
A Classification of Parallel I/O Toward
Demystifying HPC I/O Best Practices

Rob Sisneros

Summary

•  Communicating parallel I/O
•  Training
•  Performance
•  Best practices

•  The problem
•  The work

•  Shuffling assumptions
•  A solution

THE INTRODUCTION TO
PARALLEL I/O

Some slides I gave to new Blue Waters users

Lustre File System: Striping (Intro 1)

•  File striping: single files are distributed across a
series of OSTs
•  File size can grow to the aggregate size of available

OSTs (rather than a single disk)
•  Accessing multiple OSTs concurrently increases I/O

bandwidth

Logical
Physical

Large Scale I/O in Practice (Intro 2)
•  Serial I/O is limited by both the I/O bandwidth of a single

process as well as that of a single OST
•  Two ways to increase bandwidth:

0	 1	 2	 3	 4	

File	

0	

File	

1	

File	

2	

File	

3	

File	

4	

File	

File-Per-Process (Intro 3)
•  Each process performs I/O on its own file

•  Advantages
•  Straightforward implementation
•  Typically leads to reasonable bandwidth quickly

•  Disadvantages
•  Limited by single process
•  Difficulty in managing a large number of files
•  Likely requires post processing to acquire useful data
•  Can be taxing on the file system metadata and ruin everybody’s day

0	

File	

1	

File	

2	

File	

3	

File	

4	

File	

Shared-File (Intro 4)
•  There is one, large file shared among all processors which

access the file concurrently

•  Advantages
•  Results in easily managed data that is useful with minimal

preprocessing
•  Disadvantages

•  Likely slower than file-per-process, if not used properly
•  Additional (one-time!) programing investment

0	 1	 2	 3	 4	

File	

Performance Impact: Configuring File Striping (Intro 5)
•  lfs is the Lustre utility for viewing/setting file striping info

•  Stripe count – the number of OSTs across which the file can be striped
•  Stripe size – the size of the blocks that a file will be broken into
•  Stripe offset – the ID of an OST for Lustre to start with, when deciding

which OSTs a file will be striped across
•  A pool of OSTs to stripe across may also be specified – unlikely to be

useful as you can not create a pool
•  Configurations should focus on stripe count/size
•  Blue Waters defaults:
 $> touch test
 $> lfs getstripe test
 test
 lmm_stripe_count: 1
 lmm_stripe_size: 1048576
 lmm_stripe_offset: 708
 obdidx objid objid group
 708 2161316 0x20faa4 0

Setting Striping Patterns (Intro 6)
$> lfs setstripe -c 5 -s 32m test
$> lfs getstripe test
test
lmm_stripe_count: 5
lmm_stripe_size: 33554432
lmm_stripe_offset: 1259
 obdidx objid objid group
 1259 2162557 0x20ff7d 0
 1403 2165796 0x210c24 0
 955 2163063 0x210177 0
 1139 2161496 0x20fb58 0
 699 2161171 0x20fa13 0

•  Note: a file’s striping pattern is permanent, and set upon creation
•  lfs setstripe creates a new, 0 byte file
•  The striping pattern can be changed for a directory; every new file or directory

created within will inherit its striping pattern
•  Simple API available for configuring striping – portable to other Lustre systems

THE HIGH LEVEL ADVICE
There is no winner

And the Winner is… Neither? (Intro 7)
•  Both patterns increase bandwidth through the addition of I/O

processes
•  There is a limited number of OSTs to stripe a file across
•  The likelihood of OST contention grows with the ratio of I/O

processes to OSTs
•  Eventually, the benefit of another I/O process is offset by added

OST traffic
•  Both routinely use all processes to perform I/O

•  A small subset of a node’s cores can consume a node’s I/O
bandwidth

•  This is an inefficient use of resources
•  The answer? It depends… but,

•  Think aggregation, a la file-per-node

MORE ADVICE: BEST PRACTICES

•  Use large data transfers and buffer when possible
•  Consider using MPI-IO and other I/O libraries

•  Portable data formats vs. unformatted files
•  Limit the number of files in a single directory
•  Use system specific hints and optimizations

•  Avoid misaligned operations
•  Exploit parallelism using striping

•  Focus on stripe alignment, avoiding OST
contention

•  Don’t default to file-per-process model
•  Use aggregation and reduce number of output files

THE WARNING
Following best practices

Variation of the Following

•  From “Application Scalability and Parallel I/O”
presentation by William Gropp
•  No easy recipe
•  Performance can be lost anywhere
•  Rules of thumb can be misleading
•  Specifics depend on the application

BENCHMARKING I/O
Backing up our claims

IOR

•  Benchmark performance of various libraries for
shared file I/O and file-per-process I/O

•  Processors write data “blocks” in series of
“transfers”

•  These things are tuned along with different Lustre
stripe settings to display performance results

Example Result (From NICS)

How to Determine Stripe Settings?

•  Subtle, and completely left out of my “intro” talk!
•  From NERSC:

PROBLEMS

Best Practices, In Practice

•  Really two categories
•  Experience based, made vague to give idea of

how to improve performance
•  General to system, provided from perspective of

fully loaded machine, not necessarily from single
user’s experience

•  Benchmarking rarely provides clear evidence of
either

The Result

•  How many applications are exceptions to the
rules? Probably all of them.

•  We hand tune applications to adhere to the best
practices we all agree on
•  Ensuring I/O is stripe aligned
•  Avoiding OST contention

THIS WORK

The Idea

•  Our Efforts as Creators of “Best Practices”
•  Too focused on aspects that we are unable to

usefully generalize
•  Too reliant on deep knowledge of I/O intricacies
•  Size is underrepresented

•  Let’s forget explaining stripe settings and start the
generalization at the application level
•  Categorize an application entirely by size of I/O
•  Generalize I/O Models

The Hope

•  Filling in the gaps in current I/O models (between
file-per-process and shared file) will
•  Create valuable performance data
•  Allow us to categorize I/O models in an

understandable context
•  We can provide understandable evidence that

backs up our best practices

Gaps in I/O Models

•  Likely exist for good reason: maybe “file per 2
cores per 3 nodes” doesn’t make sense

•  Complicated to generate and benchmark
•  IOR is not usable in this case, need custom

benchmark code

The Custom Code

•  Input arguments: I/O size (to match with an
application’s write phase), maximum nodes and
processors per node to use

•  Called with single aprun with maximum nodes/
ppn

•  Iterates through non-crazy I/O patterns keeping
write size consistent

Examples of Non-Crazy Patterns

•  File per process
•  Single shared file
•  File per node
•  Combinations of f files per node shared across m

nodes
•  Measures only write time

Two Tests

•  Both conducted on Blue Waters test and
development system: JYC on 32 nodes, 16 ppn

•  I/O size 1: 33554432 (32 MB)
•  I/O size 2: 34359738368 (32 GB)

•  Number of tests in each case: 315!

The Classification:
Processors vs. Processors per File

Common Patterns

Serial

File per
Node

File per
process

Single
shared
file

Log It, 2D Histogram It:
Distribution of 315 Tests

32MB Throughput

32MB Efficiency: Throughput per Node Hour

32GB Throughput

32GB Efficiency: Throughput per Node Hour

Bonus Mysteries: Standard Deviation

Wrapping it Up

•  A context where I/O models are compared directly
against each other for a specific application
•  Valuable for an application
•  Backs up best practices

•  Provides upper bound on expected benefit to put the
effort into creating I/O aggregation

•  Models can be run machine wide to provide
additional measurement of increased OST contention

•  Stored typical benchmarking (altering sizes) results
can easily be incorporated – maybe similar sizes are
good enough?

