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Abstract 

This paper describes the use of contemporary web client-based 
interactive visualization software to explore HPC job scheduler 
usage data for a large system. Particularly, we offer a 
visualization web application to NOAA users that enables them 
to compare their experiences with their earlier experiences and 
those of other users. The application draws from a 30 day 
history of job data aggregated hourly by user, machine, QoS, 
and other factors. This transparency enables users to draw 
more informed conclusions about the behavior of the system. 
The technologies used are dc.js, d3.js, crossfilter, and 
bootstrap. This application differs from most visualizations of 
job data in that we largely eschewed the absolute time domain 
to focus on developing relevant charts in other domains, like 
relative time, job size, priority boost, and queue wait time. This 
enables us to more easily see repetitive trends in the data like 
diurnal and weekly cycles of job submissions. 

 
Keywords Data Analytics, Visualization & Storage, State of 

the Practice 

 

I. INTRODUCTION 
 

HPC metrics and historical usage monitoring and 
comparison have become organizational priorities for HPC 
centers for many different reasons. Among these are 
relevance in the information technology service management 
(ITSM) environment, customer relations, and user efficiency. 
Prior work has more than adequately covered the progression 
of metrics from a system monitoring tool (OSI layers 1-6), to 
application (layer 7).[1] We will momentarily examine some 
of these as well as tools more recently developed to address 
the workflow (meta-application, layer 7.5), and user (layer 
8), user organizations (layer 9), and government regulations 
and stakeholders (layer 10).[2] This progression has been 
neither coordinated nor unified in style or design goals, 
especially with respect to the scope of information provided. 
Organizational policies and perceived equities balances 
typically drive requirements for metrics and monitoring 
visualization tools at these levels of abstraction (layers 8-10). 

 

Currently ITSM is trending towards tools like HyperV / 
Puppet / Nagios / ManageEngine / ServiceDesk to achieve 
dynamic resource provisioning. The resulting technology 
looks a lot like scheduling of interactive jobs in HPC, but 
with added flexibility and system management features. This 
is relevant because these cloud / virtualization tools got their 
start in the metrics, performance management, and ITSM 
accounting space which HPC tools, especially ones like XD 
Metrics on Demand (XDMoD) are trying to reach for from 
the other side of the gulf: systems information. This dynamic 
in ITSM and cloud computing acts as a pressure on HPC 
metrics to be better, more responsive to user and 
management, and more mobile device friendly.[3] 

 
At the workflow and user levels of abstraction many 

visualization tools are domain specific, especially those 
made by users for their own efficiencies. Frequently these 
tools consist of scientific visualizations that reveal the 
progress made to date inherently in their content while 
simultaneously providing the scientist with evidence of 
whether the science is progressing as expected or has 
become unstable. This allows maximum throughput with the 
agility to identify failed experiments early and correct them 
and/or reallocate their resources before those resources are 
wasted on failed experiments. These efforts are wasting user 
time because they are duplicative. If HPC metrics and 
monitoring were serving users well they would get 60% of 
their monitoring needs met with no effort and 90% met with 
minimal effort spent to add their domain-specific 
information via a plugin module. Right now there is no 
product satisfying this need. 

 
Users prioritize getting their work accomplished quickly 

with a minimum of user intervention. Many users also care 
about silent failures and data integrity. These goals can result 
in the tailoring of workflows that are burdensome on HPC 
resources. This trend clearly informed provenance-centric 
workflow tools like iRODS.[4] One common metric is queue 
wait time as a variable tax on their HPC resource-bound 
critical path. User managers and principal investigators care 
about tracking HPC usage across their users and being able 
to retask allocation in response to shifts in research priorities.  
Stakeholders care about research cost effectiveness. The 
public and investors and by proxy HPC allocation boards 



care about resource usage maximization and its alignment 
with organizational priorities. 

 
Other user-driven workflows like Cylc have built-in 

status monitoring almost as a byproduct of building and 
evaluating the directed acyclic graph of the work to be 
accomplished during runtime.[5] Cylc only contemplates the 
experiment it is running, and lacks unified support for even 
the next level of abstraction: monitoring a single user’s 
workflows. It also does not provide passthrough for 
resource-level monitoring and accounting: you still need 
other tools to look at how much allocation you have left. 
This makes coordinating science versus resources difficult 
for one user, let alone whole labs. Finally, contemporary 
workflow and application developers have powerful 
continuous integration tools like Jenkins. 

 
Workflow manager developers prioritize empowering 

users to run more work with less input effort. Workflows 
exist to satisfy users, but there are practical limits on the 
complexity workflow software can achieve before the added 
complexity inhibits reliability goals. Moreover 
maintainability is a perennial challenge for workflow 
developers and one which competes for resources with 
reliability and self-healing. Also, traditionally workflow 
complexity has been attended by tighter coupling to the HPC 
resources the users run it on as well as a loss of flexibility. 

 
Oak Ridge National Laboratory’s Leadership Computing 

Facility MyOLCF web app centralizes access to account, 
allocation, and systems management notices for all HPC 
resources at ORNL that the user has access to. It performs 
admirably as a one-stop structured information dissemination 
management system focused on getting users only the status 
and notice information they are entitled to. 

 
XDMoD presents all manner of aggregated data to the 

user from several levels of abstraction. It presupposes that all 
users are entitled to the systemic perspective that is only 
possible when all other users’ usage metadata are available 
for comparison. Current solutions for HPC metrics present a 
vast amount of data, but it is disjoint and hard to view in 
context when it isn’t compartmentalized away from the user. 
Filtering is a challenge in today’s tools.  XDMoD, for 
example allows each chart to be filtered by deselecting data 
series.  However, the filter applied to one chart does not filter 
the data in other charts. Moreover, they do not work well on 
mobile devices. 

 
Most importantly, HPC metrics developers spend a great 

deal of time and development effort producing web 
applications that look like either client-server desktop 
applications or a generic dashboard. In so doing they spent 
time away from their core competencies in HPC while 
missing the opportunity to leverage the vast amount of 
development effort being spent in the mainstream of web 
development. 

 

Prior efforts must trade off between wasting compute 
resources to rerun unproductive benchmarks and achieving 
resource coverage in a timely manner to refresh confidence 
in the resources. This in itself is fraught because only some 
subset of failure modes are related to individual compute 
resources.  Many others are related to globally shared 
infrastructure like parallel file systems, networking, power, 
etc. Additionally the well-funded web and cloud community 
have products that provide this functionality with just a bit of 
customization. It is a type of tool used mostly for 
development called continuous integration (CI).[6] CI tools 
like Hudson/Jenkins can easily be adapted for systems 
testing purposes without encumbering maintenance of all of 
that framework code or presentation layer. Doing so would 
also present our user communities with an industry standard 
interface for automating the testing of their applications their 
HPC resources and give them yet more frictionless value-
add. 

 
Few tools are designed to give insight on whether and 

how other users may be exploiting the scheduler policies to 
gain unfair advantage. Such advantages may include getting 
their work through the queue faster than other allocated work 
and in extremis getting their windfall jobs to run rather than 
other users’ allocated work. 

 
This matters to users because HPC time is money and 

represents whose research progresses and whose does not. 
Moreover, many users have lengthy critical paths of chains 
of model jobs. Delays in these critical paths can cause 
scientists to miss important scientific and collaborative 
deadlines. Our toolset provides a step towards workflow-
aware allocation planning. 

 
Finally, no metrics tools integrate with other instances to 

cover the grids of resources users employ to get their work 
done. It may not be practical to get to such a state, but if it is 
it will be through standardized interfaces like syslog.  

 
Of the available HPC metrics solutions our efforts are 

closest to XDMoD, but much more tightly focused for the 
time being.  XDMoD has a lot of charts, but while individual 
charts can have series deselected, doing so does not 
crossfilter the datasets in other charts.  dc.js, and thus our 
tool can and is thus very like Tableau, but is open source and 
far more customizable than Tableau.  It also features 
transition animations that Tableau lacks.  This may seem 
trivial, but it is of great use in quickly evaluating the effect of 
changing the filter set.  This feature alone makes our tool 
exemplary for finding iniquity in job queue wait times in a 
way that XDMoD could never do and Tableau would 
struggle with.  Finally our security model is a lot simpler 
than Tableau's which must interact with a backend database 
directly.  We could move to this model with dc.js but we 
don't need to.  We will first present our design goals: 



II. DESIGN GOALS AND ARCHITECTURE FOR NOAA 
RESEARCH AND DEVELOPMENT HPC METRICS 

A. Design Goals: 
1. Aggregate data from many job-level sources to enable 

validation of scheduler and accounting correctness.  This 
goal and its primacy came from the original motivating 
impetus we had when starting down this path: that the 
vendor-provided accounting reporting was inaccurate and 
unusable.  One example of this was that we consistently 
experienced allocations going negative in value and the 
scheduler still charging work against them.  Our tools must 
skeptically observe the scheduler and accounting system 
from as many vantage points as possible in order to both 
provide all relevant information for reporting and to allow us 
to analyze which parts of the scheduler are the source of 
truth for each piece of information – and whether this is a 
variable thing. 

 
2. Produce a variety of credible reporting products from 

the gathered and organized data.  Reporting and monitoring 
products should be made to service a variety of needs: user, 
PI, HPC management, operations technicians, etc. 

 
3. Be extensible to at least the workflow level of 

abstraction (and preferably higher). Provide the interface and 
opportunity for workflow developers to integrate with our 
solution, enabling workflows to identify resource trouble 
based on prior runs’ metrics. 

 
4. Allow users and their management to interactively 

explore HPC usage data to promote transparency to our 
clients. 

 
5. Produce a visualization web app with a single 

codebase that works on mobile and desktop browsers. 
 
6. Leverage the open source contributions of the 

innumerable, deep-pocketed startup web companies whose 
focus is on making their web site/app easy to consume and 
interact with. Use off-the-shelf libraries with large user bases 
and active communities whenever possible. Code only 
domain-specific things, glue code, or core competencies. 

 
7. Add value and differentiate early, backfill more 

common features. Focus on non-time and periodic time 
related dimensions at first. There are plenty of tools that 
show absolute time histograms of data. Splunk and Kibana 
being but two. 

 

B. System Architecture 

 
Figure 1: HPC OLAP Reporting Architecture 

1) Sensing, Outgest, & Abstraction 
 
These modules comprise the largest part of our unique 

lines of code. They exercise the component under test, read 
the output, and coerce it if needed to match the format and 
units chosen for the fields it contains. It is worth noting that 
while our solution is designed to be extensible and scheduler 
agnostic that the system is currently only producing reporting 
for resources scheduled by one scheduler type, Adaptive 
Computing’s Moab and Moab Accounting Manager. These 
scripts, and all other automation is triggered by cron on the 
various systems. 

 
2) Flat Files Archive 

 
We transport flat text files from all of the various 

resources and archive them. This enables us to be less 
dependent on our online analytic processing (OLAP) 
database. Truly, if one does not have data in files somewhere 
(or possibly in an archival database), then it is at 
unreasonable risk of corruption and/or loss due to software 
licensing issues, database bit rot, or bugs.  For accounting 
data we can go back to the accounting system for as long as 
that accounting system is still alive, but for scheduler state 
(e.g. showq, checkjob output), our flat files are the record of 
what the state was at the time and there is no other backup. 

 
3) OLAP Ingest 

 
Because we have the flat files the database can be 

recovered from potential corruption at the rate of one month 
per two hours of run time. This is much slower than the 
previous design, but has been optimized as there are a lot of 
checks against the previous state of each attribute of each job 
in order to minimize duplicate entries and save on read query 
time.  We are reading samples taken every 5 minutes and 
only inserting each datum if it has changed since the last 
reading.  This additional level of normalization makes the 
data far more easily queried by arbitrary novel queries.  The 
main body of tables represent a timeline of our sampled 
observations of each job in the system.  Most of our novel 



queries look for inconsistency in the records of our different 
sources or for discrepancies in how one job may be treated 
by the scheduler versus other similar jobs (i.e. skepticism of 
the scheduler and accounting systems). 

 
The job database module is revised from a simpler initial 

design that worked 90% of the time but was inaccurate 
during specific times when the system received scrutiny. 
Specifically it had a single table for jobs with one row per 
job. Jobs that run more than once reflected the correct 
amount charged, but it was impossible to keep the different 
start and stop times for each run. This causes reporting issues 
when the system is requeued for a planned maintenance near 
an allocation refresh. This happens several times a year. Our 
first design was also unable to find many of the 
scheduler/accounting system inconsistencies we have 
identified using the new design. 

 
Our new design has a static table for job attributes that 

are not expected to change and for which we would like an 
alert if they do change. It then has one table per attribute that 
changes over time. Different data sources can and do have 
duplicate attribute data. We have a temporary measure in 
place that chooses a source of truth for each attribute. This 
structure is how we represent job data. We still keep simple 
tables for allocation, account, user, and several other objects 
common in schedulers that represent controlling access to 
allocation by user, resource, and time. We also create 
materialized views of our job data to enable certain reports to 
complete their queries more quickly. One of these looks 
rather like our old job table, but is really a job run instance 
view, providing aggregated status of all needed job attributes 
at each accounting_completiontime of each job. 

 
4) Reporting Production & Distribution 

 
Right now all of our reporting product is written to files 

which are handed to whatever presentation layer consumes 
them. These products are .xls spreadsheets, sqlite3 database 
files for CLI presentation, .png and .svg graphics for static 
user-facing web site charts, and JSON for our dc.js-based 
interactive charting web application. We could support 
RESTful access to this database, but we have not yet found a 
need for it and do not want the load variability on the 
database caused by users choosing to view a product site at 
the same time. Finally, this is a big and complicated enough 
subsystem that we have implemented Nagios reporting of the 
state of our reporting production and distribution. 

 
5) Presentation Tools 

 
CLI hpcrpt We export a materialized view of our job 

run instance materialized view that aggregates data grouped 
by accounting server, machine, account, queue, qos, and user 
along with our smaller tables.  We have a python script that 
ingests that into an in-memory database and generates the 
desired report at the asked-for level of abstraction.  This 
includes reports for past months. 

 

Wiki Charts and Spreadsheets We also provide a 
number of reporting products to the users via a wiki and 
several other constituent groups. The system has python xlwt 
and xlsxwriter modules that produce reports for 
management. It also produces text tables and PNG charts for 
the HPC queue policy committee. These charts in particular 
attempt to provide that committee with metrics that fit their 
attempts to measure the fairness of queue policies and the 
system that implements those policies. In these charts we 
show average queue wait times for jobs binned by job size in 
cores, one chart per priority level. 

 
sqrpt One reporting product we have that is dynamic 

enough to need database access is sqrpt. This is a CLI tool 
that provides drilldown reporting on HPC resource usage and 
queue wait times in a tabular format. In order to provision 
database access, we dump a snapshot of our materialized 
view to a file as a reporting product file and distribute that to 
systems that have the tool. We could have opened up a 
RESTful interface but that would have introduced a lot of 
infrastructure design and networking change for relatively 
minimal gains given the low frequency with which we gather 
data from in particular the vendor online transaction 
processing (OLTP) accounting system. 

 
The dc.js Web App As part of our organization’s efforts 

to be as transparent as possible to our user community about 
what the scheduler is doing and how users are using the 
system we decided to make an interactive charting web 
application. Because it is of interest to our users we focus on 
providing the ability for our users to explore the same 
parameter space their existing reports come from, but far 
more freely and interactively. There are a lot of commercial 
resources being spent figuring out how to present and 
interact with data on the web in a usable (and beautiful) 
manner. It makes sense to leverage that and spend our efforts 
on our areas of expertise and glueing it all together into a 
production tool. For this project we used the open source 
Dimensional Charting Javascript (dc.js) library together with 
Twitter Bootstrap and jQuery.[7][8] dc.js is used for 
interactive data analytic web apps in a wide variety of 
application domains, from budget analysis and disaster relief 
aid gap analysis to criminal justice demographics 
analysis.[10][11][12] 

 
dc.js depends upon d3.js, a drawing library. We found 

that the d3.js library’s default JSON parser uses recursion 
and is halted by the user’s browser on JSON files with more 
than about 500 thousand key-value pairs. We altered the 
copy of d3.js we distribute to use json-sans-eval instead to 
mitigate this issue because 30 days of hourly aggregated job 
data for this web application is about 12MB.[9] It seems that 
neither the dc.js nor the d3.js developers tried using their 
tools on datasets as big as ours without connecting to a 
backing database. This is reasonable given that their design 
space was for mobile devices a few years ago and the lax 
security model of web development. They may have 
prioritized the validation provided by the default JSON 
parser. While we may move to CSV to reduce size further 



we have not yet done so. The data file is a JSON file with the 
following fields per record. 

 
charge (core-seconds), 
charge_hour (date-time group), 
charge_time (unix time), 
gold (accounting manager), 
machine (compute partition), 
num_jobs (count), 
processors (number of cores), 
project (allocated group), 
qos (windfall, norm, or debug), 
queue (batch, persistent, urgent, inter*, debug), 
quote_time (unix timestamp), 
start_time (unix timestamp), 
user (First.Last), 
wc_limit (seconds), 
wf_charge (core-seconds) 
 
Here is an example record: 
 
{ 
"charge": 1385952, 
"charge_hour": "2014120402", 
"charge_time": 1417658841, 
"gold": "gaea", 
"machine": "c1", 
"num_jobs": 1, 
"processors": 32, 
"project": "some_account", 
"qos": "debug", 
"queue": "inter72", 
"quote_time": 1417615457, 
"start_time": 1417615483, 
"user": "Jane.Doe", 
"wc_limit": 43200, 
"wf_charge": 0 
}, 
 
The resulting product uses a single codebase for all 

browsers including mobile devices and looks like the 
snapshot below. Clicking on the charts filters the data by the 
dimension displayed in the chart clicked, using the value(s) 
clicked in the filter. After each interaction all charts and the 
URL are updated. The latter allows filter state to be shared 
and acts RESTful even though the web application is not 
actually making dynamic “calls” to a web server. The model 
of pushing reporting files out to presentation layers also 
reduces complexity of our web app’s deployment footprint 
and thus reduces security risks to NOAA HPC networks. 
NOAA users get a contemporary web app with client-side 
interactive responsiveness with just a few (SSL) HTML 
GETs. 

 
The currently deployed version of the web application 

(webapp) does not have the bottom chart of cores used 
versus absolute time.  That chart was at the edge of dc.js 
capabilities because it requires a set of aggregations not able 
to be placed into the same table of data as the rest.  The 

increment in the table being visualized is an hourly 
aggregation of a user's jobs of each size and account.  The 
absolute time chart needs to know which jobs were active at 
any given hour. 

III. RESULTS 

A. Using The Interactive Web Application 
Users interact with the charts by clicking them or 

touching them on a mobile device.  These acts filter the data 
in all charts accordingly.  Most users care about whether 
their work experienced undue queue wait time.  They also 
want to be able to easily tell which priority level to ask for 
and if they are likely to be able to pick up any windfall time.  
We'll take a look at the former via a series of consecutively 
applied filters in figures 2-11. 

Figure 2 shows the webapp as it would have appeared at 
the end of September 2015.  We can see from the queue wait 
bubble chart that gfdl_f group's windfall work waited the 
longest (blue circle on the right of the bubble chart).  In 
figure 3 we click that bubble and the rest of the data are 
filtered by it.  Note that almost all of this work ran after the 
downtime shown in figure 2 in the absolute time chart.  This 
reveals what we know institutionally that this group runs test 
work and they leave that test work held in the scheduler 
queue in case return from downtime tests are needed.  If we 
were to have selected their account from the top bar chart we  
would have seen that they almost exclusively submit work 
during the work week and the work day.  This also befits this 
group's work role as workflow and model developers/testers. 

We reset that filter and instead set a new filter to remove 
all windfall work from the dataset.  In figure 4 we can see 
that windfall work must have only run at the end of the 
month or was carried over into the new month after having 
started at the end of the last month.  We also see that there is 
a spike of long queue wait time for certain small jobs in the 
queue wait vs job core size chart (the line chart below the 
bubble chart and to the right.  We apply a brush filter to that 
chart which is shown in figure 5. 

dc.js includes user interface gestures like brushing 
(clicking and dragging) to set your filter. Once you have a 
brush you can click and drag the brush around the chart. This 
refilters your data and allows the user to reproduce arbitrary 
bins for averaging that they were getting as manual 
adjustments to their earlier static reporting product. More 
importantly they can see the breakouts of which job sizes in 
particular had long queue wait times. You can see that all the 
other charts were filtered to break down the data that satisfies 
the filter. This is particularly dramatic in the bubble chart 
where most of the project:qos bubbles are gone because 
those users did not submit jobs in the size range of the brush 
filter. Clearly gfdl_b’s allocated work waited longer than 
other allocated work in this filter. 

More striking is that work in this size range submitted at 
8AM waited an inordinate time.  We click that bar to filter 
the data again which makes gfdl_b's bubble move even 
further away from the pack with normal queue wait times in 
figure 6. We click that bubble now and are left with just 10 
jobs in figure 7. We know this because below all the charts is 



a table of users grouped by account whose work is in the 
current filter set. We brush the absolute time chart of running 
job count below the absolute time chart of cores in use chart 
until we find the job(s) that make the gfdl_b bubble show an 
even longer wait.  This is shown in figure 8.  The job waited 
over 1000 hours to run and is certainly worth investigating.  
If a user sent us the URL from their exploration of this data 
we would get their filter set too and be able to get to exactly 
which job was in question.  This takes vague unspecific 
complaints of unfairness and the system not liking a user to a 
job which might have experienced a real problem.  It is 
possible that this job was held for an extended time and that 
is the first thing we would ask our backend database.  An 
obvious improvement would be to remove time jobs are 
ineligible to run from consideration in these charts. We hope 
to make that improvement as it would further reduce false 
alarms. 

 
In short dc.js is so powerful because it gives you easy 

status via averages, but allows you to easily dig through the 
data for outliers. This is even more true because the finer-
grained data is shown within the filter brush, letting us see 
that only some job sizes within the bin experienced high 
queue wait times. This has been a key insight for helping our 
users understand the nonlinear nature of queue wait vs job 
size as a fairness metric. We have an internal version that 
uses unaggregated data that allows us to dig all the way to 
job ids. We do not publish that for general consumption for 
performance and mobile device frendliness reasons: the 
unaggregated data file for 30 days is about 50-75MB. Once 
we have the jobids we can easily go get the stdout locations 
for the jobs of concern, as well as node information. 

B. Getting the Most From the Reporting Database 
The process of developing, testing our database design, 

and porting our reporting scripts revealed many bugs in the 
scheduler and accounting system that resulted in about 13 
vendor tickets. The most interesting of these issues was a 
case where the scheduler had record of jobs that the 
accounting system did not have. This turned out to be a load 
issue on the vendor OLTP accounting system combined with 
a lack of retry logic in the scheduler.   

 
However, most were rough edges that did little more than 

increase our LoC count with handling code.  For example, 
users can specify their stdout paths to the scheduler with 
environment variables.  The scheduler sometimes substitutes 
these variables in the checkjob output and sometimes does 
not.  We are interested in each job's finalized stdout path, so 
we now have logic that does what the scheduler ought to be 
able to do on its own for us. 

 
Another accounting system issue that arose was that 

some jobs' start times were truncated due to the accounting 
system not checking whether the data it was storing about a 
job would fit in the database field assigned to it.  This made 
it impossible to verify that the amount charged was correct 
from just accounting system data for jobs effected by the 
issue. 

 
We also became aware through this process that the 

scheduler/accounting system could not provide a uniform 
charging policy.  Work that spanned the month boundary 
could either charge against the allocation from the month it 
started in or the month it ended in.  It is imperative that the 
accounting system behave predictably or else users will 
rightly determine the system is capricious and untrustworthy 
at the very point they most care about: how much compute 
time they have left. 

 
Since the deployment of the new reporting database we 

have also used it to construct novel queries to verify the 
coherence of the scheduler and accounting data.  Some of 
these have led to other vendor tickets.  Here follows an 
example of the query we used to identify an issue where two 
copies of a job were running at the same time. In it we ask 
for jobs with an unequal number of accounting completions 
versus scheduler completions. 

 
select u.*, max(queued_job_dynamic_procs.procs) from (select t.*, 
count(queued_job_dynamic_accounting_completiontime.gjid) as 
mam_count, queued_job_dynamic_accounting_completiontime.gjid as 
mam_gjid from ( select distinct ss.*, 
queued_job_dynamic_account.account from (select s.*, 
max(queued_job_dynamic_account.sample_time) as sample_time from 
(select count(gjid) as moab_count, gjid as moab_gjid, mam from 
queued_job_dynamic_completiontime where mam='theia' and 
sample_time<1448928000 and sample_time>1447545600 group by mam, 
gjid) as s left join queued_job_dynamic_account on 
queued_job_dynamic_account.mam=s.mam and 
queued_job_dynamic_account.gjid=s.moab_gjid and 
queued_job_dynamic_account.sample_time<1448928000 and 
queued_job_dynamic_account.sample_time>1447545600 group by 
queued_job_dynamic_account.gjid) as ss left join 
queued_job_dynamic_account on 
queued_job_dynamic_account.mam=ss.mam and 
queued_job_dynamic_account.gjid=ss.moab_gjid and 
queued_job_dynamic_account.sample_time=ss.sample_time) as t left join 
queued_job_dynamic_accounting_completiontime on 
t.mam=queued_job_dynamic_accounting_completiontime.mam and 
t.moab_gjid=queued_job_dynamic_accounting_completiontime.gjid where 
queued_job_dynamic_accounting_completiontime.sample_time<14489280
00 and 
queued_job_dynamic_accounting_completiontime.sample_time>14475456
00 group by mam, moab_gjid having moab_count != mam_count) as u left 
join queued_job_dynamic_procs on 
queued_job_dynamic_procs.mam=u.mam and 
queued_job_dynamic_procs.gjid=u.moab_gjid group by u.moab_gjid; 
-------------------------------------------- 
| moab_count | moab_gjid | mam  | sample_time | account | mam_count | 
mam_gjid | max(queued_job_dynamic_procs.procs) | 
-------------------------------------------- 
... 
|1 | 5077529  | theia | 1447952594 | drt | 2 | 5077529 | 120 | 
|1 | 5077530  | theia | 1447952594 | drt | 2 | 5077530 | 120 | 
|1 | 5077531  | theia | 1447952594 | drt | 2 | 5077531 | 120 |  
 

We also discovered that while MariaDB (forked from 
MySQL) is fine for now that we actually have some 
motivation to migrate to PostgreSQL. Namely the fact that 
we use complicated UNION queries to build the materialized 
views our reporting needs and Postgres is able to push 
WHERE predicates into child queries where MariaDB is not.  



This makes maintaining these queries more difficult than 
they should be. 

 

IV. FUTURE WORK 
We are currently automating an analysis that scans job 

stdout files from jobs that have run in past to provide a 
baseline expected absolute and normalized initialization and 
run times so that we can monitor running work for 
unexpected filesystem or network problems causing jobs to 
hang which is unfortunately a common problem and is one 
that wastes a lot of user compute allocation. Whether and 
how a given workflow is a good candidate for runtime 
normalization is obviously workflow dependent and varies.  
Current weather and climate model workflows make good 
candidates due to those workflows running in relatively 
constant increments (model months/years). We also control 
normalization by user, experiment name, and core count. 
Figure 9 has a single user's workflows' normalized runtime 
history. Figure 10 for an example plot of user workflow 
normalized runtimes and figure 11 for that data applied to 
find nodes with the highest median normalized runtime.  
Today we can give cogent answers about job failure liability.  
Tomorrow we will be able to monitor each running 
workflow on our system against those histories. 

 
We already recognize the need to refine and extend the 

OLAP database schema to for instance use hash keys  and 
partitioned tables for speed. We would also like to keep all 
samples from every source for a given attribute and be able 
to query those in a manner that accounts for update lag in the 
different sampled tools rather than returning a time series for 
that attribute that is full of clock drift induced hysteresis. We 
also want to leverage the additional data sources better to 
subtract time jobs are held from their queue wait time to 
remove false alarm outliers. 

 
We absolutely agree with Furlani that metrics and 

monitoring need to be available to be active participants in 
the users’ workflows. Likewise, workflows need to be able 
to be participants in HPC metrics and monitoring. 
Establishing grid-wide application logging for our transfer 
tool was so effective at helping us increase that tool’s 
reliability that such logging is a hard requirement for the next 
generation of NOAA GFDL’s workflow software. This sort 
of integration is a given once one accepts the impact that 
contemporary ITSM and cloud computing support software 
will have on HPC. People develop abstractions for a reason. 
Workflows abstract machine failures just as papers abstract 
the work done to run scientific experiments. One good chart 
would be to show a choropleth chart of normalized runtime 
by node, but to do that we really need workflow-level data. 
This may be a good reason to break (or at least expand the 
interface of) the abstraction between system and workflow. 

 
It remains to be seen which aspects of HPC management 

are most crucial, and in what measures to promoting the 
optimal progression of users’ science. Conventional wisdom 
seems to focus on the largest installations and the latest 

processors and interconnects. But our organizations know 
that some modicum of system reliability must exist or users 
will flee for more predictable resources. One of the central 
struggles in contemporary HPC is precisely how to extract 
reliability in scaled systems comprised of massive counts of 
commodity components. 

 
Beyond one center justifying its labor spend via 

monitoring transparency, this is the sort of question that can 
be tested if many HPC centers run transparent metrics: how 
much stability/reliability is enough? A very interesting future 
study would compare HPC center performance, reliability, 
administrative communication timeliness, and other statistics 
looking for correlations to the number and quality of user 
science papers or other product that emerges. 

 

V. CONCLUSIONS 
 
We have just deployed the interactive charting web app 

to a NOAA research and development HPC user community 
and like the other reporting product we derive from our 
OLAP database it has been met with approval. Our existing 
reporting output has become indispensable to our users and 
its accuracy has increased our users’ confidence in HPC 
management. Our experiences indicate that there is a gap 
between previous reporting tools and user/management 
needs. We have uncovered over 30 bugs in our scheduler and 
accounting systems ranging from the trivial to duplicate 
copies of jobs running concurrently as a result of moving our 
reporting to an OLAP database. Skeptical third party 
reporting also aligns incentives properly for reporting 
developers versus scheduler and accounting system vendors 
and reduces reporting burden on the vendor OLTP 
accounting database.  Providing good reporting also reduces 
users' duplicative monitoring scripts and their attendant load 
on the scheduler. We expect that we will continue extracting 
value from this architecture as our HPC life cycle progresses 
and we are able to quickly bring accurate reporting online for 
new resources. In the long term we expect dividends from a 
workflow ingest plugin module that will allow users to 
visualize future consumption over the lives of their 
experiments and make better allocation and research 
management decisions from it. 
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Figure 2: dc..js webapp 



 
Figure 3: Filtered by account:qos = gfdl_f:windfall.  Note how most usage is immediately after the downtime shown on Sep 

11 in Figure 2 

 
Figure 4: Windfall work is filtered out to let us look at the relative queue wait times of allocated work.  Most windfall work 

runs at the end of the month. 



 
Figure 5: Filtered to look at one of the queue wait spikes in the queue wait vs job size chart.  It seems that 8 AM was a bad 

time to submit work this size. 

 
Figure 6: Filtered to show just work of this size submitted between 8 and 9 AM EDT.  It looks like gfdl_b jobs were the ones 

impacted by this issue. 



 
Figure 7: Just looking at gfdl_b work.  It is all batch class which is the lowest priority after windfall.  Just 10 jobs in this 

filter set. 

 
Figure 8: This one job waited over 1000 hours to run.  It could have been on hold, but it is worth investigating.  We can find 
these trivially now, and so can our users.  It lets us get particularized data to evaluate and dramatically reduces complaints 

about the HPC organization caring about user work. 



 
Figure 9: One user's workflows' normalized runtimes 

 
Figure 10: That workflow in context of all other work on the HPC resource.  Clearly there was an event impacting nearly all 
work on the system at the end of the user's workflow history.  However the user's workflow is progressively taking more time 

due to factors not related to the system.

 
Figure 11: 200 highest median normalized runtime nodes.  This data is useful after discounting the top 10 or so highest 
runtime workflows.  Looking closer revealed that the consistently worst nodes are only about 5-10% slower than the fastest. 


