
Network Performance Counter Monitoring and Analysis on the Cray XC Platform

J. Brandt∗, E. Froese†, A. Gentile∗, L. Kaplan†, B. Allan∗, and E. Walsh∗
∗Sandia National Laboratories

Albuquerque, NM.
Email: (brandt|gentile|baallan|ejwalsh)@sandia.gov

†Cray Inc.
Vancouver, BC. and Seattle, WA.

Email: (efroese|lkaplan)@cray.com

Abstract—The instrumentation of Cray’s Aries network
ASIC, of which the XC platform’s High Speed Network
(HSN) is comprised, offers unprecedented potential for better
understanding and utilization of platform HSN resources.
Monitoring the amount of data generated on a large-scale
system presents challenges with respect to synchronization,
data management, and analysis. There are nearly two thousand
raw counter metrics per Aries router and interface, with
functional combinations of these raw metrics required for
insight into network state.

Cray and ACES (LANL/SNL) are collaborating on collection
and analysis of the Aries HSN network performance counter
data. In this paper we present our work to identify HSN
counters of interest; perform synchronized system wide collec-
tion of this counter data; and analyze the occurrences, levels,
and longevity of congestion. We also discuss the challenges
and solutions associated with collection, transport, in-transit
computation and derived data analysis, visualization, storage,
overhead, and redundant data.

I. INTRODUCTION

The ACES (LANL/SNL) Trinity XC platform is currently
comprised of approximately 10,000 hosts (nodes). In ad-
dition to the Intel Haswell based computational resources
(compute nodes), the Trinity platform also provides a variety
of other services which are handled by dedicated hosts
with task appropriate resources. The most prominent of
these are: LNet routers dedicated to routing Lustre traffic,
Realm-Specific Internet Protocol (RSIP) nodes for routing
outside of the Aries fabric, and NVME enhanced Burst
Buffer nodes to provide a pool of high speed, high capacity,
shared storage. In addition to the more traditional Haswell
processors, Trinity will be doubled in size with the addition
of approximately 10,000 Intel KNL based compute nodes
later in 2016.

Tying all of these platform resources together is the High
Speed Network (HSN) based on the Cray Aries Router [1].

Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

This material is based upon work supported by the U.S. Department
of Energy, Office of Science, Office of Advanced Scientific Computing
Research.

The HSN is configured in a Dragonfly [2] topology. In order
to efficiently utilize the Trinity computational and support re-
sources, the HSN resources must be configured and utilized
such that the high bandwidth and low latency characteristics
are taken advantage of but not overtaxed. Key to proper
resource management is an understanding of how the HSN is
utilized by applications and other platform subsystems such
as shared parallel file systems and Burst Buffers. Trinity
will be undergoing substantial changes as the system is
doubled in size (both number of nodes and HSN resources)
and incorporates new processor technology (Intel’s KNL
processor) with substantially different characteristics which
may in turn change how the HSN interconnect is used. Also
evolution in Burst Buffer software could result in substantial
changes in HSN traffic load and usage patterns. Key to
understanding HSN utilization characteristics is appropriate
monitoring and analysis of HSN performance counters.

In support of DOE’s Exascale Program, we have the
additional need to understand the level of resiliency along
with failure propagation paths in current architectures that
may give insight into design considerations for future archi-
tectures. The network interconnect is also of interest in this
regard [3]. Gaining such understanding for the evolution of
the Cray network (Gemini to Aries) is part of the scope of an
Office of Science Exascale Resilience project. Collaborators
on this project include Cray, NCSA, UIUC, LANL, SNL,
and NERSC.

In support of both of these efforts, ACES and Cray are
collaborating on system wide collection and analysis of the
Cray Aries HSN network performance counter data [4].
While these counters are also accessable through Cray’s
CrayPat performance analysis tool, it is in the context of
individual applications being profiled and primarily focuses
on NIC based counters. Monitoring at the system wide scales
of interest, however, presents challenges with respect to
synchronization, data management, and analysis. There are
nearly two thousand counters per Aries network ASIC, with
functional combinations of these raw metrics required for
useful insight into network state.

In this paper we present our work to identify network
performance counters of interest and perform synchronized

system wide collection of this counter data. Our goal is to
enable analysis of the occurrences, severity, and longevity of
congestion on Cray Aries based platforms. We also discuss
the challenges and solutions associated with collection,
transport, in-transit computation and derived data analysis,
visualization, storage, overhead, and redundant data. As
part of this work, Cray is allowing Sandia to make Cray’s
gpcd source code, for reading the Aries network counters,
available.

This paper is organized as follows. In Section II we
present background on the Aries network. In Section III
we describe the Aries router architecture in greater detail.
In Section IV we present information on the counters of
interest and in Section V how they are related to congestion
indicators. In Section VI we present implementation details
of our counter collection, transport, and run-time processing.
In Section VII we present initial analyses and visualizations
of network traffic related quantities from system-wide data
which we collected from the Trinity Platform in production.
We present related work in VIII. We conclude in Section IX
with future work.

II. NETWORK CONFIGURATION

Trinity is a Cray XC40 system which uses a distributed
high speed interconnect based on the Cray Aries router
chip. The predecessor Cray XE/XK platform utilized Cray’s
previous generation router chip (Gemini) in a 3D torus
(Figure 1) configuration for its High Speed Network (HSN).
The 3D torus configuration, while simple with respect to
routing rules, can have congestion issues [5] that signif-
icantly impact application performance. The Aries router
incorporates advanced features that should enable better
network traffic balance through use of the topologically
richer Dragonfly [6] network configuration and adaptive
routing algorithms.

Figures 1 (from [7]) and 3 and 4 (from [6]) provide
a high level view of how different these two topologies
are. The routing algorithm for the 3D torus configuration
is generally “route to X coordinate of destination, route
to Y coordinate of destination, route to Z coordinate of
destination, go to destination node”. Separate applications
can adversely impact each other’s performance if they share
links in communication routes. An example for the 3D
torus is depicted in Figure 1 where traffic between compute
nodes connected to two adjacent routers (Green arrow) has
contention with traffic from nodes connected to routers on
either side (Blue arrow). The traffic represented by the
Blue arrow would actually take the shorter path of the
unshown wrap between the two end nodes in such a small
configuration. However, it is illustrative of an actual problem
in any reasonably sized system using this network topology.

The rules for routing in the Dragonfly network are much
more complex [6] and have dependencies on a forwarding
router’s view of congestion at its possible targets. At each

Figure 1: 3D Torus configuration of Gemini router based
network fabric. The Green arrow represents traffic along
the Z-axis between the two adjacent routers while the Blue
represents traffic between the two adjacent to its head and
tail. In such a small configuration the Blue traffic would
actually take the unshown wrap but is shown as it is here
to illustrate how traffic unrelated to that between compute
nodes connected to and communicating through adjacent
and directly connected routers can still interfere with their
communications. (From [7])

router along a packet’s path from point of injection to point
of egress from the HSN, there are multiple viable options
for which port the packet can be forwarded on to move it
towards its destination. Routing rules determine the legal
set of ports for the packet’s next hop, and can include both
choices that will send the packet along a minimal path or
a non-minimal path. The decision of which port to actually
choose, out of the possibly several legal choices, is made
based on a combination of random selection and current
congestion. In addition, biasing is provided to weight the
choice between minimal and non-minimal paths.

An XC system is composed of electrical groups, where
each electrical group consists of two cabinets, each cabinet
contains 3 chassis, each chassis contains 16 blades, and
each blade contains a single Aries router. Each Aries has
connections to every other Aries in the chassis (Green links).
Each chassis has connections to every other chassis in the
group (Black links). Each group has connections to every
other group in the system (Blue links).

The dragonfly topology utilized in the XC platform uses
three different levels of interconnectivity, with specific Aries
router tiles being designated for each (see Figure 2). The
lowest level is the chassis, consisting of 16 blades and
16 Aries routers. Within a chassis, each router utilizes
a network link (Green tile) to connect directly to each

other Aries router (15 links). Within an electrical group
hereafter referred to simply as a group (2 cabinets consisting
of 6 chassis) each blade position Aries router utilizes 3
links (Black) to connect to each of the 5 Aries routers
corresponding to the same blade position in the 5 other
chassis in the group (15 black links per Aries). Each Aries
router within a group connects to Aries routers within other
groups using up to ten of its Blue links. Trinity is currently
configured with 8 connections from each group to each of
the other 26 groups where each Aries router is using two to
four of its Blue links for this type of connection.

III. THE ARIES ROUTER

A low level description of the Aries router and its appli-
cability to use in the Dragonfly topology at a scale of tens
of thousands of compute nodes is given in [1]. Highlights
from this paper are presented here to provide background
for this work.

The Aries router, the fundamental building block of the
Cray XC High Speed Network (HSN), is comprised of 40
router tiles each providing a bidirectional 3-lane (one bit
per lane) link capable of 4.7 to 5.25 GB/s per direction.
The bandwidth depends on whether the link is optical or
electrical (electrical having the higher bandwidth). There are
an additional 8 processor tiles that connect to four NICs,
which are also included on the Aries device. There are no
external 3 lane physical links associated with the processor
tiles. The NICs connect to the processors in the system.

Figure 2: Aries tiles with color denoting one of Orange (NIC
electrical), Green (intra-chassis electrical), Black (intra-
group electrical), and Blue (inter-group optical) (From [8]).

IV. COUNTERS OF INTEREST

Aries counters of interest depend on what the user
is looking for. There are nearly two thousand counters,
some programmable, that provide information about latency,
counts of flits across interfaces, stalls, and more. Many of
these counters differ only in tile (row,column) designator
or virtual channel (0-7) number. The counters available can
provide information that application programmers can use
to help tune code. They are also used by the system to
identify areas, occurrences, and longevity of high levels
of congestion. The counters also provide information that

Figure 3: Aries in a blade, with 4 nodes attached to each, and
connected by the chassis structure of a Cray XC electrical
group. Each row represents the 16 backplane (Green links).
Each column represents an Aries in one of the six chassis of
a two-cabinet group, connected by electrical cables (Black
links). (from [6])

Figure 4: The global (Blue) optical links connect Dragonfly
groups together. (from [6])

is useful in diagnosing certain kinds of system problems.
Additionally, monitoring software can take advantage of
these counters to provide long term storage of system wide
synchronized measures of traffic levels and contention in the
HSN for correlation with application performance variation.
Counters (metrics) of interest in the system monitoring
context include both node to Aries (NIC metrics) and Aries
to Aries (RTR metrics) measures of traffic and contention
on a per link and per virtual channel granularity. A sample
of NIC and RTR metrics are given below. A more extensive
list along with detailed descriptions can be found in [4].

• AR_RTR_r_c_INQ_PRF_ROWBUS_STALL_CNT
- Number of flit-times for which the network tile
identified by row r and column c is stalled while
waiting to forward a flit.

• AR_RTR_r_c_INQ_PRF_INCOMING_FLIT_VCv -
HSN traffic arriving on VC v of the physical link
associated with the network tile identified by row r
and column c in terms of network flits.

• AR_NIC_NETMON_ORB_EVENT_CNTR_REQ_PKTS
- Request traffic being injected by the NIC into the
HSN, in terms of packets.

V. ARIES CONGESTION INDICATORS

We use the term congestion here to describe conditions
where the amount of traffic being sent across a link or
interface is curtailed due to buffer occupancy at the next
hop destination. The severity of the congestion at any point
in the network can be evaluated by looking at the amount
of time a unit of traffic that is waiting to be forwarded is
stalled due to lack of buffer space on the receiving end.
The flit is the unit of information transmission and is a
sub-component of a network packet. Thus, for a particular
router link we use the ratio of stall counts to the number of
flits received on that link, where the number of flits is the
sum over all 8 virtual channels, to get an idea of the severity
of congestion at that point in the network fabric. A ratio of
1 indicates that every other time a flit is eligible to be sent it
cannot be, and is stalled, due to lack of buffer availability on
the next hop receive end. As an example we utilize the ratio
of AR_RTR_r_c_INQ_PRF_ROWBUS_STALL_CNT
to the sum over all 8 virtual channels (v) of
AR_RTR_r_c_INQ_PRF_INCOMING_FLIT_VCv
on our Blue links, over a specific window of time, to get a
measure of congestion faced by traffic entering a group on
that link. This traffic may be destined for a target within
the group or may be passthrough traffic that is only using
the group for transit.

Likewise we can also estimate congestion faced by traffic
coming from the other link types (i.e., Green links, Black
links, and processor tiles). The congestion faced by traffic
contending for access to a Blue link will be seen at the links
where that traffic is coming from, not at the Blue link.

Ratios of up to roughly 0.25 stalls per flit are not too
significant and can arise due to speed differences between
different interfaces. As the ratio climbs from this point,
traffic is starting to face actual congestion. The congestion
might be due to contention for access to network links or it
might be due to backpressure from the NIC and processor
for traffic leaving the network. While some of the ratios we
have seen (e.g., in the hundreds), and which we present in
Section VII, seem like they should be significant enough
to impact performance, we have not yet quantified the
correlations between variations in application run times and
these congestion measures. Severity of impact will depend
on the both the severity and longevity of the congestion.

VI. IMPLEMENTATION

This section discusses the data collection, transport, in-
transit processing, and storage methodologies and tools used
in this work. Where appropriate we discuss alternatives,
overhead with respect to memory and processing, and the
reasons for our decisions.

A. Data Collection

In order to ease collection and calculation of the link
aggregated metrics for the the Gemini [9], Cray implemented

the gpcdr kernel module [10] which reports Gemini router
metrics via user readable files in the /sys filesystem of
all directly attached hosts [11]. A configuration file is
processed, at kernel module start time, for each node in
order to define the counter and counter combinations to be
exposed in this manner. A kernel module restart is required
for changes in the configuration file to be instantiated in the
reported metrics.

The gpcdr kernel module is also supported for exposing
the Aries performance counters. Because the Aries based
dragonfly network does not use the same link aggregation
scheme as Gemini, counters are reported on a per-tile basis.
This results in an 8x increase in the number of metrics
reported for an Aries router over the number reported for
a Gemini for the same counters of interest. This increase
coupled with an increase in the number of counters avail-
able for the Aries, as opposed to the Gemini [12], made
the overhead for collecting the Aries metrics of interest
via the /sys files prohibitive. As a result, we modified
our HSN performance counter sampling implementation to
utilize Cray’s Generic Performance Counter Daemon (gpcd)
interface for reading the Aries network performance counter
information. This method also provides more flexibility for
investigating counters to be collected as a change in counter
specification only requires a restart of our data samplers (not
a kernel module).

The general methodology for reading the gpcd counters
applied to the Gemini has been described by Pedretti et.
al. in [13]. Briefly, the gpcd interface provides methods for
looking up a counter’s memory mapped register descriptor
based on the counter’s name, for adding such descriptors to a
data structure called a context, and for invoking a read of all
added counters’ values into the context. The counter values
can then be obtained by parsing a list structure within the
context. The gpcd source code has been expanded to include
and support the necessary counter and address definitions
available on the Aries. While the gpcd source code and
library are not currently released by Cray as part of the
software stack, Cray has provided it as part of an ongoing
collaboration with Sandia and is allowing Sandia to release
it in conjunction with the next release of our more general
data collection code.

We utilize the Lightweight Distributed Metric Service
(LDMS) [11], [14] for our data collection, transport, and
storage infrastructure. (Version 3.0, pre-release, is used in
this work). LDMS is plugin based. Configuration of the same
core LDMS daemon (ldmsd), including plugins and their
configurations, determines the functionality of a particular
instantiation. Configuration of sampling plugins enables a
ldmsd to collect data on hosts including compute nodes.

While all RTR metrics for a particular Aries router
are visible from all connected network interfaces, NIC
metrics are only visible to the directly connected nodes.
For the purpose of management and logical separation we

divide RTR and NIC metrics into two distinct sets each
with its own separate gpcd context. From the full set of
possible metrics, we collect all FLIT, PKT, and STALL
related counters; for example, for all relevant (r)ow,
(c)olumn, and (v)irtual channel, we collect
AR_RTR_r_c_INQ_PRF_INCOMING_FLIT_VCv (r=5
is not relevant to this counter as it corresponds to the
processor facing tiles (ptiles)). The NIC plugin collects 13
NIC metrics while the RTR plugin collects the 800 RTR
metrics of current focus.

In our initial implementation, we have created four RTR
sampler configuration files each defining a non-overlapping
quarter of the 800 RTR metrics. Closely related metrics (only
differing in VC) are collected together to minimize the time
skew in their collection. We run a sampler configured with
one of these four on each of the four nodes associated with a
particular Aries router. The goal of this division is to provide
a full set of RTR metrics while only incurring a quarter of
the overhead per sampling host. This configuration provides
no redundancy and downed nodes will result in missing
data. In this simple configuration, blades with service nodes
will be missing half the associated Aries RTR data, since
there are only two service nodes on a service blade. For
production purposes we will provide two way redundancy
by collecting half of the RTR metrics on each of the four
associated compute nodes and all of the RTR metrics on
each of the service nodes.

Metrics can be combined in a post processing step or
by use of the LDMS function store plugin, described in
Section VI-D.

B. Impact Assessment

On Trinity, we collect and transport HSN performance
counter data at 1 second intervals. The collection duration
of a gpcd sample set of 200 metrics is ∼135 usec. In order
to assess the impact, in terms of OS noise, of collecting the
Aries performance counter data, we utilized PSNAP [15].
PSNAP is an OS and network noise profiling tool which
performs multiple iterations of a loop calibrated to run for
a given amount of time t. On an unloaded system, variation
from the ideal amount of time can be attributed to system
noise at a lower frequency than 1/t. We ran PSNAP both
with and without monitoring in order to determine the addi-
tional impact of monitoring. PSNAP was run with 100,000
loops of 1000 microseconds (t=1ms). With this setting, noise
occurring at a frequency of less than 1KHz will be evidenced
by loop times greater than 1ms whether due to normal OS
related processes or our monitoring processes which are
running at 1Hz. The number of loops being run (100,000
in this case) times the loop time will bound the lowest
frequency events that can be observed more than once.
Thus if our network performance counter sampling incurs
significant noise above that of the normal OS operations,
we would expect to observe approximately 100 of these

contributions due to the 100 occurrences of sampling over
the 100 second PSNAP measurement window. Experiments
were run both with and without barrier mode. When running
with barriers the barriers were set to occur every 100 loops.
When running in barrier mode, the workload corresponding
to the calibration on the noisiest node is used across all
nodes. Two runs were performed for each configuration on
100 nodes with 32 tasks (one per core) per node. Combined
results for the two runs for the NIC sampler and the RTR
sampler are shown in Figure 5 for the no barrier base and
in Figure 6 for the barrier base. No substantive difference
was observed.

The impact assessment data was collected on the Trinity
Application Readiness Testbed (ART), Mutrino, sited at
Sandia. While Mutrino’s hardware is identical to that of
Trinity, Mutrino is not currently running the Rhine/Redwood
software stack being run on Trinity. Impact testing of our
full set of monitoring samplers (e.g., Aries RTR and NIC,
power, Lustre) on applications on Trinity, also showed no
substantive impact on performance [16].

Figure 5: PSNAP results for the no barrier runs: Histogram
of occurrences vs. loop time (µsec) with 1 second sampling
(green) vs. no sampling (red). NIC sampler (top); RTR
sampler (bottom). No substantive impact is seen.

C. Data Transport

LDMS samplers overwrite their metric set data at each
sample interval. Thus transport of the sampled data off
the nodes at each sample interval is required in order to
preserve the data. LDMS aggregators are LDMS daemons
that pull and aggregate metric sets from other LDMS dae-
mons (whether samplers, other aggregators, or both). LDMS

Figure 6: PSNAP results for the barrier runs: Histogram of
occurrences vs. loop time (µsec) with 1 second sampling of
the NIC sampler (green) vs. no sampling (red). NIC sampler
(top); RTR sampler (bottom). No substantive impact is seen.

supports both RDMA and socket protocols over a variety of
network technologies including Ethernet, Infiniband, Gem-
ini, and Aries.

In order to minimize computational overhead on the
compute nodes we utilize RDMA to periodically (at one
second intervals in this case) pull Aries performance counter
data from the LDMS sampler daemons. LDMS daemons
performing the pull and aggregation are referred to simply
as aggregators and those sampling host metrics as samplers
in the remainder of this text. While two aggregator hosts
would be sufficient to accommodate a Trinity sized platform
from a transport perspective, for purposes of redundancy,
storage, and analysis bandwidth we utilize four. For Trinity
we have also implemented a Linux based monitoring cluster
to perform storage and analysis of all system data, including
logs, LDMS sampled metrics, SEDC data, and facilities
power and cooling related data. (More information on the
Trinity monitoring cluster can be found in [16]). Because
the monitoring cluster is not connected to the Aries network
fabric, we utilize a more complex LDMS aggregation topol-
ogy using three levels of aggregation.

Aggregators performing RDMA reads from the compute
nodes must be located on the Aries fabric. In order to
transport data from the HSN to our external monitoring
cluster we utilize service nodes which have connections
to both the HSN and the monitoring cluster’s 10 Gigabit
Ethernet network fabric. On Trinity ther were only two

service nodes available for this purpose. Thus, in order
to support redundancy, we repurposed four compute nodes
to act as first level aggregators, pulling LDMS data from
the samplers using RDMA. The two service nodes run
second level aggregators and pull LDMS data from the first
level aggregators using RDMA. For redundancy purposes,
aggregators can be configured for both primary and failover
collection targets. A third level of aggregators runs on the
monitoring cluster. The third level aggregators pull data
from the second level aggregators using the socket transport,
and can also be configured for redundancy and failover. The
monitoring cluster is currently comprised of five Linux hosts
of which three are configured as aggregators with redundant
fail over configurations.

D. In-Transit Derived Data

While there are 852 metrics currently being collected for
each Aries ASIC, desired quantities of interest are currently
all functional combinations of these. For instance, from [4],
a high ratio of stalls to flits over a time interval can be an
indication of level of congestion, evidenced by backpres-
sure, at the point and direction measured. Thus, we have
identified a reduced (currently 169) set of derived metrics
of interest. In order to minimize computational overhead
on the compute nodes we do no processing of sampled
data on the hosts being sampled. All data is transported
in raw form to aggregator hosts and stored for historical
comparison and post processing. Additionally, we perform
in-transit processing of the raw data on aggregator hosts to
produce our derived metrics of interest. Since the aggregator
hosts are not utilized for user applications, the additional
processing on them has no effect on application run times.
This provides low latency access to derived metrics of
interest while incurring no overhead on the compute nodes
for the derivation. Additionally this enables immediate use of
this more descriptive data for further analysis, visualization,
and as a basis for triggering a system or application response
to changing/changed conditions.

For this work, we have implemented a general function
store plugin for LDMS. The functions, input, and output
variables are defined in a configuration file. The current set
of functional forms supported includes multivariate sums,
minimums, maximums, and averages; bivariate multiplica-
tions, divisions, and subtractions; univariate deltas and rates
from the previous timestep; and univariate thresholding com-
parisons. All computations include an optional scaling factor
to address issues of resolution in the computations with
integer outputs. Outputs of one function can be specified
to be inputs to another function. The function store does
not seek to be a general computational engine, but rather
addresses the main types of identified functional forms of
interest. Function store outputs can be optionally written out
to CSV files and/or written to named pipes where they can
be further utilized for analysis and possibly converted to

different storage formats. On Trinity, the monitoring cluster
LDMS daemons currently store both raw and derived data to
CSV files; visualization and analysis of this data is described
in Section VII.

The derived metrics that we currently calculate and
store are a) ratios of STALLs to FLITs over the last
time interval at any interface (an indicator of congestion)
b) ratios of FLITS to PACKETS over the last time
interval (an indicator of packet size) and c) change
in FLITS over the last time interval (an indicator of
traffic volume). For example, for each (r)ow and
(c)olumn, we calculate the ratio of changes in
AR_RTR_r_c_INQ_PRF_ROWBUS_STALL_CNT to
AR_RTR_r_c_INQ_PRF_INCOMING_FLIT_VCv,
summed over all (v) Virtual Channels (this is
the quantity described in Section V) and store it
as a new variable currently chosen to be named
AR_RTR_r_c_STALL_FLIT_RATIO. Similarly, we
calculate and store variables for ratios of changes among
AR_NIC_NETMON_ORB_EVENT_CNTR_REQ_PKTS,
AR_NIC_NETMON_ORB_EVENT_CNTR_REQ_FLITS,
and AR_NIC_NETMON_ORB_EVENT_CNTR_REQ_STALLED.

VII. ANALYSIS AND VISUALIZATION

This section describes our current investigations into how
the derived metrics of interest described in Section VI-D can
be utilized through both numerical analysis and visualization
to gain an understanding of the traffic and congestion
characteristics of the Trinity platform’s HSN.

Data in this section is system data collected during
our initial LDMS installation on Trinity. As described in
Section VI-A, in our initial sampler configuration, downed
nodes and uncollected datasets on the service blades result in
some missing data. This will be resolved via the redundant
collection, also described in Section VI-A, in the production
configuration; this accounted for missing data on about 5
percent of the links, generally evenly distributed among the
different link types.

A. Visualization

We have developed a prototype web-based visualization
upon which network-related data can be overlaid to provide
connection based information about congestion between two
components. Information can be visualized based on single
link or aggregate information.

As described in Section II there are 27 electrical groups
on Trinity. In our visualization shown in Figure 7 a cell at
the intersection of a row and column is colored according to
a chosen network related metric (e.g., traffic) between those
two groups; thus the diagonal has no data. For example,
we might color a cell by the maximum traffic between two
groups over all the links between the two groups. From any
group on Trinity, there are 8 links to each of the other

groups. Hovering over a cell launches a window with a
description of each of the eight composite links in a tooltip
along with each corresponding value.

Selecting a cell displays sub-matricies related to the
two groups, for example the two 6 x 16 Black link and
Green link connected elements within the group shown in
Figure 8. These may be colored by Green link, Black link,
or aggregate information.

Our near-term goal is to have the visualization tool
reading dynamically from a database backend based on
user interaction. Longer term we would like to include the
option to visualize run-time data streams. At the time of this
writing, the web-based visualization reads from files defining
the visualization heirarchy and associated data. These are
built from queries to a database backend in which are stored
the network topology specifications; the network data, bulk
loaded from the CSV output of the function store; and the
node-to-data-subset mappings from the LDMS RTR sampler
configuration.

B. Router Tile Counters

In this section, we present an examination of backpressure
received at routers from their Blue and Green connections
using visualization tools we are currently developing specif-
ically for exploration of Aries network related information.

From [4], an aggregate view of the backpressure incurred
by the traffic received at the network tile is expressed by our
derived variable AR_RTR_r_c_STALL_FLIT_RATIO in
the function store output. Note that r and c refer to the
individual tile row and column, shown in Figure 2, and are
not the row and column of the matrix display of Figure 7.
In this section we will refer to this quantity for any r and
c as STALL/FLIT.

Determination of the appropriate tile counter for any given
connection and extraction of its data is performed as follows.
The command rtr --interconnect provides system
specific network connectivity information. For example, the
Blue connections between groups 17 and 21 include:
c11-2c2s12a0l05(17:5:12) blue -> c7-3c2s10a0l05(21:5:10)
c11-2c2s12a0l06(17:5:12) blue -> c7-3c2s10a0l06(21:5:10)

c7-3c2s10a0l05(21:5:10) blue -> c11-2c2s12a0l05(17:5:12)
c7-3c2s10a0l06(21:5:10) blue -> c11-2c2s12a0l06(17:5:12)

Each group has 8 connections of this type to each of
the other groups. For c11-2c2s12a0l06, r and c are
0 and 6, respectively. The slot of the relevant Aries, (e.g.,
c11-2c2s12), and the RTR sampler configuration identify
which node (or nodes, in the case of redundant collection)
has collected the data. The topology information from rtr
--interconnect for all connections and types and the
RTR sampler configuration are stored in a database to enable
fast lookups of any connection’s variable’s data.

In Figure 7 each cell shows, for a particular time, the
maximum value over all of the Blue links between any
two groups of the STALL/FLIT value over the last time

interval (1 sec). For the connection between groups 17
and 21, the maximum value is on the incoming connec-
tion to c11-2c2s12a0l06 from c7-3c2s10a0l06.
This determines the value for the matrix cell row=17
column=21. Note that data for 2 of these 8 connec-
tions is missing (incoming into c11-2c2s13a0l05
from c7-3c2s11a0l05 and c11-2c2s13a0l06 from
c7-3c2s11a0l06). This is also the highest value in the
figure. Since this data describes incoming traffic, this value
indicates backpressure on traffic coming into group 17 from
group 21. From the figure it is evident that, over this time
interval, backpressure on traffic coming into groups 17, 14,
and 13 is generally higher than for others.

The color scale in this figure uses black for the non-
existent diagonal values. Existent values are colored on a
manually selected green-yellow-red scale, with green being
the lower values and red being the higher. The color range
was selected in order to make the higher values stand out; it
is not yet known what absolute values we may be interested
in. If visualized quantities (e.g., traffic and backpressure)
were reasonably symmetric, with about the same going in
each direction between pairs of groups, there would be a
symmetrical color pattern about the black diagonal.

The backpressure within the groups can be investigated
via a drill down visualization. Selecting a cell in the Blue
group visualization displays the 6 x 16 topology of both
groups involved, as shown in Figure 8. In this figure we
are investigating the backpressure on the traffic flowing into
each Aries from c11-2c2s12 via their Green links to
that Aries router, so only cells in the row pertaining to
chassis c11-2c2 will be colored. The highest value of
the STALL/FLIT along these Green links is that coming
into c11-2c2s3. Black colored cells in the relevant row
represent either invalid (i.e., c11-2c2s12 to itself) or
missing data (i.e., s2, s10, and s13).

We are also interested in understanding the evolution and
attribution of congestion. Figure 9, is a time history plot
of the STALL/FLIT ratio for the link of highest value
in Figure 7. Time = 0 corresponds to the time associated
with the snapshot of data displayed in Figure 7. While we
have not yet performed any numeric analysis on this data it
appears, from visual inspection of the Figure 9 time history
plot, that there is periodic and symmetric structure showing
building congestion that peaks and abates at roughly one
minute intervals. Also we observe, over the time of this plot
that the peaks of these structures seem to also have periodic
envelopes whose peaks appear to increase through time until
soon after our time slice of interest and then start falling off.
However, the impact, if any, of any of this on an applications
overall performance is not currently known and will be the
focus of future work.

Figure 7: Web-based visualization of network quantities
between Blue groups. Visualization is in the form of a matrix
of cells where any (row, column) location is used to indicate
quantities between the those two groups. Hovering over any
location brings up a tooltip of the value and text representa-
tion of the data involved. In this example, the STALL/FLIT
ratio indicating back pressure on incoming traffic on Blue
groups over a particular one second interval on Trinity is
shown. Locations are colored by the maximum value over
the Blue links connecting the two associated groups. A text
display shows the individual link data. Here backpressure
on traffic into groups 17, 14, and 13 is generally higher. In
the hovered-over location’s text, 2 of the 8 Blue links are
missing data.

Figure 8: Web-based visualization for network quantities on
Black/Green links. Selecting a location in the Blue group
visualization 7 brings up two 6 x 16 possible Black-Green
link visualizations for the groups involved. Rows are chassis
of the two cabinets in a group; a given cell is an Aries
router in that chassis. Groups in this figure are those of
the selected cell (groups 17 and 21) in the previous figure.
The STALL/FLIT counts are shown for Green links from
c11-2c2s12 (Aries router with highest STALL/FLIT
counts on Blue inter group links). The highest value is seen
to be into c11-2c2s3.

Figure 9: Time history of values for the link of the highest
value in the visualization of Figure 7. Time = 0 corresponds
to the time of that figure.

C. Traffic Between NIC and HSN

From [4], the quantities
AR_NIC_NETMON_ORB_EVENT_CNTR_REQ_PKTS,
AR_NIC_NETMON_ORB_EVENT_CNTR_REQ_FLITS,
and AR_NIC_NETMON_ORB_EVENT_CNTR_REQ_STALLED
represent the aggregate request traffic being injected by the
NIC into the HSN. Here, we examine ratios of changes in
counts of stalls to flits. These ratios are calculated in and
stored by the function store. We will refer to them here,
independent of location, as FLIT/PKT and STALL/FLIT.

Table I shows instances of STALL/FLIT over a randomly
selected approximately 3 hour period, for approx 3/4 of the
nodes binned in buckets of 50. It is interesting to note that
the vast majority are small but that there are a couple of
peaks that are one to two orders of magnitude larger.

Bin Range Instances
[0-50) 75719905
[50-100) 24
[100-150) 10
[150-200) 4
[200-250) 2
[250-300) 1
[300-350) 2
[350-400) 0
[400-450) 2
[450-500) 0
[500-550) 0
[550-600) 0
[600-650) 1
[650-700) 0
[700-750) 0
[750-800) 0
[800-850) 0
[850-900) 0
[900-950) 2
[950-1000) 0

Table I: STALL/FLIT instances for traffic being injected
by NICs into the HSN over an arbitrary 3 hour period

A time history plot of the values, shown in a binned

view in Table I, for a particular NIC is shown in Figure 10
(red). This view reveals a periodic structure that is much
more pronounced than that for the RTR STALL/FLIT ratio
shown in Figure 7 and lacks the apparent buildup that we
saw in the RTR case. In this case the feature periods appear
to repeat every 90-100 seconds with feature widths of ∼50
seconds. The zeros here are not due to missing data points.
The time between samples is shown in green, with only a
few missed samples around t = 1275. Values of missed
points are of order 2, indicating that only single points
have been misssed (i.e., there were no consecutive missed
samples).

Figure 10: STALL/FLIT ratio for traffic being injected by
a particular NIC into the HSN over an arbitrary half hour
period (red). Time between samples is shown in green.

VIII. RELATED WORK

There is substantial interest in the investigation and mit-
igation of the impact of congestion on application perfor-
mance. Some examples targeting Cray Gemini and Aries
systems are given here.

For Gemini systems, Bhatele et. al. [5] have done sub-
stantial work in assessing the variability in runtimes and
messaging rates on NERSC’s Hopper. Albing et al. [17]
have investigated orderings for application placement in a
3D torus. NCSA has instituted topologically-aware schedul-
ing [18] on its Blue Waters platform in order to reduce
application interference.

Work involving reading of the Gemini network perfor-
mance counters, outside of CrayPat, includes that of Pe-
dretti and collaborators [13], [19] examining variations in
congestion-related quantities as a result of different appli-
cation and task mappings. Data in those works was limited
to that accessible from within an application’s allocation.
Brandt et. al. [20] have demonstrated, in small-scale ex-
periments, that remapping tasks based on dynamic system-
wide network information in a congested environment can
recover more time lost to congestion than using static
network measures (e.g., hop counts). Network performance
counters have been continuously collected system-wide on
Blue Waters for over two years, via LDMS [11], in order

to investigate network traffic and contention in the Gemini
HSN.

For the Dragonfly toplolgy, Jain et. al. [21] are among
those having performed modeling studies investigating
throughput. Relatedly, Bhatele and collaborators [22], [23]
have developed visualizations for the dragonfly topology
which they have applied to traffic simulations on the ar-
chitecture of NERSC’s Edison.

Differentiating elements of our work are the development
of continuous, system-wide collection, transport, and analy-
sis of the Aries network performance counters including the
use of production system data in the analysis.

IX. FUTURE WORK

In this paper, we have presented our work on collecting,
analyzing, and visualizing HSN performance counters on
an Aries based network. We have discussed challenges and
solutions in support of this work. Establishing continuous
system wide monitoring of Trinity’s High Speed Network
components is the first foundational step in gaining an
understanding of how these resources are being utilized.
With this in place we will be turning our attention to
further development of the analysis and visualization work
presented in this paper.

With respect to data analytics we will be developing tools
to process the data, both in-transit and post processing.
Since the XC platform management services do not natively
provide facilities for continuous system wide collection
and display of HSN performance counter data, it has not
previously been possible to investigate what values should
be used as indicators of performance-impacting contention
on the system. Our intent is to quantify normal operation as
well as to build tools for both run-time and post processing
identification of problems in the fabric that stand out as
anomalous and performance impacting.

Visualization is key to gaining the understanding neces-
sary to drive the analytics as well as providing a useful
production tool for status and diagnosis. With respect to
visualizations we plan to further develop and expand the drill
down visualizations presented in Figures 7 and 8 to be more
interactive with: additional information (raw and derived)
available in hover boxes, the ability to scroll-through-time,
the ability to change metrics in a particular focus via a pull-
down menu, and on demand time-history plots such as those
in Figures 9 and 10 for particular tiles, metrics, and times
of interest.

ACKNOWLEDGMENT

The authors would like to thank Joe Greenseid (Cray) for
useful discussions; Adam DeConinck and Amanda Bonnie
(LANL) for their participation in the LDMS install, testing,
and operation on Trinity; and Jason Repik (Cray/SNL)
for his assistance in testing and debugging LDMS and
associated software on Mutrino.

REFERENCES

[1] B. Alverson, E. Froese, L. Kaplan, and D. Roweth,
“Cray XC Series Network,” WP-Aries01-1112, 2012.
[Online]. Available: http://www.cray.com/sites/default/files/
resources/CrayXCNetwork.pdf

[2] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-
driven, highly-scalable dragonfly topology,” SIGARCH Com-
put. Archit. News, vol. 36, no. 3, pp. 77–88, Jun. 2008.

[3] C. Di Martino, Z. Kalbarczyk, R. Iyer, F. Baccanico, J. Fullop,
and W. Kramer, “Lessons Learned from the Failure Analysis
of a Petascale System: the Case of Blue Waters,” in Proc.
IEEE/IFIP Int’l Conference on Dependable Systems and
Networks (DSN14), 2014.

[4] Cray Inc., “Aries Hardware Counters,” Cray Doc S-0045-20,
2015.

[5] A. Bhatele, K. Mohror, S. H. Langer, and K. E. Isaacs, “There
Goes the Neighborhood: Performance Degradation Due to
Nearby Jobs,” in Proc. Int’l Conference on High Performance
Computing, Networking, Storage and Analysis (SC13), 2013.

[6] G. Faanes, A. Bataineh, D. Roweth, T. Court, E. Froese,
B. Alverson, T. Johnson, J. Kopnick, M. Higgins, and J. Rein-
hard, “Cray Cascade: A Scalable HPC System Based on
a Dragonfly Network,” in Proc. Int’l Conference on High
Performance Computing, Networking, Storage and Analysis
(SC12), 2012.

[7] “Brief Blue Waters System Overview,”
https://bluewaters.ncsa.illinois.edu/user-guide.

[8] D. Greenseid and D. Roweth, private communication, Feb
2016, Cray, Inc.

[9] R. Alverson, D. Roweth, and L. Kaplan, “The Gemini System
Interconnect,” in Proc. 2010 IEEE 18th Annual Symposium
on High Performance Interconnects (HOTI), 2010.

[10] Cray Inc., “Managing System Software for the Cray Linux
Environment,” Cray Doc S-2393-5202axx, 2014.

[11] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos,
J. Fullop, A. Gentile, S. Monk, N. Naksinehaboon, J. Og-
den, M. Rajan, M. Showerman, J. Stevenson, N. Taerat,
and T. Tucker, “Lightweight Distributed Metric Service: A
Scalable Infrastructure for Continuous Monitoring of Large
Scale Computing Systems and Applications,” in Proc. Int’l
Conference for High Performance Storage, Networking, and
Analysis (SC14), 2014.

[12] Cray Inc., “Using the Cray Gemini Hardware Counters,” Cray
Doc S-0025-10, 2010.

[13] K. Pedretti, C. Vaughan, R. Barrett, K. Devine, and S. Hem-
mert, “Using the Cray Gemini Performance Counters,” in
Proc. Cray User’s Group, 2013.

[14] “Ovis,” http://github.com/ovis-hpc/ovis.

[15] “PAL System Noise Activity Program,” Los Alamos National
Laboratory Performance and Architecture Laboratory (PAL),
March 2014. [Online]. Available: http://www.c3.lanl.gov/pal/

[16] A. DeConinck et al., “Design and Implementation of a
Scalable Monitoring System on Trinity,” in Proc. Cray User’s
Group, 2016.

[17] C. Albing, N. Troullier, S. Whalen, R. Olson, and J. Glensk,
“Topology, bandwidth and performance: A new approach in
linear orderings for application placement in a 3D torus,” in
Proc Cray User Group (CUG), 2011.

[18] J. Enos, “Application Runtime Consistency and Performance
Challenges on a Shared 3D Torus.” MoabCon 2014,
2014. [Online]. Available: http://www.youtube.com/watch?
v=FR274JitRq8

[19] M. Deveci, S. Rajamanickam, V. Leung, K. Pedretti,
S. Olivier, D. Bunde, U. V. Catalyurek, and K. Devine, “Ex-
ploiting Geometric Partitioning in Task Mapping for Parallel
Computers,” in Proc. 28th Int’l IEEE Parallel and Distributed
Processing Symposium, 2014.

[20] J. Brandt, K. Devine, A. Gentile, and K. Pedretti, “Demon-
strating Improved Application Performance Using Dynamic
Monitoring and Task Mapping,” in 1st Workshop on Monitor-
ing and Analysis for High Performance Computing Systems
Plus Applications (HPCMASPA 2014) Proc. IEEE Interna-
tional Conference on Cluster Computing (CLUSTER), 2014.

[21] N. Jain, A. Bhatele, X. Ni, N. J. Wright, and L. V. Kalè,
“Maximizing Throughput on A Dragonfly Network,” in Proc.
Int’l Conference on High Performance Computing, Network-
ing, Storage and Analysis (SC14), 2014.

[22] A. Bhatele, N. Jain, Y. Livnat, V. Pascucci, and P.-
T. Bremer, “Simulating and Visualizing Traffic on the
Dragonfly Network,” 2015, poster and extended abstract
from Int’l Conference on High Performance Computing,
Networking, Storage and Analysis (SC15). [Online].
Available: http://sc15.supercomputing.org/sites/all/themes/
SC15images/tech poster/tech poster pages/post109.html

[23] Y. Livnat, P.-T. Bremer et al., “DragonView.” [Online].
Available: https://github.com/LLNL/DragonView

