
The Evolution of Lustre Networking at Cray

Chris Horn
Cray Inc.

Saint Paul, MN USA
hornc@cray.com

Abstract—Lustre Network (LNet) routers with more than
one InfiniBand Host Channel Adapter (HCA) have been in use
at Cray for some time. This type of LNet router configuration
is necessary on Cray Supercomputers in order to extract
maximum performance out of a single LNet router node. This
paper provides a look at the state of the art in this dual-
HCA router configuration. Topics include avoiding ARP flux
with proper subnet configuration, flat vs. fine-grained routing,
and configuration emplacement. We will also provide a look
at how LNet will provide compatibility with InfiniBand HCAs
requiring the latest mlx5 drivers, and what is needed to support
a mix of mlx4 and mlx5 on the same fabric.

Keywords-Lustre; LNet;

I. INTRODUCTION

The goal in the design of Lustre Network (LNet) routers
is to provide sufficient bandwidth to meet the capabilities
of the back-end storage. Thus, as the performance of Lustre
Object Storage Servers (OSS) has increased the design of
LNet routers has had to adapt to meet new performance
targets.

One way that LNet router design has evolved at Cray is
in the adoption of multiple HCAs on a single LNet router
node. Multiple HCAs can be used in multi-rail networking to
alleviate issues of limited-bandwidth as well as to increase
fault tolerance[3]. At Cray, multiple HCAs are employed to
enable an LNet router node to realize the full bandwidth
capabilities of the Aries High-Speed Network (HSN), and,
as a result, meet the bandwidth requirements of back-end
storage with fewer dedicated LNet routers.

This paper provides a look at how the design of LNet
routers has evolved to include the use of multiple InfiniBand
Host Channel adapters (IB HCAs). We’ll discuss how LNet
routers are configured by Cray to meet performance and
resiliency goals, and we’ll also provide a look at how LNet
will provide compatibility with IB HCAs requiring the latest
mlx5 drivers, and what is needed to support a mix of mlx4
and mlx5 on the same fabric.

II. LNET OVERVIEW

The exchange of requests and replies between hosts forms
the basis of the Lustre protocol. One host will send a
message containing a request to another and await a reply
from that other host. The underlying network protocols used
to exchange messages are abstracted away via the Lustre

Network (LNet) software layer. LNet is largely independent
from Lustre and is also used by Cray’s Data Virtualization
Service (DVS).

The LNet layer is itself network-type agnostic. It utilizes
Lustre Network Drivers (LND) to interface with the driver
for a specific network type. LNet supports Cray’s Gemini
and Aries HSNs with the gnilnd, as well as other networking
technologies such as InfiniBand, via the o2iblnd, and ether-
net, via the socklnd. A single Lustre Network can encompass
multiple sub-networks through the use of LNet routers.

LNet router nodes in Cray systems provide store and
forward services to bridge the Cray High Speed Network
(HSN), where we have compute nodes and Lustre clients,
and the IB fabric of Lustre servers. More generally, LNet
routers can be used to bridge different network segments
or other network technologies such as ethernet and Intel’s
OmniPath Architecture.

A Lustre Network containing routers is typically config-
ured to be either flat, where all routers can forward requests
to or from any Lustre server, or fine-grained, where some
subset of the routers are configured to communicate with
specific Lustre servers.

A flat routing configuration is the simplest to define, and
its performance can be optimal at small scale. However, as
the number of servers and routers increases performance can
suffer dramatically. This is due to the increasing likelihood
of taking non-optimal paths through the network. In par-
ticular, the latency introduced by traversing multiple Inter-
Switch Links (ISLs) results in degraded performance[11].

Fine-grained routing (FGR) schemes were devised to
solve the problem of traversing ISLs. Unlike flat routing,
where every router can communicate with every server, in
FGR groups of routers are defined to communicate with a
particular group of servers. At Cray, the groups are defined
such that the routers in a group have a direct connection to
the same top-of-rack (TOR) IB switch that is used by the
servers in the group. A fine-grained routing configuration
can be much more complex to define, but it provides better
performance at scale than flat routing[12].

III. CRAY SONEXION OVERVIEW

The Cray Sonexion has long been composed of two
basic building blocks: a single Metadata Management Unit
(MMU) and one or more Scalable Storage Units (SSUs).

Another building block is available for the Sonexion 2000 in
the Additional DNE Unit (ADU). The MMU consists of two
Lustre Management Servers (MGS) and two Lustre MDSs
along with either a 2U24 or 5U84 drive enclosure. An SSU
consists of two OSSs with a 5U84 drive enclosure. An ADU
consists of two MDSs with a 2U24 drive enclosure.

The Sonexion-1600 MDRAID and GridRAID solutions
provide 5 GB/s per SSU sustained, and 6 GB/s per SSU
peak. The Sonexion-2000 provides 7.5 GB/s per SSU sus-
tained, and 9 GB/s per SSU peak[4][5]. Ensuring sufficient
network bandwidth to each OSS is a key requirement in the
design of Lustre Networks.

IV. NETWORK SPEEDS AND FEEDS

On an XC system an I/O blade has one Aries Network
Interface Controller (NIC) that feeds an I/O module (IBB)
with 17 GB/s. That IBB has two nodes (LNet routers), so
each node can achieve 8.5 GB/s. Each LNet router node can
have up to two dual-port IB HCAs. Each active HCA port
(ib0 and ib2, for instance) needs to be assigned to a different
LNet (cannot bond them to a single LNet), so a single LNet
router node will service two different LNets. A single FDR
(Fourteen Data Rate) IB HCA is capable of 5.5 GB/s of
LNet traffic. Therefore, if busy, the two IB HCAs on a single
LNet router would split the 8.5 GB/s coming into the node
and achieve 4.25 GB/s per IB port.

V. BANDWIDTH MATCHING FOR FINE GRAINED
ROUTING

The throughput capabilities of the back-end storage and
the capabilities of the LNet routers allow us to come up
with ratios of routers to servers that ensure we can provide
sufficient bandwidth for FGR schemes. We need to ensure
that there are sufficient links between Lustre servers and the
supercomputer such that each configured LNet FGR group
has enough bandwidth to sate the back-end storage in that
LNet FGR group.

In addition, if we want to apply the same ratio of IB links
to servers across all servers in a filesystem we need to ensure
that number of servers in an FGR group is evenly divisible
by the number of servers in each TOR switch, otherwise
the FGR groups can span more than one TOR switch which
defeats the purpose of FGR. Alternatively, FGR groups can
be defined with different ratios.

Table I shows the respective capabilities. Since a single
FDR IB link provides sufficient bandwidth for a single
Sonexion-1600 or Sonexion-2000 OSS we could simply use
a ratio of n IB links to n servers. However, in the case of
the Sonexion-1600, this results in wasted bandwidth.

We can see from table I that 6 Sonexion-1600 OSSs are
capable of delivering 18 GB/s peak I/O bandwidth. If we
were to assign 6 single HCA LNet router links to service
the 6 servers then the fabric would be capable of 33 GB/s.
This is nearly double what the 6 OSSs are capable of. If IB

Table I
CRAY SONEXION AND XC40 LNET ROUTER SINGLE IB LINK

BANDWIDTH CAPABILITIES

1 2 3 4 5 6
Sonexion-1600
OSS

3.00 6.00 9.00 12.00 15.00 18.00

Sonexion-2000
OSS

3.75 7.50 11.25 15.00 18.75 22.50

Cray XC40 LNet
Router, single
HCA

5.50 11.00 16.50 22.00 27.50 33.00

Cray XC40 LNet
Router, dual
HCA

4.20 8.40 12.60 16.80 21.00 25.20

links from LNet routers with dual HCAs were assigned we
would only be providing 23% more bandwidth than what is
needed.

Assigning two single HCA LNet router links, or three
IB links from dual HCA routers, to every 4 Sonexion-1600
servers would be ideal from the perspective of minimizing
any wasted bandwidth, however this would either result in
FGR groups that span more than one TOR switch or in the
definition of additional sub-optimal FGR groups containing
just two servers. If we only consider FGR groups where the
number of servers in each FGR group is evenly divisibly by
the number of servers in each TOR switch. This constraint
limits us to considering ratios with one, two, three or six
servers.

With the above constraint in mind we can find suitable
ratios:

• Sonexion-1600
– XC 40 Single HCA: 2:3
– XC 40 Dual HCA: 5:6, or n:n

• Sonexion-2000
– XC 40 Single HCA: n:n
– XC 40 Dual HCA: n:n

VI. ARP FLUX

The Address Resolution Protocol (ARP) protocol is used
to map network layer addresses (e.g. an IPv4 address) to
link-layer addresses (e.g. a MAC address). For example,
when a host wants to send a message to another host over
Ethernet it needs both the IP address and MAC address of
the intended recipient. Once the sender has the receiver’s
IP address, through, say, a Domain Name Service (DNS)
lookup, the sender will first check a local cached ARP table
to see if it can find the MAC address for the receiver’s
IP. If a MAC address is found it can proceed with sending
the message. If the MAC address is not found then it will
broadcast an ARP ”who-has” request. The host with the IP
address contained in the ARP request will then respond with
its MAC address and its IP address. The sender will cache
the response into its ARP table and proceed with sending
the message.

iosr60-3:˜ # ip addr show dev ib0
6: ib0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 65520 qdisc pfifo_fast state UP group default qlen 256

link/infiniband 80:00:00:48:fe:80:00:00:00:00:00:00:00:02:c9:03:00:f9:f1:61 brd
inet 10.149.0.4/24 brd 10.149.0.255 scope global ib0

valid_lft forever preferred_lft forever
inet6 fe80::202:c903:f9:f161/64 scope link

valid_lft forever preferred_lft forever
iosr60-3:˜ # ip addr show dev ib2
8: ib2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 65520 qdisc pfifo_fast state UP group default qlen 256

link/infiniband 80:00:00:25:fe:80:00:00:00:00:00:00:7c:fe:90:03:00:62:ce:7a brd
inet 10.149.0.5/24 brd 10.149.0.255 scope global ib2

valid_lft forever preferred_lft forever
inet6 fe80::7efe:9003:62:ce7a/64 scope link

valid_lft forever preferred_lft forever

Figure 1. Two IB interfaces on the iosr60-3 host.

When a host has multiple interfaces on the same subnet
both interfaces may respond to ARP ”who-has” requests.
This results in non-deterministic population of the requesting
host’s ARP table. This issue has been termed ARP flux[9].

At Cray we’ve seen a variation of the ARP flux issue with
dual IB HCAs and IPoIB. What we’ve observed is that only
one interface will receive the ARP ”who-has” requests, and
that interface will respond to both the ”who-has” requests
that are intended for it and the requests intended for the
other interface. Figures 1-5 illustrate this issue using the
rping command to establish an RDMA connection and issue
a single RDMA transfer between two hosts, iosr60-2 and
iosr60-3.

In this example, iosr60-3 will act as the server, passively
waiting for the connection request, and iosr60-2 will act
as the client, actively initiating the connection and RDMA
transfer. Figure 1 shows the IP and link-layer addresses,
bolded, for two IB interfaces, on iosr60-3, each on a
separate HCA1. Figure 2 shows the command used to
invoke rping in server-mode on iosr60-3. Figure 3 shows
the result of executing the rping command on iosr60-
2. We can see that while we were able to resolve the
address and route to the destination address the connection
attempt failed with ”error 8”. We can look at the enum
ib_cm_rej_reason defined in rdma/ib_cm.h to see
that ”error 8” is IB_CM_REJ_INVALID_SERVICE_ID.
The reason we see this error is that the link-layer address
for IPoIB interfaces contains the Queue Pair Number (QPN)
and one of the GIDs of the port associated with the IPoIB
interface, but, as shown in figure 4, the link-layer address
for 10.149.0.5, the ib2 interface on iosr60-3, in iosr60-
2’s ARP table is wrong. The link-layer address in the
iosr60-2’s ARP table is actually the link-layer address for
10.149.0.4, the ib0 interface on iosr60-3. Finally, figure
5 shows output from the tcpdump command showing the ib0
interface on iosr60-3 responding to the ”who-has” request
from iosr60-2. Running tcpdump on the ib2 interface shows

1Please note we’ve removed some of the normal output from the ip
command in order to better display the relevant information

iosr60-3:˜ # rping -s -p 9999 -d -a 10.149.0.5
created cm_id 0x165bc10
rdma_bind_addr successful
rdma_listen

Figure 2. Starting rping in server mode on iosr60-3.

that the ib2 interface never receives the ARP ”who-has”
request.

To resolve this problem Cray recommends placing each
active interface on a single host on a separate subnet.
This ensures only the appropriate interface will receive and
respond to ARP requests.

Subnet selection is necessarily made on a per-site basis,
but we do recommend using a convention to simplify
configuration. For example, if you have two subnets, say
10.150.0.x/16 and 10.151.0.x/16, then placing ev-
ery ib0 interface across all routers on the 10.150.0.x/16
subnet, and every ib2 interface across all routers on the
10.151.0.x/16 subnet can make it easier to spot mis-
takes in the IP configuration or otherwise validate that the
correct configuration has been emplaced.

The ”CLE XC System Administration” book details how
to configure IPoIB on LNet router nodes. At the time of
this writing the existing documentation does not reference
the ARP flux issue, but the steps outlined to configure IPoIB
can be easily modified to specify IP addresses on different
subnets. Note, at the time of this writing this book has not
yet been updated for the new configuration management
paradigm introduced in CLE 6.0.

In order to maintain IP connectivity Lustre servers will
need appropriate IP addresses on the subnets of routers
they need to communicate with. A script can be utilized
to add appropriate IP aliases to the ib0 interface of Lustre
servers when the LNet module is loaded. An example script
is included in figure 6. The script at figure 7 could then
be used to remove the appropriate aliases when the LNet
module is unloaded. Please note the IP networks shown in
the script would need to be customized on a per-site basis.

iosr60-2:˜ # rping -c -Vv -C 1 -d -p 9999 -a 10.149.0.5
port 9999
created cm_id 0x826c10
cma_event type RDMA_CM_EVENT_ADDR_RESOLVED cma_id 0x826c10 (parent)
cma_event type RDMA_CM_EVENT_ROUTE_RESOLVED cma_id 0x826c10 (parent)
rdma_resolve_addr - rdma_resolve_route successful
created pd 0x826f90
created channel 0x826fb0
created cq 0x826fd0
created qp 0x8273e0
rping_setup_buffers called on cb 0x823010
allocated & registered buffers...
cq_thread started.
cma_event type RDMA_CM_EVENT_REJECTED cma_id 0x826c10 (parent)
cma event RDMA_CM_EVENT_REJECTED, error 8

Figure 3. Instantiate RDMA ping-pong test from iosr60-2.

iosr60-2:˜ # ip neigh show dev ib0 10.149.0.5
10.149.0.5 lladdr 80:00:00:48:fe:80:00:00:00:00:00:00:00:02:c9:03:00:f9:f1:61 STALE
iosr60-2:˜ #

Figure 4. ARP Table of iosr60-2 showing incorrect link-layer address for 10.149.0.5.

iosr60-3:˜ # tcpdump -enni ib0 arp
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on ib0, link-type LINUX_SLL (Linux cooked), capture size 65535 bytes
14:49:26.369468 B ethertype ARP (0x0806), length 72: Request who-has 10.149.0.5 tell 10.149.0.2, length 56
14:49:26.369508 Out ethertype ARP (0x0806), length 72: Reply 10.149.0.5 is-at

80:00:00:48:fe:80:00:00:00:00:00:00:00:02:c9:03:00:f9:f1:61, length 56

Figure 5. tcpdump output from iosr60-3 shows ib0 interface responding to ARP ”who-has” request intended for ib2.

Add IP aliases to ib0 making ib0:1
when lnet module is loaded
/sbin/ip -o -4 a show ib0 | \
/usr/bin/awk ’/inet/{

s=$4;
sub("10\\.156\\.8\\.", "10.156.12.", s);
print "/sbin/ip address add dev ib0 label ib0:1", s};’ | /bin/sh

/sbin/modprobe --ignore-install lnet $CMDLINE_OPTS

Figure 6. Sample script for adding IP aliases.

VII. LNET CONFIGURATION

Cray provides the clcvt command line utility to ease
the configuration of Lustre Networking. This tool takes
human-readable input files and generates the, sometimes
complex, ip2nets and routes entries needed to configure
LNet. Typically the ip2nets and routes entries generated with
clcvt are stored in ip2nets.dat and routes.dat files,
respectively. These files are then referenced in a modprobe
configuration file on appropriate nodes. See figures 8 and 9
for sample output generated by clcvt.

In versions of CLE prior to CLE 6.0 the typical proce-
dure was to create an ”lnet” node class in the sharedroot,
use the xtopview command on the boot node to access
the sharedroot for the lnet node class, and modify the a
modprobe.conf.local file there to specify the appro-
priate ip2nets and routes lnet module options.

Starting with CLE 6.0 this type of system configuration is

performed on the System Management Workstation (SMW)
via the Image Management and Provisioning System (IMPS)
and its cfgset command.

VIII. LNET AND MLX5

There is some work needed in Lustre to robustly support
IB HCAs requiring MLX5 drivers. Some of the work has
been completed for the community Lustre 2.8 release, and
some work is targeted for the community Lustre 2.9 release.
This section outlines some of the issues.

A. Memory Management

IB clients must register memory associated with a data
transfer prior to that transfer taking place. Memory loca-
tions that have been registered are referred to as Memory
Regions (MR). There are also APIs that allow Fast Memory
Registration (FMR). FMR allows memory regions to be re-

Remove all ib0:1 aliases when lnet module is unloaded
/sbin/modprobe -r --ignore-remove lnet &&
/sbin/ip -o -4 a show label ib0:1 | \
/usr/bin/awk ’{print "/sbin/ip addr del dev ib0 label ib0:1", $4}’ | /bin/sh

Figure 7. Sample script for removing IP aliases.

o2ib4 10.100.[104,105].*
o2ib4000(ib0) 10.100.104.[4,254]
o2ib4000(ib0) 10.100.105.0
o2ib4001(ib0:1) 10.101.104.[5,255]
o2ib4001(ib0:1) 10.101.105.1
o2ib4002(ib0) 10.100.104.[6,8,10,12,14,16,18,20]
o2ib4003(ib0:1) 10.101.104.[7,9,11,13,15,17,19,21]

Figure 8. Sample ip2nets entries generated by clcvt to be placed in a
ip2nets-loading file

o2ib4000 1 [2,262,642,2241]@gni1
o2ib4001 1 [2,262,642,2241]@gni1
o2ib4002 1 [70,261,710,845,1218,1413,1673,2054]@gni1
o2ib4003 1 [70,261,710,845,1218,1413,1673,2054]@gni1
o2ib4004 1 [130,322,578,906,1286,1474,1734,2053]@gni1
o2ib4005 1 [130,322,578,906,1286,1474,1734,2053]@gni1
o2ib4006 1 [6,321,577,905,1285,1473,1794,1930]@gni1
o2ib4007 1 [6,321,577,905,1285,1473,1794,1930]@gni1
o2ib4008 1 [66,386,646,966,1162,1538,1862,1929]@gni1
o2ib4009 1 [66,386,646,966,1162,1538,1862,1929]@gni1

Figure 9. Sample routes entries generated by clcvt to be placed in a
routes-loading file

used which can reduce the overhead incurred through normal
memory registration/deregistration.

FMR is enabled in the o2iblnd by setting the
map_on_demand kernel module parameter to 0 <
map_on_demand <= 256. However, FMR is deprecated,
and FMR is not supported in the mlx5 driver. Support for the
IB Base Memory Management Extensions (BMME)[2][13]
was made available in Linux kernel 2.6.27. This support in-
cludes APIs for creating ”fast register memory regions”[13].
Support for these APIs was added to the o2iblnd in LU-
7181[1]. At the time of this writing the current o2iblnd code
prefers FMR when the HCA supports it. It will use the IB
BMME APIs when an HCA supports them, and does not
support FMR. The o2iblnd will place an entry in the kernel
log announcing which memory registration is going to be
used. Figure 10 shows an example of these log messages.

B. Mixed Fabric

The Lustre network drivers have historically only sup-
ported a single set of settings for each interface type on a

LNet: Using FMR for registration
LNet: Added LNI 10.149.0.3@o2ib1000 [8/1024/0/30]
LNet: Using FastReg for registration
LNet: Added LNI 10.149.1.3@o2ib2000 [8/1024/0/30]

Figure 10. Log messages indicating memory registration API support.

single node. i.e. one set of settings for all gni interfaces on a
node, one set of settings for all o2ib interfaces on a node, etc.
Different types of HCAs may need different settings to work
optimally, so this limitation can lead to situations where we
need to compromise the performance of an interface if there
are different types of HCAs in a single node.

For example, as mentioned in the previous section, HCAs
requiring the mlx5 drivers cannot use FMR. However, some
HCAs, such as Intel OPA[8], gain increased performance
from FMR. Thus, with the limitation of having a single set
of settings for all o2ib interfaces, one could not optimize a
node, say an LNet router, that had both an OPA HCA and
an IB HCA requiring the mlx5 drivers. This limitation has
recently been addressed by the work in LU-7101[8].

With the patch for LU-7101 it is now possible to set
certain o2iblnd module parameters on a per interface
basis. The supported parameters are map_on_demand,
peer_credits, peercredits_hiw, and
concurrent_sends. Also supported are the FMR tuning
parameters fmr_pool_size, fmr_flush_trigger,
and fmr_cache.

With this new functionality we’re able to configure 0 <
map_on_demand <= 256 for OPA interfaces and also
configure map_on_demand = 0 for mlx5 interfaces. The
configuration is emplaced using the Dynamic LNet Con-
figuration feature first introduced in Lustre 2.7[10]. The
lnetctl command can be used to configure interfaces at run-
time, however it doesn’t currently support setting all of
the per-interface parameters. To configure the per-interface
parameters one must use the lnetctl command’s ability to
input configuration data in the YAML format. Figure 11
shows configuration info in YAML syntax defining two o2ib
interfaces with different parameters, and figure 12 shows a
sequence of commands to import the YAML configuration
data.

With the ability to set per-interface parameters there is
one additional issue that must be addressed. The o2iblnd
has long had the requirement that all peers on an o2ib
network have identical values for peer_credits and
map_on_demand. Since it is necessary to define different
map_on_demand parameters for certain types of HCAs
the Lustre community has needed to address this historical
shortcoming. That work was accomplished as part of LU-
3322[7].

In the o2iblnd there is an active and passive side to
connection requests. The active side initiates the connec-
tion request, and the passive side receives and responds

net:
- net: o2ib1

interfaces:
0: ib0
lnd tunables:

peercredits_hiw: 8
map_on_demand: 256
concurrent_sends: 32
fmr_pool_size: 1280
fmr_flush_trigger: 1024
fmr_cache: 1

tunables:
peer_timeout: 100
peer_credits: 16
peer_buffer_credits: 0
credits: 2560

- net: o2ib2
interfaces:

0: ib2
lnd tunables:

peercredits_hiw: 8
map_on_demand: 0
concurrent_sends: 16

tunables:
peer_timeout: 180
peer_credits: 16
credits: 2560

Figure 11. Sample YAML syntax defining two o2ib interfaces with
different parameters.

modprobe lnet
lnetctl lnet configure
lnetctl import < /tmp/lnet_conf.yaml

Figure 12. Sequence of commands to import LNet configuration in YAML
format.

to the connection request. Part of the data contained in
the connection request are the values of the active side’s
peer_credits and map_on_demand. If the values in
the connection request did not match the passive’s values
then the passive side would reject the connection request. A
typical log message for such a connection rejection is shown
in figure 13.

With the change from LU-3322 the passive side can gener-
ally accept connections where the desired peer_credits
are less than or equal to the peer_credits defined
for the passive peer. If the desired peer_credits are
larger than the peer_credits defined for the passive peer
then the connection request will still be rejected, but the
rejection message will contain additional information about
what value of peer_credits the passive side can accept.
This allows the active side the opportunity to issue a new

connection request with a lower peer_credits value2

Figure 14 shows a message logged by the passive side of
a connection request when the desired credits is greater than
the credits available.

IX. FUTURE WORK

We have plans to issue a tech note on the topic of ARP
flux to better educate our users and site administrators on
the specifics of the ARP flux issue.

Lustre 2.7 introduced the Dynamic LNet Configuration
feature. Cray is currently investigating how we can best uti-
lize this new feature to further enhance our configuration and
administrative capabilities. More information on Dynamic
LNet Configuration can be found at[10].

Multi-rail LNet is a new feature targeted for the Lustre
2.10 release. This feature should provide much more robust
support for utilizing multiple interfaces to communicate
between two nodes. More information on this feature is
available at[6].

X. CONCLUSION

We’ve shown how the design of Cray’s LNet routers is
influenced by the capabilities of back-end storage. We’ve
also shown how the design and configuration of LNet
networks has evolved to include the use of multiple HCAs in
our LNet routers. The dual-HCA configuration has allowed
us to extract additional bandwidth out of a single LNet router
node at the cost of configuration complexity.

ACKNOWLEDGMENT

We would like to acknowledge the hard work of Cray
support staff who were instrumental in debugging the ARP
flux issue. We would like to acknowledge the work done by
Oak Ridge in their research on Fine-grained routing.

REFERENCES

[1] Lu-7181. https://jira.hpdd.intel.com/browse/LU-7181, 2016.

[2] InfiniBand Trade Association. Infiniband architecture spec-
ification volume 1. http://www.infinibandta.org/index.php,
2015.

[3] Salvador Coll, Eitan Frachtenberg, Fabrizio Petrini, Adolfy
Hoisie, and Leonid Gurvits. Using multirail networks in
high-performance clusters. In Proceedings. 2001 IEEE In-
ternational Conference on Cluster Computing. IEEE, 2001.

[4] Hussein N. El-Harake and Colin McMurtrie. Evaluation of the
cray sonexion 2000 storage system. Technical report, CSCS
– Swiss National Supercomputing Centre, 2014.

[5] Cray Inc. Cray sonexion specifications.
http://www.cray.com/sites/default/files/resources/cray sonexion specifications.pdf.

2A note here for those interested in reviewing the code. The
struct kib_connparams contains the actual values sent
back and forth in the connect messages. The variables of interest
are ibcp_queue_depth (peer credits), ibcp_max_frags
(map on demand), and ibcp_max_msg_size (IBLND MSG SIZE).

LNetError: 4:0:(o2iblnd_cb.c:2301:kiblnd_passive_connect()) Can’t accept 10.149.1.14@o2ib: incompatible queue depth 63 (126 wanted)

Figure 13. Log message from incompatible peer credits rejected connection request.

Can’t accept conn from 10.0.51.1@o2ib, queue depth too large: 128 (<=8 wanted)

Figure 14. Log message from incompatiable peer credits rejected con-
nection request. Shows desired number of peer credits ¡= 8.

[6] Intel and SGI. Multi-rail lnet. http://wiki.lustre.org/Multi-
Rail LNet, April 2016.

[7] jira.hpdd.intel.com. Lu-3322.
https://jira.hpdd.intel.com/browse/LU-3322.

[8] jira.hpdd.intel.com. Lu-7101.
https://jira.hpdd.intel.com/browse/LU-7101.

[9] linux ip.net. 2.1. address resolution protocol (arp).
http://linux-ip.net/html/ether-arp.html, 2016.

[10] lustre.org. http://lustre.org/documentation/, April 2016.

[11] Galen M. Shipman, David A. Dillow, Sarp Oral, Feiyi Wang,
Douglas Fuller, Jason Hill, and Zhe Zhang. Lessons learned
in deploying the world’s largest scale lustre file system. In
Proceedings of the 52nd Cray User Group Conference, 2010.

[12] Mark Swan and Nic Henke. Cray’s implementation of lnet
fine grained routing. In Proceedings of the 55th Cray User
Group Conference, 2013.

[13] Bob Woodruff, Roland Dreier, Sean Hefty, and Hal
Rosenstock. Introduction to the infiniband core soft-
ware. https://www.kernel.org/doc/ols/2005/ols2005v2-pages-
279-290.pdf, 2005.

