
Interactive Visualization of Scheduler Usage Data
or

Showing Users the Haystack

Daniel Gall
Engility Corporation

Princeton, NJ
Daniel.Gall@engilitycorp.com

Abstract

This paper describes the use of contemporary web client-based
interactive visualization software to explore HPC job scheduler
usage data for a large system. Particularly, we offer a
visualization web application to NOAA users that enables them
to compare their experiences with their earlier experiences and
those of other users. The application draws from a 30 day
history of job data aggregated hourly by user, machine, QoS,
and other factors. This transparency enables users to draw
more informed conclusions about the behavior of the system.
The technologies used are dc.js, d3.js, crossfilter, and
bootstrap. This application differs from most visualizations of
job data in that we largely eschewed the absolute time domain
to focus on developing relevant charts in other domains, like
relative time, job size, priority boost, and queue wait time. This
enables us to more easily see repetitive trends in the data like
diurnal and weekly cycles of job submissions.

Keywords Data Analytics, Visualization & Storage, State of

the Practice

I. INTRODUCTION

HPC metrics and historical usage monitoring and
comparison have become organizational priorities for HPC
centers for many different reasons. Among these are
relevance in the information technology service management
(ITSM) environment, customer relations, and user efficiency.
Prior work has more than adequately covered the progression
of metrics from a system monitoring tool (OSI layers 1-6), to
application (layer 7).[1] We will momentarily examine some
of these as well as tools more recently developed to address
the workflow (meta-application, layer 7.5), and user (layer
8), user organizations (layer 9), and government regulations
and stakeholders (layer 10).[2] This progression has been
neither coordinated nor unified in style or design goals,
especially with respect to the scope of information provided.
Organizational policies and perceived equities balances
typically drive requirements for metrics and monitoring
visualization tools at these levels of abstraction (layers 8-10).

Currently ITSM is trending towards tools like HyperV /
Puppet / Nagios / ManageEngine / ServiceDesk to achieve
dynamic resource provisioning. The resulting technology
looks a lot like scheduling of interactive jobs in HPC, but
with added flexibility and system management features. This
is relevant because these cloud / virtualization tools got their
start in the metrics, performance management, and ITSM
accounting space which HPC tools, especially ones like XD
Metrics on Demand (XDMoD) are trying to reach for from
the other side of the gulf: systems information. This dynamic
in ITSM and cloud computing acts as a pressure on HPC
metrics to be better, more responsive to user and
management, and more mobile device friendly.[3]

At the workflow and user levels of abstraction many

visualization tools are domain specific, especially those
made by users for their own efficiencies. Frequently these
tools consist of scientific visualizations that reveal the
progress made to date inherently in their content while
simultaneously providing the scientist with evidence of
whether the science is progressing as expected or has
become unstable. This allows maximum throughput with the
agility to identify failed experiments early and correct them
and/or reallocate their resources before those resources are
wasted on failed experiments. These efforts are wasting user
time because they are duplicative. If HPC metrics and
monitoring were serving users well they would get 60% of
their monitoring needs met with no effort and 90% met with
minimal effort spent to add their domain-specific
information via a plugin module. Right now there is no
product satisfying this need.

Users prioritize getting their work accomplished quickly

with a minimum of user intervention. Many users also care
about silent failures and data integrity. These goals can result
in the tailoring of workflows that are burdensome on HPC
resources. This trend clearly informed provenance-centric
workflow tools like iRODS.[4] One common metric is queue
wait time as a variable tax on their HPC resource-bound
critical path. User managers and principal investigators care
about tracking HPC usage across their users and being able
to retask allocation in response to shifts in research priorities.
Stakeholders care about research cost effectiveness. The
public and investors and by proxy HPC allocation boards

care about resource usage maximization and its alignment
with organizational priorities.

Other user-driven workflows like Cylc have built-in

status monitoring almost as a byproduct of building and
evaluating the directed acyclic graph of the work to be
accomplished during runtime.[5] Cylc only contemplates the
experiment it is running, and lacks unified support for even
the next level of abstraction: monitoring a single user’s
workflows. It also does not provide passthrough for
resource-level monitoring and accounting: you still need
other tools to look at how much allocation you have left.
This makes coordinating science versus resources difficult
for one user, let alone whole labs. Finally, contemporary
workflow and application developers have powerful
continuous integration tools like Jenkins.

Workflow manager developers prioritize empowering

users to run more work with less input effort. Workflows
exist to satisfy users, but there are practical limits on the
complexity workflow software can achieve before the added
complexity inhibits reliability goals. Moreover
maintainability is a perennial challenge for workflow
developers and one which competes for resources with
reliability and self-healing. Also, traditionally workflow
complexity has been attended by tighter coupling to the HPC
resources the users run it on as well as a loss of flexibility.

Oak Ridge National Laboratory’s Leadership Computing

Facility MyOLCF web app centralizes access to account,
allocation, and systems management notices for all HPC
resources at ORNL that the user has access to. It performs
admirably as a one-stop structured information dissemination
management system focused on getting users only the status
and notice information they are entitled to.

XDMoD presents all manner of aggregated data to the

user from several levels of abstraction. It presupposes that all
users are entitled to the systemic perspective that is only
possible when all other users’ usage metadata are available
for comparison. Current solutions for HPC metrics present a
vast amount of data, but it is disjoint and hard to view in
context when it isn’t compartmentalized away from the user.
Filtering is a challenge in today’s tools. XDMoD, for
example allows each chart to be filtered by deselecting data
series. However, the filter applied to one chart does not filter
the data in other charts. Moreover, they do not work well on
mobile devices.

Most importantly, HPC metrics developers spend a great

deal of time and development effort producing web
applications that look like either client-server desktop
applications or a generic dashboard. In so doing they spent
time away from their core competencies in HPC while
missing the opportunity to leverage the vast amount of
development effort being spent in the mainstream of web
development.

Prior efforts must trade off between wasting compute
resources to rerun unproductive benchmarks and achieving
resource coverage in a timely manner to refresh confidence
in the resources. This in itself is fraught because only some
subset of failure modes are related to individual compute
resources. Many others are related to globally shared
infrastructure like parallel file systems, networking, power,
etc. Additionally the well-funded web and cloud community
have products that provide this functionality with just a bit of
customization. It is a type of tool used mostly for
development called continuous integration (CI).[6] CI tools
like Hudson/Jenkins can easily be adapted for systems
testing purposes without encumbering maintenance of all of
that framework code or presentation layer. Doing so would
also present our user communities with an industry standard
interface for automating the testing of their applications their
HPC resources and give them yet more frictionless value-
add.

Few tools are designed to give insight on whether and

how other users may be exploiting the scheduler policies to
gain unfair advantage. Such advantages may include getting
their work through the queue faster than other allocated work
and in extremis getting their windfall jobs to run rather than
other users’ allocated work.

This matters to users because HPC time is money and

represents whose research progresses and whose does not.
Moreover, many users have lengthy critical paths of chains
of model jobs. Delays in these critical paths can cause
scientists to miss important scientific and collaborative
deadlines. Our toolset provides a step towards workflow-
aware allocation planning.

Finally, no metrics tools integrate with other instances to

cover the grids of resources users employ to get their work
done. It may not be practical to get to such a state, but if it is
it will be through standardized interfaces like syslog.

Of the available HPC metrics solutions our efforts are

closest to XDMoD, but much more tightly focused for the
time being. XDMoD has a lot of charts, but while individual
charts can have series deselected, doing so does not
crossfilter the datasets in other charts. dc.js, and thus our
tool can and is thus very like Tableau, but is open source and
far more customizable than Tableau. It also features
transition animations that Tableau lacks. This may seem
trivial, but it is of great use in quickly evaluating the effect of
changing the filter set. This feature alone makes our tool
exemplary for finding iniquity in job queue wait times in a
way that XDMoD could never do and Tableau would
struggle with. Finally our security model is a lot simpler
than Tableau's which must interact with a backend database
directly. We could move to this model with dc.js but we
don't need to. We will first present our design goals:

II. DESIGN GOALS AND ARCHITECTURE FOR NOAA
RESEARCH AND DEVELOPMENT HPC METRICS

A. Design Goals:
1. Aggregate data from many job-level sources to enable

validation of scheduler and accounting correctness. This
goal and its primacy came from the original motivating
impetus we had when starting down this path: that the
vendor-provided accounting reporting was inaccurate and
unusable. One example of this was that we consistently
experienced allocations going negative in value and the
scheduler still charging work against them. Our tools must
skeptically observe the scheduler and accounting system
from as many vantage points as possible in order to both
provide all relevant information for reporting and to allow us
to analyze which parts of the scheduler are the source of
truth for each piece of information – and whether this is a
variable thing.

2. Produce a variety of credible reporting products from

the gathered and organized data. Reporting and monitoring
products should be made to service a variety of needs: user,
PI, HPC management, operations technicians, etc.

3. Be extensible to at least the workflow level of

abstraction (and preferably higher). Provide the interface and
opportunity for workflow developers to integrate with our
solution, enabling workflows to identify resource trouble
based on prior runs’ metrics.

4. Allow users and their management to interactively

explore HPC usage data to promote transparency to our
clients.

5. Produce a visualization web app with a single

codebase that works on mobile and desktop browsers.

6. Leverage the open source contributions of the

innumerable, deep-pocketed startup web companies whose
focus is on making their web site/app easy to consume and
interact with. Use off-the-shelf libraries with large user bases
and active communities whenever possible. Code only
domain-specific things, glue code, or core competencies.

7. Add value and differentiate early, backfill more

common features. Focus on non-time and periodic time
related dimensions at first. There are plenty of tools that
show absolute time histograms of data. Splunk and Kibana
being but two.

B. System Architecture

Figure 1: HPC OLAP Reporting Architecture

1) Sensing, Outgest, & Abstraction

These modules comprise the largest part of our unique

lines of code. They exercise the component under test, read
the output, and coerce it if needed to match the format and
units chosen for the fields it contains. It is worth noting that
while our solution is designed to be extensible and scheduler
agnostic that the system is currently only producing reporting
for resources scheduled by one scheduler type, Adaptive
Computing’s Moab and Moab Accounting Manager. These
scripts, and all other automation is triggered by cron on the
various systems.

2) Flat Files Archive

We transport flat text files from all of the various

resources and archive them. This enables us to be less
dependent on our online analytic processing (OLAP)
database. Truly, if one does not have data in files somewhere
(or possibly in an archival database), then it is at
unreasonable risk of corruption and/or loss due to software
licensing issues, database bit rot, or bugs. For accounting
data we can go back to the accounting system for as long as
that accounting system is still alive, but for scheduler state
(e.g. showq, checkjob output), our flat files are the record of
what the state was at the time and there is no other backup.

3) OLAP Ingest

Because we have the flat files the database can be

recovered from potential corruption at the rate of one month
per two hours of run time. This is much slower than the
previous design, but has been optimized as there are a lot of
checks against the previous state of each attribute of each job
in order to minimize duplicate entries and save on read query
time. We are reading samples taken every 5 minutes and
only inserting each datum if it has changed since the last
reading. This additional level of normalization makes the
data far more easily queried by arbitrary novel queries. The
main body of tables represent a timeline of our sampled
observations of each job in the system. Most of our novel

queries look for inconsistency in the records of our different
sources or for discrepancies in how one job may be treated
by the scheduler versus other similar jobs (i.e. skepticism of
the scheduler and accounting systems).

The job database module is revised from a simpler initial

design that worked 90% of the time but was inaccurate
during specific times when the system received scrutiny.
Specifically it had a single table for jobs with one row per
job. Jobs that run more than once reflected the correct
amount charged, but it was impossible to keep the different
start and stop times for each run. This causes reporting issues
when the system is requeued for a planned maintenance near
an allocation refresh. This happens several times a year. Our
first design was also unable to find many of the
scheduler/accounting system inconsistencies we have
identified using the new design.

Our new design has a static table for job attributes that

are not expected to change and for which we would like an
alert if they do change. It then has one table per attribute that
changes over time. Different data sources can and do have
duplicate attribute data. We have a temporary measure in
place that chooses a source of truth for each attribute. This
structure is how we represent job data. We still keep simple
tables for allocation, account, user, and several other objects
common in schedulers that represent controlling access to
allocation by user, resource, and time. We also create
materialized views of our job data to enable certain reports to
complete their queries more quickly. One of these looks
rather like our old job table, but is really a job run instance
view, providing aggregated status of all needed job attributes
at each accounting_completiontime of each job.

4) Reporting Production & Distribution

Right now all of our reporting product is written to files

which are handed to whatever presentation layer consumes
them. These products are .xls spreadsheets, sqlite3 database
files for CLI presentation, .png and .svg graphics for static
user-facing web site charts, and JSON for our dc.js-based
interactive charting web application. We could support
RESTful access to this database, but we have not yet found a
need for it and do not want the load variability on the
database caused by users choosing to view a product site at
the same time. Finally, this is a big and complicated enough
subsystem that we have implemented Nagios reporting of the
state of our reporting production and distribution.

5) Presentation Tools

CLI hpcrpt We export a materialized view of our job

run instance materialized view that aggregates data grouped
by accounting server, machine, account, queue, qos, and user
along with our smaller tables. We have a python script that
ingests that into an in-memory database and generates the
desired report at the asked-for level of abstraction. This
includes reports for past months.

Wiki Charts and Spreadsheets We also provide a
number of reporting products to the users via a wiki and
several other constituent groups. The system has python xlwt
and xlsxwriter modules that produce reports for
management. It also produces text tables and PNG charts for
the HPC queue policy committee. These charts in particular
attempt to provide that committee with metrics that fit their
attempts to measure the fairness of queue policies and the
system that implements those policies. In these charts we
show average queue wait times for jobs binned by job size in
cores, one chart per priority level.

sqrpt One reporting product we have that is dynamic

enough to need database access is sqrpt. This is a CLI tool
that provides drilldown reporting on HPC resource usage and
queue wait times in a tabular format. In order to provision
database access, we dump a snapshot of our materialized
view to a file as a reporting product file and distribute that to
systems that have the tool. We could have opened up a
RESTful interface but that would have introduced a lot of
infrastructure design and networking change for relatively
minimal gains given the low frequency with which we gather
data from in particular the vendor online transaction
processing (OLTP) accounting system.

The dc.js Web App As part of our organization’s efforts

to be as transparent as possible to our user community about
what the scheduler is doing and how users are using the
system we decided to make an interactive charting web
application. Because it is of interest to our users we focus on
providing the ability for our users to explore the same
parameter space their existing reports come from, but far
more freely and interactively. There are a lot of commercial
resources being spent figuring out how to present and
interact with data on the web in a usable (and beautiful)
manner. It makes sense to leverage that and spend our efforts
on our areas of expertise and glueing it all together into a
production tool. For this project we used the open source
Dimensional Charting Javascript (dc.js) library together with
Twitter Bootstrap and jQuery.[7][8] dc.js is used for
interactive data analytic web apps in a wide variety of
application domains, from budget analysis and disaster relief
aid gap analysis to criminal justice demographics
analysis.[10][11][12]

dc.js depends upon d3.js, a drawing library. We found

that the d3.js library’s default JSON parser uses recursion
and is halted by the user’s browser on JSON files with more
than about 500 thousand key-value pairs. We altered the
copy of d3.js we distribute to use json-sans-eval instead to
mitigate this issue because 30 days of hourly aggregated job
data for this web application is about 12MB.[9] It seems that
neither the dc.js nor the d3.js developers tried using their
tools on datasets as big as ours without connecting to a
backing database. This is reasonable given that their design
space was for mobile devices a few years ago and the lax
security model of web development. They may have
prioritized the validation provided by the default JSON
parser. While we may move to CSV to reduce size further

we have not yet done so. The data file is a JSON file with the
following fields per record.

charge (core-seconds),
charge_hour (date-time group),
charge_time (unix time),
gold (accounting manager),
machine (compute partition),
num_jobs (count),
processors (number of cores),
project (allocated group),
qos (windfall, norm, or debug),
queue (batch, persistent, urgent, inter*, debug),
quote_time (unix timestamp),
start_time (unix timestamp),
user (First.Last),
wc_limit (seconds),
wf_charge (core-seconds)

Here is an example record:

{
"charge": 1385952,
"charge_hour": "2014120402",
"charge_time": 1417658841,
"gold": "gaea",
"machine": "c1",
"num_jobs": 1,
"processors": 32,
"project": "some_account",
"qos": "debug",
"queue": "inter72",
"quote_time": 1417615457,
"start_time": 1417615483,
"user": "Jane.Doe",
"wc_limit": 43200,
"wf_charge": 0
},

The resulting product uses a single codebase for all

browsers including mobile devices and looks like the
snapshot below. Clicking on the charts filters the data by the
dimension displayed in the chart clicked, using the value(s)
clicked in the filter. After each interaction all charts and the
URL are updated. The latter allows filter state to be shared
and acts RESTful even though the web application is not
actually making dynamic “calls” to a web server. The model
of pushing reporting files out to presentation layers also
reduces complexity of our web app’s deployment footprint
and thus reduces security risks to NOAA HPC networks.
NOAA users get a contemporary web app with client-side
interactive responsiveness with just a few (SSL) HTML
GETs.

The currently deployed version of the web application

(webapp) does not have the bottom chart of cores used
versus absolute time. That chart was at the edge of dc.js
capabilities because it requires a set of aggregations not able
to be placed into the same table of data as the rest. The

increment in the table being visualized is an hourly
aggregation of a user's jobs of each size and account. The
absolute time chart needs to know which jobs were active at
any given hour.

III. RESULTS

A. Using The Interactive Web Application
Users interact with the charts by clicking them or

touching them on a mobile device. These acts filter the data
in all charts accordingly. Most users care about whether
their work experienced undue queue wait time. They also
want to be able to easily tell which priority level to ask for
and if they are likely to be able to pick up any windfall time.
We'll take a look at the former via a series of consecutively
applied filters in figures 2-11.

Figure 2 shows the webapp as it would have appeared at
the end of September 2015. We can see from the queue wait
bubble chart that gfdl_f group's windfall work waited the
longest (blue circle on the right of the bubble chart). In
figure 3 we click that bubble and the rest of the data are
filtered by it. Note that almost all of this work ran after the
downtime shown in figure 2 in the absolute time chart. This
reveals what we know institutionally that this group runs test
work and they leave that test work held in the scheduler
queue in case return from downtime tests are needed. If we
were to have selected their account from the top bar chart we
would have seen that they almost exclusively submit work
during the work week and the work day. This also befits this
group's work role as workflow and model developers/testers.

We reset that filter and instead set a new filter to remove
all windfall work from the dataset. In figure 4 we can see
that windfall work must have only run at the end of the
month or was carried over into the new month after having
started at the end of the last month. We also see that there is
a spike of long queue wait time for certain small jobs in the
queue wait vs job core size chart (the line chart below the
bubble chart and to the right. We apply a brush filter to that
chart which is shown in figure 5.

dc.js includes user interface gestures like brushing
(clicking and dragging) to set your filter. Once you have a
brush you can click and drag the brush around the chart. This
refilters your data and allows the user to reproduce arbitrary
bins for averaging that they were getting as manual
adjustments to their earlier static reporting product. More
importantly they can see the breakouts of which job sizes in
particular had long queue wait times. You can see that all the
other charts were filtered to break down the data that satisfies
the filter. This is particularly dramatic in the bubble chart
where most of the project:qos bubbles are gone because
those users did not submit jobs in the size range of the brush
filter. Clearly gfdl_b’s allocated work waited longer than
other allocated work in this filter.

More striking is that work in this size range submitted at
8AM waited an inordinate time. We click that bar to filter
the data again which makes gfdl_b's bubble move even
further away from the pack with normal queue wait times in
figure 6. We click that bubble now and are left with just 10
jobs in figure 7. We know this because below all the charts is

a table of users grouped by account whose work is in the
current filter set. We brush the absolute time chart of running
job count below the absolute time chart of cores in use chart
until we find the job(s) that make the gfdl_b bubble show an
even longer wait. This is shown in figure 8. The job waited
over 1000 hours to run and is certainly worth investigating.
If a user sent us the URL from their exploration of this data
we would get their filter set too and be able to get to exactly
which job was in question. This takes vague unspecific
complaints of unfairness and the system not liking a user to a
job which might have experienced a real problem. It is
possible that this job was held for an extended time and that
is the first thing we would ask our backend database. An
obvious improvement would be to remove time jobs are
ineligible to run from consideration in these charts. We hope
to make that improvement as it would further reduce false
alarms.

In short dc.js is so powerful because it gives you easy

status via averages, but allows you to easily dig through the
data for outliers. This is even more true because the finer-
grained data is shown within the filter brush, letting us see
that only some job sizes within the bin experienced high
queue wait times. This has been a key insight for helping our
users understand the nonlinear nature of queue wait vs job
size as a fairness metric. We have an internal version that
uses unaggregated data that allows us to dig all the way to
job ids. We do not publish that for general consumption for
performance and mobile device frendliness reasons: the
unaggregated data file for 30 days is about 50-75MB. Once
we have the jobids we can easily go get the stdout locations
for the jobs of concern, as well as node information.

B. Getting the Most From the Reporting Database
The process of developing, testing our database design,

and porting our reporting scripts revealed many bugs in the
scheduler and accounting system that resulted in about 13
vendor tickets. The most interesting of these issues was a
case where the scheduler had record of jobs that the
accounting system did not have. This turned out to be a load
issue on the vendor OLTP accounting system combined with
a lack of retry logic in the scheduler.

However, most were rough edges that did little more than

increase our LoC count with handling code. For example,
users can specify their stdout paths to the scheduler with
environment variables. The scheduler sometimes substitutes
these variables in the checkjob output and sometimes does
not. We are interested in each job's finalized stdout path, so
we now have logic that does what the scheduler ought to be
able to do on its own for us.

Another accounting system issue that arose was that

some jobs' start times were truncated due to the accounting
system not checking whether the data it was storing about a
job would fit in the database field assigned to it. This made
it impossible to verify that the amount charged was correct
from just accounting system data for jobs effected by the
issue.

We also became aware through this process that the

scheduler/accounting system could not provide a uniform
charging policy. Work that spanned the month boundary
could either charge against the allocation from the month it
started in or the month it ended in. It is imperative that the
accounting system behave predictably or else users will
rightly determine the system is capricious and untrustworthy
at the very point they most care about: how much compute
time they have left.

Since the deployment of the new reporting database we

have also used it to construct novel queries to verify the
coherence of the scheduler and accounting data. Some of
these have led to other vendor tickets. Here follows an
example of the query we used to identify an issue where two
copies of a job were running at the same time. In it we ask
for jobs with an unequal number of accounting completions
versus scheduler completions.

select u.*, max(queued_job_dynamic_procs.procs) from (select t.*,
count(queued_job_dynamic_accounting_completiontime.gjid) as
mam_count, queued_job_dynamic_accounting_completiontime.gjid as
mam_gjid from (select distinct ss.*,
queued_job_dynamic_account.account from (select s.*,
max(queued_job_dynamic_account.sample_time) as sample_time from
(select count(gjid) as moab_count, gjid as moab_gjid, mam from
queued_job_dynamic_completiontime where mam='theia' and
sample_time<1448928000 and sample_time>1447545600 group by mam,
gjid) as s left join queued_job_dynamic_account on
queued_job_dynamic_account.mam=s.mam and
queued_job_dynamic_account.gjid=s.moab_gjid and
queued_job_dynamic_account.sample_time<1448928000 and
queued_job_dynamic_account.sample_time>1447545600 group by
queued_job_dynamic_account.gjid) as ss left join
queued_job_dynamic_account on
queued_job_dynamic_account.mam=ss.mam and
queued_job_dynamic_account.gjid=ss.moab_gjid and
queued_job_dynamic_account.sample_time=ss.sample_time) as t left join
queued_job_dynamic_accounting_completiontime on
t.mam=queued_job_dynamic_accounting_completiontime.mam and
t.moab_gjid=queued_job_dynamic_accounting_completiontime.gjid where
queued_job_dynamic_accounting_completiontime.sample_time<14489280
00 and
queued_job_dynamic_accounting_completiontime.sample_time>14475456
00 group by mam, moab_gjid having moab_count != mam_count) as u left
join queued_job_dynamic_procs on
queued_job_dynamic_procs.mam=u.mam and
queued_job_dynamic_procs.gjid=u.moab_gjid group by u.moab_gjid;
--
| moab_count | moab_gjid | mam | sample_time | account | mam_count |
mam_gjid | max(queued_job_dynamic_procs.procs) |
--
...
1	5077529	theia	1447952594	drt	2	5077529	120
1	5077530	theia	1447952594	drt	2	5077530	120
1	5077531	theia	1447952594	drt	2	5077531	120

We also discovered that while MariaDB (forked from
MySQL) is fine for now that we actually have some
motivation to migrate to PostgreSQL. Namely the fact that
we use complicated UNION queries to build the materialized
views our reporting needs and Postgres is able to push
WHERE predicates into child queries where MariaDB is not.

This makes maintaining these queries more difficult than
they should be.

IV. FUTURE WORK
We are currently automating an analysis that scans job

stdout files from jobs that have run in past to provide a
baseline expected absolute and normalized initialization and
run times so that we can monitor running work for
unexpected filesystem or network problems causing jobs to
hang which is unfortunately a common problem and is one
that wastes a lot of user compute allocation. Whether and
how a given workflow is a good candidate for runtime
normalization is obviously workflow dependent and varies.
Current weather and climate model workflows make good
candidates due to those workflows running in relatively
constant increments (model months/years). We also control
normalization by user, experiment name, and core count.
Figure 9 has a single user's workflows' normalized runtime
history. Figure 10 for an example plot of user workflow
normalized runtimes and figure 11 for that data applied to
find nodes with the highest median normalized runtime.
Today we can give cogent answers about job failure liability.
Tomorrow we will be able to monitor each running
workflow on our system against those histories.

We already recognize the need to refine and extend the

OLAP database schema to for instance use hash keys and
partitioned tables for speed. We would also like to keep all
samples from every source for a given attribute and be able
to query those in a manner that accounts for update lag in the
different sampled tools rather than returning a time series for
that attribute that is full of clock drift induced hysteresis. We
also want to leverage the additional data sources better to
subtract time jobs are held from their queue wait time to
remove false alarm outliers.

We absolutely agree with Furlani that metrics and

monitoring need to be available to be active participants in
the users’ workflows. Likewise, workflows need to be able
to be participants in HPC metrics and monitoring.
Establishing grid-wide application logging for our transfer
tool was so effective at helping us increase that tool’s
reliability that such logging is a hard requirement for the next
generation of NOAA GFDL’s workflow software. This sort
of integration is a given once one accepts the impact that
contemporary ITSM and cloud computing support software
will have on HPC. People develop abstractions for a reason.
Workflows abstract machine failures just as papers abstract
the work done to run scientific experiments. One good chart
would be to show a choropleth chart of normalized runtime
by node, but to do that we really need workflow-level data.
This may be a good reason to break (or at least expand the
interface of) the abstraction between system and workflow.

It remains to be seen which aspects of HPC management

are most crucial, and in what measures to promoting the
optimal progression of users’ science. Conventional wisdom
seems to focus on the largest installations and the latest

processors and interconnects. But our organizations know
that some modicum of system reliability must exist or users
will flee for more predictable resources. One of the central
struggles in contemporary HPC is precisely how to extract
reliability in scaled systems comprised of massive counts of
commodity components.

Beyond one center justifying its labor spend via

monitoring transparency, this is the sort of question that can
be tested if many HPC centers run transparent metrics: how
much stability/reliability is enough? A very interesting future
study would compare HPC center performance, reliability,
administrative communication timeliness, and other statistics
looking for correlations to the number and quality of user
science papers or other product that emerges.

V. CONCLUSIONS

We have just deployed the interactive charting web app

to a NOAA research and development HPC user community
and like the other reporting product we derive from our
OLAP database it has been met with approval. Our existing
reporting output has become indispensable to our users and
its accuracy has increased our users’ confidence in HPC
management. Our experiences indicate that there is a gap
between previous reporting tools and user/management
needs. We have uncovered over 30 bugs in our scheduler and
accounting systems ranging from the trivial to duplicate
copies of jobs running concurrently as a result of moving our
reporting to an OLAP database. Skeptical third party
reporting also aligns incentives properly for reporting
developers versus scheduler and accounting system vendors
and reduces reporting burden on the vendor OLTP
accounting database. Providing good reporting also reduces
users' duplicative monitoring scripts and their attendant load
on the scheduler. We expect that we will continue extracting
value from this architecture as our HPC life cycle progresses
and we are able to quickly bring accurate reporting online for
new resources. In the long term we expect dividends from a
workflow ingest plugin module that will allow users to
visualize future consumption over the lives of their
experiments and make better allocation and research
management decisions from it.

VI. REFERENCES

[1] Furlani, et al Performance Metrics and Auditing Framework Using

Application Kernels for High-performance Computer Systems In
Concurrency and Computation: Practice and Experience, vol. 25,
issue 7, pages 918-931, May 2013 http://dx.doi.org/10.1002/cpe.2871

[2] Ian Farquhar Engineering Security Solutions at Layer 8 and Above
RSA, Inc. Blog, December 2010
https://web.archive.org/web/20101216002907/http://blogs.rsa.com/cu
rry/engineering-security-solutions-at-layer-8-and-above/

[3] Jonathan Dursi HPC is dying, and MPI is killing it In R&D
computing at scale, April 2015 http://www.dursi.ca/hpc-is-dying-and-
mpi-is-killing-it/

[4] Chien-Yi Hou, et al A Scientific Workflow Solution to the Archiving
of Digital Media In HPDC workshop on Scientific Workflow
Systems, M ay 2006 https://wiki.irods.org/pubs/DICE_HPDC-
DigArch.pdf

[5] Hilary Oliver The Cylc Suite Engine: Scheduling Distributed Suites
Of Cycling Tasks In NZ eResearch Symposium, July 2012
http://www.eresearch.org.nz/sites/www.eresearch.org.nz/files/nzers20
12-oliver-cylc_suite_engine.pdf

[6] Kohsuke Kawaguchi, Jesse Glick Continuous Integration in the Cloud
with Hudson In JavaOne, June 2009 http://wiki.jenkins-
ci.org/download/attachments/37323793/Hudson+J1+2009.ppt?versio
n=1&modificationDate=1244127211000

[7] Nick Zhu, et al Dimensional Charting Javascript Library In Github,
July 2012 http://dc-js.github.io/dc.js/

[8] Mark Otto, et al Bootstrap In Github, July 2011
http://getbootstrap.com/

[9] Mike Samuel json-sans-eval In Google Code, September 2009
https://code.google.com/p/json-sans-eval/

[10] Franck Albinet 2014 Refugee Response Plan in Jordan In Github,
May 2014 http://edouard-legoupil.github.io/3W-Dashboard/

[11] Ted Strauss Public Accounts of Canada 2009-2012 In Github, July
2013 http://tedstrauss.github.io/expenditures/

[12] Anonymous New Zealand Youth Court Data In Meteor, August 2014
http://nzyouthcourt.meteor.com/

Figure 2: dc..js webapp

Figure 3: Filtered by account:qos = gfdl_f:windfall. Note how most usage is immediately after the downtime shown on Sep

11 in Figure 2

Figure 4: Windfall work is filtered out to let us look at the relative queue wait times of allocated work. Most windfall work

runs at the end of the month.

Figure 5: Filtered to look at one of the queue wait spikes in the queue wait vs job size chart. It seems that 8 AM was a bad

time to submit work this size.

Figure 6: Filtered to show just work of this size submitted between 8 and 9 AM EDT. It looks like gfdl_b jobs were the ones

impacted by this issue.

Figure 7: Just looking at gfdl_b work. It is all batch class which is the lowest priority after windfall. Just 10 jobs in this

filter set.

Figure 8: This one job waited over 1000 hours to run. It could have been on hold, but it is worth investigating. We can find
these trivially now, and so can our users. It lets us get particularized data to evaluate and dramatically reduces complaints

about the HPC organization caring about user work.

Figure 9: One user's workflows' normalized runtimes

Figure 10: That workflow in context of all other work on the HPC resource. Clearly there was an event impacting nearly all
work on the system at the end of the user's workflow history. However the user's workflow is progressively taking more time

due to factors not related to the system.

Figure 11: 200 highest median normalized runtime nodes. This data is useful after discounting the top 10 or so highest
runtime workflows. Looking closer revealed that the consistently worst nodes are only about 5-10% slower than the fastest.

