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Overview 

•  Complex I/O patterns result in poor performance 
•  Adaptive Mesh Refinement (AMR) I/O is complex 
•  Poor I/O stalls AMR simulations 
•  Contributions of this paper 
–  Identification of AMR I/O bottleneck in the Chombo library 
–  Collective buffering optimizations 

•  MPI-IO Collective buffering 
•  Novel Aggregated Collective Buffering (ACB) strategy 

–  I/O performance improvement with ACB 
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§  Simulations 
–  Multi-physics (FLASH) – 10 PB 
–  Cosmology (NyX) – 10 PB 
–  Plasma physics (VPIC) – 1 PB 

§  Experimental and Observational 
data 
–  High energy physics (LHC) – 100 PB 
–  Cosmology (LSST) – 60 PB 
–  Genomics – 100 TB to 1 PB 

§  Scientific applications rely on 
efficient access to data 
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Data-driven science 

LHC 

LSST 

Genomics 

Climate 
Dycore 

NyX 

VPIC 



Background – Adaptive Mesh Refinement (AMR) 
Dynamically adapts the spatial resolution of geometric meshes 
•  Improved efficiency of computational resources while meeting 

desirable error levels 

Block-structured AMR 
•  A hierarchy of levels of resolutions 
•  Boxes/Patches: non-overlapping, logically-rectangular regions  
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Sample AMR data structure 

1015 cells 
vs. 
130,000 cells  



AMR use cases – Ice sheet simulations 
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•  BISICLES is an AMR ice sheet model aimed at large 
(continental)-scale ice sheets, and is built on the Chombo 
framework 

•  Projections of future sea level rise resulting from impacts of 
climate change on large ice sheets 

Antarctica glacier, 
surrounded by ocean 
(dark blue). 

A rectangular region 
of ice (~30km x 
26km in real size) 
detaches from the 
main shelf 



AMR use cases – Climate simulations 
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•  The AMR Dycore is a high-accuracy AMR climate model 
“dynamical core” based on Chombo 

•  Significance: Identify atmospheric features (tropical 
cyclones, atmospheric rivers, etc.), and track them in time 
and at high resolution 

Atmospheric River, fig from ESRL 



A brief intro to Chombo 
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•  Software package for solving PDE-based physics models 
on AMR grids at large scales 

•  Utilities for simulating in domains with complex geometries, 
or on mapped grids   

 

Level 0 

Level 1 

Patches 

Hierarchy 

(A) (B) (C) 

(A) An example of a space-time adaptive mesh refinement 
calculation in a cubed sphere geometry, for Climate 
applications. (B) The hierarchical levels of mesh refinement are 
used to capture moving features (e.g., multiple overlapping 
pressure waves). (C) Each level of refinement consists of a 
group of patches, each contains multiple data points, and 
each point belongs to a single patch. Tracked features can 
span patches or multiple levels as they evolve in time. 



A brief intro to Chombo, cont. 
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•  Implements block-structured AMR  
–  Consists of hierarchy of uniform meshes, with resolution of 2 

consecutive levels related by the refinement ratio  
–  Each grid level divided into rectangular “boxes” 

3 level AMR grid with 3 
variables (u, v, p). The 
refinement ratio is 2 in 
each direction 



Distribution of data in Chombo 
applications 
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•  Boxes distributed across MPI processes to balance 
loads across processes as much as possible 
– Load for box is usually proportional to number of 

points in a box 

•  Typical load balancing procedure: 
– Sort by Morton ordering (lists spatially adjacent 

boxes together) 
– Apply Kernighan-Lim algorithm to distribute boxes 

•  Resulting distribution of boxes may appear random 



Chombo’s I/O pattern 
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•  Boxes arranged in 
lexicographic order in file 

–  Lexicographic order: Box B0 <= Box B1 
if lower left corner of B0 <= lower left 
corner of B1 in grid 

•  Processes write independently 
to non-contiguous regions in 
the file 

•  Separate write for each box 
•  Results in several small 

independent write calls 

Boxes distributed across MPI 
processes to balance loads 

Boxes in lexicographic order in file 
 
 
 



Performance bottleneck with current 
implementation 
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•  Separate write for each box results in several write calls 
overall 
– Large scale Chombo simulations can have ~105 boxes 
– Large overhead for processing many write calls 

•  Each call only writes small amount of data (~1-4 MB per 
box) 

•  Each call performs new seek to find file location for writing 
 



Experimental Evaluation – Systems  
•  NERSC Edison 
– Cray XC30 supercomputer with Lustre file system 
– The scratch2 file system has 96 OSTs with 72 GB/s 

peak I/O bandwidth 
•  4 OSTs per I/O server (OSS) 

•  NERSC Cori (Phase 1) 
–  Cray XC40 supercomputer with Lustre file system 
–  248 OSTs with 744 GB/s peak I/O bandwidth 

•  1 OST per I/O server (OSS) 
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Experimental Evaluation– Chombo I/O 
Benchmark 

13 

•  Isolates Chombo’s write 
functionality 

•  Provides control over amount 
of data written through a 
replication factor parameter. 

–  Parameter indicates number of 
times to replicate unit grid in each 
direction 

–  In the experiments, we set this 
replication factor to write out 61 
GB, 494 GB, and 987 GB data 
files 

2 views (front and side) of one unit 
of AMR grid used in experiments. 
Grid has 3 levels. Refinement factor 
between levels is 4 (in each 
direction). 



Darshan stats for existing I/O pattern 
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Darshan Counter Independent I/O 

Number of MPI-
IO writes 

115268 

Number of 
POSIX writes 

115628 

Most common 
access size 

4 M 

Count of most 
common access 
size 

115201 

2nd most common 
access size 

272 bytes 

Count of 2nd most 
common access 
size 
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Number and size of 
writes determined by 
number and size of 
boxes (total number of 
boxes = 115628, each 
box ~ 4 MB) 

Stats for run on Edison with 2304 
processes (96 nodes). 
File striped across 96 OSTs with stripe 
size of 8 MB. 494 GB was written.  



Aggregation with MPI-IO collective 
buffering 
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•  Idea: aggregate contiguous data into buffers to 
reduce number of write calls 

•  Subset of MPI processes assigned to perform the 
aggregation 

•  CB2 mode of MPI-IO collective buffering optimizes 
for the Lustre file system 



Collective buffering I/O pattern 
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•  Aggregators (A0,…) 
collect boxes and 
reshuffle them into 
buffers 

•  Each process only sends 
a single box in each 
collective call  
–  Each process can 

contain several boxes, 
resulting in many 
collective write calls 



Darshan stats for MPI-IO Collective 
buffering 
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Darshan Counter Independent I/O Collective 
buffering 

Number of MPI-IO 
writes 

115268 119808 

Number of POSIX 
writes 

115628 164270 

Most common 
access size 

4 M 4 M 

Count of most 
common access 
size 

115201 42689 

2nd most common 
access size 

272 bytes 8 M 

Count of 2nd most 
common access 
size 

15 4830 
 

Get some larger 
writes with collective 
buffering  

Number of CB aggregators = 
number of OSTs = 96 



Darshan stats for MPI-IO Collective 
buffering 
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Darshan Counter Independent I/O Collective 
buffering 

Number of MPI-IO 
writes 

115268 119808 

Number of POSIX 
writes 

115628 164270 

Most common 
access size 

4 M 4 M 

Count of most 
common access 
size 

115201 42689 

2nd most common 
access size 

272 bytes 8 M 

Count of 2nd most 
common access 
size 

15 4830 
 

Still have many small 
writes 

Get some larger 
writes with collective 
buffering  

Number of CB aggregators = 
number of OSTs = 96 



Aggregated Collective Buffering (ACB) 
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•  Aggregate all boxes 
into one buffer on each 
process 

–  Number of boxes copied 
into ACB buffer is a 
parameter, which can be 
tuned to balance 
performance and memory 
usage (future direction) 

•  MPI-IO aggregators 
reshuffle boxes for 
large contiguous writes 



Darshan stats for ACB 
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Darshan Counter Independent I/O Collective 
buffering 

ACB 

Number of MPI-
IO writes 

115268 119808 6912 

Number of 
POSIX writes 

115628 164270 63241 

Most common 
access size 

4 M 4 M 8 M 

Count of most 
common access 
size 

115201 42689 63177 

2nd most common 
access size 

272 bytes 8 M 272 bytes 

Count of 2nd most 
common access 
size 

15 4830 16 

ACB significantly 
reduces number 
of POSIX writes 



Darshan stats for ACB 
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Darshan Counter Independent I/O Collective 
buffering 

ACB 

Number of MPI-
IO writes 

115268 119808 6912 

Number of 
POSIX writes 

115628 164270 63241 

Most common 
access size 

4 M 4 M 8 M 

Count of most 
common access 
size 

115201 42689 63177 

2nd most common 
access size 

272 bytes 8 M 272 bytes 

Count of 2nd most 
common access 
size 

15 4830 16 

ACB significantly 
reduces number 
of POSIX writes 

Most writes are 
relatively large 



Performance on Edison 
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•  61 GB test: 576 procs (24 nodes), striped 
across 24 OSTs with 4 MB stripe size 

•  494 GB test: 2304 procs (96 nodes), striped 
across 96 OSTs with 8 MB stripe size 

•  987 GB test: 5760 procs (240 nodes), stripes 
across 96 OSTs with 16 MB stripe size  

•  ACB is 2.6x to 3.8x 
faster than 
independent I/O 

•  ACB is 2x to 2.6x 
faster than collective 
buffering 

•  Striping affects 
performance of 
collective buffering 
on 987 GB test case 



Performance on Cori 
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•  61 GB test: 576 procs (24 nodes), striped across 24 
OSTs with 4 MB stripe size 

•  494 GB test: 3072 procs (96 nodes), striped across 96 
OSTs with 8 MB stripe size 

•  987 GB test: 5856 procs (244 nodes), stripes across 244 
OSTs with 16 MB stripe size  

 
 
 

•  ACB is 5.7x to 9.6x 
faster than 
independent I/O 

•  ACB is 1.6x to 1.8x 
faster than collective 
buffering 



Evaluation with Lustre striping - 
Edison 
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ACB is 2x to 3.4x faster than 
independent I/O, and 2x to 
2.6x faster than collective 
buffering 

Experiment specifics: 
•  2304 procs (96 nodes) 
•  494 GB file 
•  Striped across 96 OSTs 
•  Stripe size = 8 MB 



Evaluation with Lustre striping - Cori 
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ACB is 3.9x to 9.1x faster than 
independent I/O, and 1.5x to 
1.8x faster than collective 
buffering  

Experiment specifics: 
•  3072 procs (96 nodes) 
•  494 GB file 
•  Striped across 96 OSTs 
•  Stripe size = 8 MB 



Performance of BISICLES w/ ACB 
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•  Simulates evolution of Antarctic ice sheet over time 
•  Solves nonlinear equation for ice velocity and advects the ice 
•  Results in many boxes of varying sizes 

•  Finest level contains 896 boxes; number of cells in a box ranges between 
256 and 4096 cells; each process has at least one box; maximum 
number of boxes on a process is 6; average number of boxes is 1.5 

Antarctic ice-sheet velocity field. The inset shows the refined 
meshes around the Pine Island Glacier in the Amundsen Sea 
Embayment. Pine Island Glacier (PIG) is the single greatest 
Antarctic contributor to sea level rise at the moment. 



Performance of BISICLES w/ ACB, cont 
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Run on 576 procs (24 nodes) on Edison. Files 
striped across 24 OSTs with stripe size of 4 MB.  

•  For checkpoint files, ACB is 
20X faster than independent 
I/O, and 13X faster than 
collective buffering 

•  For plot files, ACB is 13X 
faster than independent I/O, 
and 6.4x faster than 
collective buffering 



Darshan analysis of BISICLES I/O w/ ACB 
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Ind I/O Coll I/O ACB 

ACCESS SIZE 1 8736 5408 4 M 

COUNT 1 4085 3182 477 

ACCESS SIZE 2 5408 17920 272 

COUNT 2 3229 3059 69 

ACCESS SIZE 3 7680 19488 3848 

COUNT 3 3080 2646 51 

ACCESS SIZE 4 17920 7680 13160 

COUNT 4 1333 1281 40 

Ind I/O Coll I/O ACB 

ACCESS SIZE 1 73440 73440 4 M 

COUNT 1 1429 1529 322 

ACCESS SIZE 2 204000 38880 272 

COUNT 2 1378 1422 23 

ACCESS SIZE 3 38880 204000 544 

COUNT 3 1372 1298 13 

ACCESS SIZE 4 300000 396000 40 

COUNT 4 709 604 9 

Top four write sizes (ACCESS SIZE) and corresponding counts from Darshan logs 

Checkpoint file statistics Plot file statistics 

•  Independent I/O and collective I/O perform several small writes, 
especially for checkpoint files 

•  ACB writes out large chunks of data 



Conclusions and Future Work 
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•  ACB issues fewer write calls than collective buffering and 
independent I/O 
–  Each ACB write call sends relatively large chunks of data 

•  ACB speeds up independent I/O implementation by 2x to 
9.1x, and collective buffering by 1.5x to 2.6x 

•  Apply and analyze ACB performance on EBChombo and 
cubed sphere climate application (CAMR) 

•  Eliminate extra buffer copy in ACB, and use unions of 
hyperslabs to specify locations of boxes in memory 

•  Explore ACB performance on burst buffers 



Thanks! 
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