
Making Scientific Software Installation
Reproducible On Cray Systems

Using EasyBuild

Petar Forai (IMP), Kenneth Hoste (UGent),
Guilherme Peretti-Pezzi (CSCS), Brett Bode (NCSA)

May 11th – Cray User Group 2016 – London

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

1/28

The Ubiquitous Burden of Getting
Scientific Software Installed

One particularly time-consuming task for HPC support teams is installing
software on (Cray) systems.

Science teams demand rich and up to date software environment to be
provided on the system(s).

Not simple to do because

• Packaged (distribution supplied) software is often out of date and a
clear upgrade path is not provided by Cray during the system’s life
cycle.

• Scientific software installation is non-trivial in itself.

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

2/28

Common issues with scientific software
Researchers focus on the science behind the software they implement,
and care little about tools, build procedure, portability, . . .

Scientists are not software developers or sysadmins (nor should they be).

“If we would know what we are doing, it wouldn’t be called ‘research’.”

This results in:

• ‘incorrect’ use of build tools

• use of non-standard build tools (or broken ones)

• incomplete build procedure, e.g., no configure or install step

• interactive installation scripts

• hardcoded parameters (compilers, libraries, paths, . . .)

• poor/outdated/missing/incorrect documentation

• dependency (version) hell

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

3/28

Example: WRF
Weather Research and Forecasting Model (http://www.wrf-model.org)

• dozen dependencies: netCDF (C, Fortran), HDF5, tcsh, JasPer, . . .

• known issues in last release are (only) documented on website

no patch file provided, infrequent bugfix releases

• interactive ‘configure’ script :(

• resulting configure.wrf needs work:

fix hardcoded settings (compilers, libraries, . . .), tweaking of options

• custom ‘compile’ script (wraps around ‘make’)

building in parallel is broken without fixing the Makefile

• no actual installation step

Wouldn’t it be nice to build & install WRF with a single command?
http://easybuild.readthedocs.org/en/latest/Typical_workflow_example_with_WRF.html

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://www.wrf-model.org
http://easybuild.readthedocs.org/en/latest/Typical_workflow_example_with_WRF.html
http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

4/28

Houston, we have a problem

Installation of scientific software is a tremendous problem for HPC sites
all around the world.

• huge burden on HPC user support teams.

• researchers lose lots of time (waiting).

• sites typically resort to in-house scripting (or worse).

• very little collaboration among HPC sites :(

• especially hard to reproduce builds at later point in time.

Also true on Cray systems, despite the extensive programming
environment that Cray provides and similarity of software environment
across installations.

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

5/28

Automating the build

Generic package managers and tools are not well suited to scientific
software and HPC systems.

• package managers: yum (RPMs), apt-get (.deb), . . .

• pkgsrc (NetBSD & (a lot) more), http://pkgsrc.org/

• Nix, http://nixos.org/nix

• GNU Guix, https://www.gnu.org/s/guix

• Spack (LLNL) - http://scalability-llnl.github.io/spack/

Nor do they offer integration with Cray supplied software stack (PE).

HPC specific build automation/package managers are required.

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://pkgsrc.org/
http://nixos.org/nix
https://www.gnu.org/s/guix
http://scalability-llnl.github.io/spack/
http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

6/28

EasyBuild: building software with ease

http://hpcugent.github.io/easybuild/

• framework for installing (scientific) software on HPC systems

• implemented as Python packages and modules

• Started at University of Gent, Belgium, in 2009, open-source
(GPLv2) since 2012

• now: thriving community; actively contributing, driving development

• new release every 6–8 weeks (latest: EasyBuild v2.7.0, Mar 20th 2016)

• supports over 850 different software packages
including CP2K, GAMESS-US, GROMACS, NAMD, NWChem,
OpenFOAM, PETSc, QuantumESPRESSO, WRF, WPS, . . .

• well documented: http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild/
http://easybuild.readthedocs.org
http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

7/28

EasyBuild: feature highlights
• fully autonomously building and installing (not only scientific)

software.

– automatic dependency resolution.
– full integration with Environment Modules (Tcl or Lua syntax).

• thorough logging of executed build/install procedure.

• archiving of build specifications (‘easyconfig files‘)

• highly configurable, via config files/environment/command line

• dynamically extendable with additional easyblocks, toolchains, etc.

• Reproducibility of the installation as one of the major design goals.

• comprehensively tested: lots of unit tests, regression testing, . . .

• actively developed, collaboration between various HPC sites
(worldwide community)

• Extensive transparency through verbose dry-runs and preview of all
steps involved in the installation.

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

8/28

EasyBuild: statistics
EasyBuild v2.7.0 (Mar’16)

• ∼ 25, 000 LoC in framework (17 Python packages, 160 Python modules)

+ ∼ 5, 000 LoC in vsc-base (option parsing/logging)
+ ∼ 12, 500 LoC more in unit tests
=⇒ ∼ 42, 500 LoC in total

• 194 easyblocks in total (∼ 18, 000 Loc)

165 software-specific easyblocks
29 generic easyblocks

• 909 different software packages supported
(incl. toolchains & bundles)

bio: 203, tools: 123, vis: 99, devel: 78, lib: 77, math: 54,
data: 53, toolchain: 38, chem: 38, lang: 32, numlib: 25,
perf: 22, system: 21, cae: 16, compiler: 14, mpi: 11, phys: 6

• 5, 580 easyconfig files: different versions/variants, toolchains, . . .

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

9/28

0"

20"

40"

60"

80"

100"

120"

140"

160"

180"

Feb+12" Aug+12" Mar+13" Oct+13" Apr+14" Nov+14" May+15" Dec+15"

#"
su
bs
cr
ib
er
s"

date"

EasyBuild"mailing"list"

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

10/28

0"

10"

20"

30"

40"

50"

60"

70"

80"

90"

11,Feb,12" 29,Aug,12" 17,Mar,13" 03,Oct,13" 21,Apr,14" 07,Nov,14" 26,May,15" 12,Dec,15"

#"
un

iq
ue

"c
on

tr
ib
ut
or
s"

EasyBuild"contributors"
framework" easyblocks" easyconfigs"

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

11/28

EasyBuild terminology
• EasyBuild framework

– core of EasyBuild: Python modules & packages
– provides supporting functionality for building and installing software

• easyblock

– a Python module, ‘plugin’ for the EasyBuild framework
– implements a (generic) software build/install procedure

• easyconfig file (*.eb)

– build specification: software name/version, compiler toolchain, etc.

• compiler toolchain

– compilers with accompanying libraries (MPI, BLAS/LAPACK, . . .)

Putting it all together

The EasyBuild framework leverages easyblocks to automatically build
and install (scientific) software using a particular compiler toolchain, as
specified by one or more easyconfig files.

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

12/28

Step-wise install procedure
build and install procedure as implemented by EasyBuild

IV: unpack sources

V: apply patches

VI: prepare

VII: configure

VIII: build

IX: test

X: install

XI: extensions

XII: sanity check

XIII: cleanup

XIV: env. module

III: check readiness XV: permissions

II: fetch sources XVI: packaging

I: parse easyconfig XVII: test cases

most of these steps can be customised if required,
via easyconfig parameters or a custom easyblock

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

13/28

EasyBuild – Before Cray support

Originally designed to target generic Linux x86 64 HPC systems and not
suited to an environment where compilers and libraries would be supplied
by the system’s vendor.

• impossible to use Cray provided programming environment easily.

• not possible to produce fully optimised installations.

• additional software and libraries supplied by Cray could not be used
as build dependencies out of the box.

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

14/28

EasyBuild Enhancements for Cray Systems

In order to integrate EasyBuild with the Cray software stack the following
enhancements were implemented and will be discussed in the following
slides.

• support for external module files.

• definition of Cray-specific toolchains.

• custom easyblock for Cray toolchains.

• various smaller enhancements specific to the Cray environment.

The development of these features started early 2015, the experimental
Cray support was included in EasyBuild version 2.1.0 (Apr’15).
Maturity of the EasyBuild framework allowed all those to be implemented
in around 500 lines of Python.

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

15/28

Support for external module files

EasyBuild relies on the modules in a fundamental way as they contain
information about the installed software they correspond to.

• dependency resolution mechanism uses the environment modules to
gather information about software already available.

• EasyBuild can leverage modules that were not generated by
EasyBuild for example as part of the Cray PE.

• this includes support that was added to supply metadata for external
modules, so that EasyBuild can be made aware of

– the software name(s), version(s)
– installation prefix

• since EasyBuild version 2.7.0, a file containing metadata for selected
modules provided by the Cray PE is included as part of EasyBuild.

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

16/28

Definition of Cray-specific Toolchains
Three different Cray-specific toolchains have been implemented.
Each of them corresponds directly to one of the PrgEnv modules:

• CrayCCE for PrgEnv-cray

• CrayGNU for PrgEnv-gnu

• CrayIntel for PrgEnv-intel

• compiler component of the toolchains EasyBuild leverages the
compiler wrappers provided by the Cray PE and EasyBuild exposes

– $CC, $CXX, $CFLAGS, $CXXFLAGS, $F77...

• toolchain consists of the respective compiler suite (Cray Compilation
Environment, GCC, Intel) together with the Cray MPT library
(provided by the cray-mpich module) and Cray LibSci libraries
(cray-libsci)

• LibSci and MPT have been added through the use of external
modules.

• defaults to dynamic linking through the use of $CRAYPE LINK TYPE

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

17/28

Custom easyblock for Cray toolchains

• support for the toolchains is implemented as an easyblock. This
easyblock defines the version pinned components that make up the
toolchain.

• new toolchain version combinations can then be placed in easyconfig
file to ease creation of new toolchains.

• Easyblock implements logic to render the module files for the
EasyBuild Cray toolchains.

• those are specially crafted to ensure the switching between toolchain
variants works reliable even on Cray systems with complex module
file logic.

• Avoids the need to run module purge and makes sure the desired
PrgEnv module is loaded when EasyBuild runs independent of which
modules were loaded previously.

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

18/28

Version Pinning of Toolchain Components

• toolchain version is based on PE release document, ie for PE release
of November 2015 the corresponding GCC based toolchain is called
CrayGNU/2015.11

• No need to discriminate between different types of Cray systems
(e.g. XC vs XE/XK) wrt to toolchain versioning and components.

• Sites are expected to agree upon exact versions of subcomponents if
multiple versions are provided with PE update release, otherwise
latest is picked.

• components that are version pinned include all modules that
influence the ABI of the generated binaries. This includes

– the compiler
– the numerical libraries (LibSci)
– MPI (Cray MPT)

but leaves the loaded modules for PrgEnv and craype at the
system’s default versions.

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

19/28

Various Smaller Enhancements for the Cray
Environment

• control of CPU targeting is implemented through the load of the user
desired craype-target module and allows for cross compilation.

• EasyBuild never runs ‘module purge’ in an environment defined
using Cray PE modules since this can not be done reliably.

• after EasyBuild finishes a build the initial environment is fully
restored.

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

20/28

Testing and Evaluation – Systems

The support in EasyBuild version 2.7.0 for integrating with the Cray PE
has been tested and evaluated on various Cray systems, using multiple
established scientific applications.

• Piz Daint & co – CSCS, Switzerland

• Sisu – CSC, Finland Cray XC40 series system hosted at the IT
Center for Science (CSC).

• Swan – Cray, US Cray XC40 series system hosted at Cray.

• Blue Waters – NCSA, US Cray XE6/XK7 system hosted at National
Center for Supercomputing Applications.

• Titan – ORNL, US Cray XK7 system operated by the Oak Ridge
Leadership Computing Facility.

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

21/28

Testing and Evaluation – Software

• CP2K tested version 2.6.0 was tested, as well as the distributed
(psmp) variant of CP2K version 3.0.

• GROMACS Version 4.6.7 using the CrayGNU and CrayIntel

toolchains.

• WRF Version 3.6.1 tested with CrayGNU and CrayIntel toolchains.

• Python Various recent versions of Python together with popular
Python packages versions of the CrayGNU toolchain;

• DCA++ dependencies tested using the CrayGNU toolchain.

Where applicable, Cray-provided modules are leveraged.

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

22/28

EasyBuild at CSCS

CSCS began evaluating EasyBuild with release of version 2.1 (Apr’15),
when the first experimental support for Cray PE integration.

• scientific software installation on the diverse pool of HPC systems
hosted at CSCS was done with little or no automation.

• expertise on installing complex applications was scattered across

– various individuals
– personal scripts
– support tickets

• EasyBuild was evaluated with the deployment of a consistent Python
environment across all systems operated by CSCS.

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

23/28

EasyBuild at CSCS – Success Story

• EasyBuild evaluation experience was very positive, as a fully fledged
Python installation built on top of optimised Cray PE components
was provided to end users in a matter of days.

• central repository for all software installations at the center was
created and made accessible to all staff of the HPC user support
team.

• EasyBuild has helped signicantly in providing more consistency for
both users and the CSCS support team, across various HPC systems
hosted at CSCS.

• CSCS support team only provides full support for a select set of
applications, EasyBuild has enabled to provide additional limited
support to users for installing other software as well since
easyconfigs are shared with scientific users.

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

24/28

EasyBuild at CSCS – Systems
EasyBuild is deployed on a center-wide central shared file system (GPFS)
on most of the production and test systems at CSCS, including

• Piz Daint: Cray XC30 with 5, 272 compute nodes (Intel Sandy
Bridge + NVIDIA Tesla K20X)

• Piz Dora: Cray XC40 with 1, 256 compute nodes (Intel Haswell);
extension to Piz Daint

• Santis & Brisi: Test and Development Systems (TDS) for Piz Daint
and Piz Dora

• Pilatus: Linux HPC cluster with 44 compute nodes (Intel Sandy
Bridge-EP)

• Mönch: Linux HPC cluster with 440 compute nodes (Intel Ivy
Bridge)

• Kesch & Escha: two Cray CS-Storm cabinets operated for
MeteoSwiss (Intel Haswell + NVIDIA Tesla K80);

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

25/28

EasyBuild at CSCS – Use Case: CS-Storm
MeteoSwiss, the Swiss national weather forecasting service, hosts their
dedicated production systems at Cray CS-Storm at CSCS.

• only PrgEnv-cray based part of the Cray PE release is supported
on those machines. Therefore, CSCS opted to install their own
software stack from scratch.

• soon it became clear that the system s provided GCC-based compiler
stack was unable to assemble optimised (AVX2) instructions for
system’s Intel Haswell processor.

• could be solved by including a more recent version of GNU binutils
that has an Haswell aware assembler.

• whole software stack required for the deployment was included in
EasyBuild and the machine’s environment prepared for production
use within several days without having to wait for an upstream fix.

• EasyBuild was already tested on the XC series of machines at CSCS
a final decision to switch all software deployments to EasyBuild was
finalized.

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

26/28

EasyBuild at CSCS – Use Case: Continuous
Testing I

• during the life cycle of an HPC system, updates to the machine
environment (software, firmware, hardware) are inevitable.

• Cray PE updates appear as frequently as every month.

• qualifying software and hardware updates on dedicated test and
development systems is considered good practice.

• should happen as frequently as possible, and ideally as an
continuous process.

• all steps in software deployment process should be designed to run
fully automated.

• CSCS decided on using the Jenkins project.

• Automatically executed building of software delivered via EasyBuild
based on commits to central source code repositories.

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

27/28

EasyBuild at CSCS – Use Case: Continuous
Testing II

• The Jenkins dashboard allows every stakeholder to quickly
understand the capacity of the entire software stack to be reinstalled
on every system the center operates.

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

28/28

Do you want to know more?

• EasyBuild website: http://hpcugent.github.io/easybuild

• EasyBuild documentation: http://easybuild.readthedocs.org

• stable EasyBuild releases: http://pypi.python.org/pypi/easybuild

EasyBuild framework: http://pypi.python.org/pypi/easybuild-framework

easyblocks: http://pypi.python.org/pypi/easybuild-easyblocks

easyconfigs http://pypi.python.org/pypi/easybuild-easyconfigs

• source repositories on GitHub

EasyBuild meta package + docs: https://github.com/hpcugent/easybuild

EasyBuild framework: https://github.com/hpcugent/easybuild-framework

easyblocks: https://github.com/hpcugent/easybuild-easyblocks

easyconfigs: https://github.com/hpcugent/easybuild-easyconfigs

• EasyBuild mailing list: easybuild@lists.ugent.be

https://lists.ugent.be/wws/subscribe/easybuild

• Twitter: @easy build

• IRC: #easybuild on chat.freenode.net

http://hpcugent.github.io/easybuild - http://easybuild.readthedocs.org

http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org
http://pypi.python.org/pypi/easybuild
http://pypi.python.org/pypi/easybuild-framework
http://pypi.python.org/pypi/easybuild-easyblocks
http://pypi.python.org/pypi/easybuild-easyconfigs
https://github.com/hpcugent/easybuild
https://github.com/hpcugent/easybuild-framework
https://github.com/hpcugent/easybuild-easyblocks
https://github.com/hpcugent/easybuild-easyconfigs
mailto:easybuild@lists.ugent.be
https://lists.ugent.be/wws/subscribe/easybuild
http://twitter.com/easy_build
http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org

