
A Classification of Parallel I/O Toward Demystifying HPC I/O Best Practices

Robert Sisneros
National Center for Supercomputing Applications

Uinversity of Illinois at Urbana-Champaign

Urbana, Illinois, USA

Email: sisneros@illinois.edu

Abstract—The process of optimizing parallel I/O can quite
easily become daunting. By the nature of its implementation
there are many highly sensitive, tunable parameters and a sub-
tle change to any of these may have drastic or even completely
counterintuitive results. There are many factors affecting
performance: complex hardware configurations, significant yet
unpredictable system loads, and system level implementations
that perform tasks in unexpected ways. A final compounding
issue is that an optimization is very likely specific to only a
single application. The state of the art then is usually a fuzzy
mixture of expertise and trial-and-error testing. In this work
we introduce a characterization of application I/O based on a
combination of job-level and filesystem-level aggregation. We
will show how this characterization may be used to analyze
parallel I/O performance to not only validate I/O best practices
but also communicate benefits in a user centric way.

Keywords-Parallel I/O; Filesystems; HPC

I. INTRODUCTION

The process of optimizing parallel I/O can quite eas-
ily become daunting. By the nature of its implementation
there are many highly sensitive, tunable parameters and a
subtle change to any of these may have drastic or even
completely counterintuitive results. Additionally there are
many other factors affecting performance: complex hardware
configurations, significant yet chaotic and unpredictable
system loads, and system level implementations that carry
out tasks in unexpected ways. A final compounding issue
is that an optimization is very likely specific to only a
single application. The state of the art then is usually a
fuzzy mixture of expertise and trial-and-error testing. While
this is sufficient to create documented best practices, the
aforementioned fuzziness bleeds over in unfortunate ways;
we have no reliable system for classifying application I/O
that easily maps applications to best practices. In this paper
we outline the steps we have taken to demystify parallel I/O
best practices as they apply to our system: the large scale
Lustre filesystem of the Blue Waters supercomputer [1].

We believe the above issues typically lead to a fractured
set of best practices composed of advice for users that is
either rooted in experience and regards how to improve per-
formance (e.g. how to tune Lustre parameters), or is general
and really representative of how to best utilize resources with
regard to all users on the system (e.g. benefits of shared
file parallel I/O). In reality, variability among applications

regarding aggregation, number of variables written, storage
patterns both on disk as well as in data structures, domain
decompositions, etc. typically means that optimizing I/O
requires the hand tuning of an I/O expert. This hand tuning
focuses on avoiding the universal pitfalls for achieving good
performance: conducting I/O that is not stripe aligned and
OST (object storage target, i.e. disk) contention among re-
sources performing parallel I/O. These considerations serve
as the motivators for this work. First, we believe our efforts
as creators of best practices are too focused on aspects that
we are unable to usefully generalize and too dependent on
the knowledge of intricacies of parallel I/O. We therefore
ignore attempting to provide advice on how to optimize
application performance and instead generalize all we can
at a higher level.

The major contributions of this work are as follows. We
have

• created a framework for abstracting the I/O models of
an application,

• developed a new benchmarking code for iterating and
testing this set of I/O models, and

• devised a system of visually representing the bench-
marking results that provides a single context within
which best practices are validated.

Critically, these fit together in such a way as to elucidate the
relationship between I/O models including those commonly
addressed in best practices: file per process and single shared
file.

In the remainder of the paper we will provide a brief
overview of typical best practices and the general parallel
I/O resources use in the creation thereof in Section II. We
will discuss particulars of benchmarking I/O models and
visualizing the results in Sections III and IV, respectively.
In Section V we will outline representative tests conducted
and discuss results and will conclude in Section VI.

II. BACKGROUND

In this Section, we present representative examples of
relevant (to our center) HPC parallel I/O best practices. We
also provide typical resources referenced and utilized in their
creation.

Our intention is to apply knowledge gained from this
work in the managing of the Blue Waters supercomputer.



Blue Waters is a Cray XE6-XK7 supercomputing system.
The system has 26 PB online disk capacity and two types
of compute nodes: XE6 and XK7. There are 22,640 XE6
nodes and 4,224 XK7 nodes connected via Cray Gemini
interconnect. The tests for this paper were however run on
the Blue Waters test and development system, JYC. JYC
contains 54 XE6 nodes and 28 XK7 and has eight available
OSTs across which we may stripe files.

For excellent examples of public facing parallel I/O best
practices writeups, we direct the reader to the pages from
the National Institute for Computational Sciences (NICS) [2]
and the National Energy Research Scientific Computing
Center (NERSC) [3]. A comparison of these sites illustrates
commonalities of utilizing large scale Lustre file systems
effectively. These sites focus on introducing parallel I/O
at a high level and discussing how to configure Lustre
stripe settings. Contrasting these sites provides insight into
how emphasis may easily very among HPC centers. While
NERSC’s page dives into tuning MPI-IO [4], NICS’s page
provides extensive benchmarking results to demonstrating
various benefits of stripe settings and I/O patterns. Discussed
or not, we believe such benchmarking results are central to
the understanding of parallel I/O and the creation of general
best practices.

The typical benchmark for Lustre filesystems is the In-
terleaved or Random (IOR) I/O Benchmark [5]. IOR was
developed at Lawrence Livermore National Laboratory for
measuring read/write performance of parallel file systems.
There are a number high-level customizable parameters that
may be set; these include file size, I/O transaction size,
sequential vs. random access, and single shared file vs. file
per process. There are also several flags for fine tuning a
particular run that allow a user to have IOR perform tasks
such as consume system memory (in addition to measured
I/O tasks) or keep temporary files created and written for
tests. In addition, the diverse repertoire of configurations
may be applied to any of IORs supported APIs: POSIX,
MPIIO, HDF5, and NCMPI. These features make IOR
an ideal benchmark for an HPC facility and it is indeed
widely used in that community [6], [7], [8]. However, as
we will detail in Section III, this benchmark is inadequate
for our purposes. While there are other benchmarks, to
our knowledge none are as widely used as IOR nor offer
functionalities suitable for our needs.

III. COMPREHENSIVE I/O MODEL BENCHMARKING

In our experience, I/O benchmarking at HPC centers may
be categorized as either a general benchmark such as IOR
testing only two I/O models, file per process and single
shared file, or an application specific I/O kernel. The latter
is clearly not generally viable and will warrant no further
discussion in this paper. We believe the simple fact that there
are many possible I/O models between file per process and
single shared file makes the former inadequate in providing

accessible understanding of parallel I/O. Furthermore, with
each test corresponding to a single execution the norm for
benchmarking is hold constant block/transfer sizes across
varying processor counts or to hold constant processor
counts across varying block/transfer sizes. In either of these
cases, Lustre stripe settings are configured appropriately, or
even varied as well to collect additional data. From one
test to the next resulting data almost always represents a
different amount of actual I/O performed and in the case
of also varying Lustre settings resulting data is difficult to
display intuitively.

We believe the key to understanding parallel I/O is in
benchmarking according to the following two criteria:

• I/O models between file per process and single shared
file must be measured, only then may the actual re-
lationship between an I/O model and performance be
understood.

• Such benchmarking provides comparable context only
when the overall size of I/O being performed is constant
across runs.

Our model for an application is therefore quite simple: an
amount of I/O to be performed. Given such an amount along
with a maximum number of nodes and processors per node
available to perform the I/O we want to iterate over all
possible I/O models within reason.

We now discuss the answer to “Which I/O models are
within reason?”. We have settled on a space of possible
I/O models bounded by the following three: serial I/O,
file per process I/O, and single shared file I/O. The space
spanned by these additionally include many combinations
of f files per node which may be shared across m nodes.
For example, we certainly want to cover file per node I/O
(which is often mentioned as an ideal target for aggregation
in I/O best practices) but also other non traditional I/O
patterns such as file per two nodes. A more complex case:
for eight processors per node, there are four files per node
and files are shared across four nodes. Therefore, there
are 8 processors writing to each file (two from each of
the four processors writing to the file). We think of the
differentiation among tests to relate to aggregation, serial I/O
is complete aggregation within a job and on the filesystem,
while single shared file is no aggregation within a job but
total aggregation on the filesystem. File per process employs
no aggregation.

There are clearly many potential I/O models; in each of
the tests described in Section V there are a total of 315.
While our initial intention was to utilize existing bench-
marking codes to simulate these non traditional I/O models,
examples such as the above ”more complex case” made this
impossible without being able to coordinate simultaneous
execution of multiple benchmarks both across and within
nodes which is not typically supported when launching
jobs on HPC resources and certainly not on Blue Waters.
We therefore created a custom benchmarking code that



Figure 1: Direct display of 315 I/O models in the space of
the number of processors performing I/O vs. the number of
processors writing to each file.

takes as input only the three aforementioned parameters:
I/O size, maximum number of processors, and maximum
number of processors available per node. Our code then
iterates over the various I/O models, always writing the
same I/O size, and measures POSIX write throughput with
parallel writes synchronized by hand with MPI barriers.
Furthermore our code need only be executed once without
iterations necessary through scripting. With regard to Lustre
settings, we simply ensure stripe alignment with the largest
possible stripe size via lustreapi, the C language API
for configuring Lustre stripe settings.

Upon analyzing results of a test run we selected the
following two axes to classify a specific I/O model: the
number processors (or units) participating in the I/O vs. the
number of processors writing to each file. Each of these have
a direct relationship to two types of aggregation discussed
above. Figure 1 shows a scatterplot of 315 I/O models
displayed in this space with common I/O models highlighted
therein.

IV. VISUALIZING BENCHMARK DATA

Figure 1 leaves much to be desired as a visual rep-
resentation of a parallel I/O classification. In this section
we describe and the few simple steps for improving this
representation to enable direct performance comparisons
among multiple I/O models. Figure 2 is an example of the
improved representation.

First, the we take the base two logarithm of each axis
to move successive points next to each other visually. This
works as each contributing processor must write an amount
of I/O that evenly divides the full I/O size. We then treat the
resulting combinations of (log) processor counts as the bins
of a 2D histogram. From there, we may select any number
of reduction operators to condense each bin to a single value
and color accordingly. In Figure 2 the typical count is used,
this image is colored by the count of the number of I/O

Figure 2: The improved representation, a 2D histogram over
the base two logarithm of number of processors performing
I/O vs. the logarithm of the number of processors writing
to each file. In this image, each bin is colored according to
the count of the number of I/O models the bin contains. For
315 tests, the maximum number of models in any bin is 12.

models, or 315 total, falling in each bin. In this example,
the maximum number of models for any bin is 12.

There are several benefits of this classification. When
viewed as a 2D space, any job fits nicely into this context.
Also, these axes do not form an orthogonal basis and col-
lapses in an interesting way; this allows for the clarification
of the relationship among I/O models, particularly those
commonly used. Furthermore, looking at I/O in this way
makes it necessary to test uncommon/unused I/O models,
say file per half job. We believe extensive testing in this
framework will help do two things: provide the “missing
links to be able to conceptualize application I/O globally,
and provide a natural framework for highlighting machine-
specific capabilities such as available number of OSTs. We
explore this in the next Section.

V. RESULTS

In this Section we detail the two experiments conducted
on the Blue Waters test and development system, JYC.
We used JYC as we could easily dedicate the machine
to our tests thereby providing the proof of concept of our
classification. For each test, a maximum number of 32 nodes
(of the available 54 XE6 nodes) and a maximum number
of 16 cores per node (available floating point cores) are
used. The difference of the two tests are the I/O sizes:



(a) 32MB I/O throughput. (b) 32MB I/O efficiency.

Figure 3: 2D histograms of writing 32MB on various node/core counts from 1 to 512 cores across 32 nodes. Each bin is a
maximum of throughput (a) or throughput per node hour (b) and represents an I/O model or set of models.

32MB vs. 32GB. The I/O sizes were chosen to represent
easily testable small (32 nodes, 16 cores per node, 64KB
stripes for a total of 32MB) and large (32GB as the largest
power of two file size able to be written by a single
core) tests. For the results shown in this Section (Figures 3
and 4) the reduction operator used for the 2D histogram is
the maximum. Each bin is then colored by the maximum
throughput of any I/O in that bin. For each test we create
an additional figure encapsulating the efficiency of the I/O
models, and is calculated as the throughput per node hour of
each I/O model. Node hour was chosen as this is the metric
by which Blue Waters project allocations are charged.

Figure 3 shows the results of our small I/O test. Fig-
ure 3(a) adheres to expectations; parallelizing I/O increases
I/O throughput proportionally. However, even at such small
scale testing file per process I/O is already not the model
with the highest throughput. Instead at least a small level
of aggregation on disk is required to achieve this. While
this supports the common notion that with little effort
high I/O throughput may be achieved utilizing a file per
process I/O pattern, Figure 3(b) supports parallel I/O best
practices. In that Figure, we can see that raw throughput
does not correspond to efficiency. Interestingly, what appears
most efficient corresponds closely to common HPC center
advice: aggregate to the node level. The sharp transition in
Figure 3(b) from low to high efficiency of I/O corresponds
to the point when multiple cores are writing to each of the

eight OSTs.
Figure 4 shows the results of our large I/O test. With the

larger test, we are not able to achieve even near maximal
throughput with file per process. Among the maximal raw
throughputs are now the file per node I/O model, although
additional aggregation on disk in some instances does indeed
result in higher raw throughput. Figure 4(b) highlights the
critical importance of correct tuning for parallel I/O. In that
Figure there are few efficient I/O models, but these are
well aligned with the models offering good throughput. In
both cases and to our knowledge, for the first time, we are
able to provide I/O benchmark results that not only provide
advice on how to optimize an application’s I/O (we provide
an upper bound on what to expect from the development
effort to aggregate I/O) but also evidence that validates in
a clear and accessible way the best practices provided by
HPC centers.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented a new classification for parallel
I/O that in a single context provides an understandable dis-
play of performance that may help optimize an application’s
I/O but also provides evidence of the appropriateness of
HPC centers’ best practices. This work is a first step and
is rich with potential directions for future effort. First, this
new setting provides additional opportunities for filesystem
analysis. Simply changing the reduction operator for the bins
of the 2D histogram may provide additional insights. For



(a) 32GB I/O throughput. (b) 32GB I/O efficiency.

Figure 4: 2D histograms of writing 32GB on various node/core counts from 1 to 512 cores across 32 nodes. Each bin is a
maximum of throughput (a) or throughput per node hour (b) and represents an I/O model or set of models.

example, a cursory look at using variation as the reduction
operator shows outliers in each of our test cases; we need to
further analyze the relationships among I/O models falling
in the same bin.

Additionally, much further testing is necessary. It is
unclear whether the results presented in this paper are
possible to reproduce with alternate APIs as the inclusion
of elements such as metadata increase difficulty in ensuring
stripe aligned I/O. Secondly, we must evaluate the effect
of usual system noise in a more realistic test setting, e.g.
on Blue Waters. Also as testing amounts to an application
specific parameter sweep, we need a framework that makes
such testing viable more generally for an HPC center.

ACKNOWLEDGMENT

This work is funded by the Blue Waters sustained-
petascale computing project, which is supported by the Na-
tional Science Foundation (awards OCI-0725070 and ACI-
1238993) and the state of Illinois. We would like to thank
Kalyana Chadalavada for many thought provoking conversa-
tions regarding I/O classifications as well as Mark Van Moer
for helping work through possible visual representations.

REFERENCES

[1] K. Chadalavada and R. Sisneros, “Analysis of the blue waters
file system architecture for application i/o performance,” in
Cray User Group Meeting (CUG 2013), Napa, CA, 2013.

[2] “I/O and Lustre usage.” [Online]. Avail-
able: https://www.nics.tennessee.edu/computing-resources/
file-systems/io-lustre-tips#io-best-practices

[3] “Optimizing I/O performance on the Lustre file
system.” [Online]. Available: http://www.nersc.gov/users/
storage-and-file-systems/optimizing-io-performance-for-lustre

[4] R. Thakur, E. Lusk, and W. Gropp, “Users guide for romio:
A high-performance, portable mpi-io implementation,” Tech-
nical Report ANL/MCS-TM-234, Mathematics and Computer
Science Division, Argonne National Laboratory, Tech. Rep.,
1997.

[5] “IOR: interleaved or random hpc benchmark.” [Online].
Available: https://github.com/chaos/ior

[6] H. Shan and J. Shalf, “Using IOR to analyze the I/O per-
formance for HPC platforms,” in Cray Users Group Meeting

(CUG) 2007, Seattle, Washington, May 2007.

[7] P. Wauteleta and P. Kestener, “Parallel IO performance and
scalability study on the PRACE CURIE supercomputer,” Part-
nership For Advanced Computing in Europe (PRACE), Tech.
Rep., September 2009.

[8] R. Henschel, S. Simms, D. Hancock, S. Michael, T. John-
son, N. Heald, T. William, D. Berry, M. Allen, R. Knepper,
M. Davy, M. Link, and C. A. Stewart, “Demonstrating lustre
over a 100gbps wide area network of 3,500km,” Salt Lake City,
Utah, 11/2012 2012.


