admin.ch/home/latest-news/news.subpage.html/en/data/news/2016/3/the-new-weather-forecasting-model-for-the-alpine-region.html
http://www.meteoswiss.admin.ch/home/latest-news/news.subpage.html/en/data/news/2016/3/the-new-weather-forecasting-model-for-the-alpine-region.html
http://www.meteoswiss.admin.ch/home/latest-news/news.subpage.html/en/data/news/2016/3/the-new-weather-forecasting-model-for-the-alpine-region.html
http://www.meteoswiss.admin.ch/home/latest-news/news.subpage.html/en/data/news/2016/3/the-new-weather-forecasting-model-for-the-alpine-region.html
https://www.olcf.ornl.gov/center-projects/swtools
https://www.olcf.ornl.gov/center-projects/swtools
http://scalability-llnl.github.io/spack/
https://github.com/fasrc/helmod

	Introduction
	EasyBuild
	Goals
	Terminology
	EasyBuild framework
	Easyblocks
	Easyconfig files
	Toolchains

	Features
	Step-wise installation procedure
	Generating module files
	Dependency resolution
	Logging
	Reproducibility
	Flexibility
	Transparency

	EasyBuild Community
	Features for and by the community

	EasyBuild on Cray systems
	Cray Programming Environment
	Modules interface
	The programming environment module PrgEnv
	Additional tools and libraries

	Integrating EasyBuild with the Cray PE
	Leveraging the Cray PE modules
	Better awareness of session environment
	Version pinning of toolchain components

	Enhancements to EasyBuild
	Support for external modules
	Generating more sophisticated module files
	Eliminating the use of module purge
	Cray-specific compiler toolchains
	Cross-compilation and target architecture

	Testing & evaluation
	Systems
	Software applications

	Use case: Python on Cray
	Motivation
	Python support in EasyBuild
	Installing Python on top of the Cray PE
	Managing Python packages

	EasyBuild at CSCS
	CSCS systems using EasyBuild
	Consistency for users and support team
	Use case: EasyBuild on Cray CS-Storm
	Testing via continuous integration

	Related work
	Spack
	Other installation tools for HPC systems
	More generic software installation tools

	Conclusions
	Acknowledgements
	References

