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Abstract—In this paper, we evaluate the recently available
directives in OpenMP 4 to parallelize a computational kernel
using both the traditional shared memory approach and the
newer accelerator targeting capabilities. In addition, we explore
various transformations that attempt to increase application
performance portability, and examine the expressiveness and
performance implications of using these approaches. For ex-
ample, we want to understand if the target map directives in
OpenMP 4 improve data locality when mapped to a shared
memory system, as opposed to the traditional first touch
policy approach in traditional OpenMP. To that end, we use
recent Cray and Intel compilers to measure the performance
variations of a simple application kernel when executed on
the OLCF’s Titan supercomputer with NVIDIA GPUs and
the Beacon system with Intel Xeon Phi accelerators attached.
To better understand these trade-offs, we compare our results
from traditional OpenMP shared memory implementations to
the newer accelerator programming model when it is used to
target both the CPU and an attached heterogeneous device.
We believe the results and lessons learned as presented in this
paper will be useful to the larger user community by providing
guidelines that can assist programmers in the development of
performance portable code.

Keywords-Performance Portable Programming Models;
Shared Memory Programming; Accelerator Programming;
OpenMP 4.0

I. INTRODUCTION

As we move towards exascale, we see two general trends
in the compute node architecture of high performance
computing (HPC) systems: one with heterogeneous nodes
containing accelerators, and the other with homogeneous
shared memory compute nodes. The prevalence of both
trends is clearly reflected in the architectures selected for
the CORAL project [1], which include Summit and Sierra,
two heterogeneous IBM Power-based systems with multiple
NVIDIA Volta GPUs per node [2], [3]; and Aurora, a
homogeneous third-generation Intel Xeon Phi-based sys-
tem [4]. European [5] and Japanese exascale systems plan to
use FPGAS and multi-core processors. These architectural
classes are different enough from each other (and even
within each class in regard to different product generations)
to make performance portable programming a nontrivial
task.

These developments also come at a time when pro-

grammer productivity and the ability to produce portable
code have been recognized as major concerns, generating
workshops and initiatives to address the application perfor-
mance portability challenge. The Application Readiness and
Portability meetings at the Oak Ridge Leadership Computing
Facility (OLCF) and the National Energy Research Scientific
Computing Center (NERSC), the Workshop on Portability
Among HPC Architectures for Scientific Applications held
at SC15 [6], and the DOE Centers of Excellence Perfor-
mance Portability Meeting [7] are just a few examples of
these efforts.

Producing well-performing code on different architectures
involves identifying a programming model that both pro-
vides an appropriate level of abstraction to expose multiple
sources of parallelism and also maps that parallelism to make
efficient use of the underlying architecture. To address these
challenges, directive-based programming models, including
OpenMP and OpenACC, have been proposed to offset the
increasing development cost of creating architecture-specific
code. Furthermore, the latest OpenMP 4.5 specification
allows the programmer to choose between writing code for
traditional shared memory execution and using its new ac-
celerator programming model capable of targeting any type
of node. However, as compiler support is starting to emerge,
the performance portability implications of these models on
different architectures are not yet well understood.

It is the view of many that the OpenMP standard offers a
way forward to address the need for performance portability
of applications. With appropriate application code restructur-
ing to take advantage of the accelerated architecture, as well
as minimally invasive directives to guide the code generation
process by the compiler, it is hoped that OpenMP will realize
the objective of enabling performance portable applications.

Traditionally, the OpenMP 3.1 version of the standard
has been a viable means for efficient programming of
shared memory architectures, and this standard currently
supports some self-hosted accelerated nodes. More recently,
the OpenMP 4 standard has added support for the offload
model to address the needs of heterogeneous node architec-
tures. Although the OpenMP standard has broad industry
support and wide usage, it still embodies two different
programming models: the shared memory model and the



offload model, and thus it remains uncertain how to use
the standard to develop efficient and portable code for
accelerated architectures of each type.

In this paper we examine the effectiveness of the OpenMP
4 offload model as an ubiquitous technique for programming
modern node architectures. The offload model is inherently
suitable for programming attached accelerator devices for
which data transfers between on-node memory spaces is
specified explicitly. But beyond this, the use of data direc-
tives also holds promise for self-hosted accelerators insofar
as it provides a systematic approach to specifying memory
access patterns for application code, which is an important
consideration for performance.

To execute this study, we employ several modern OpenMP
4-capable compilers on different platforms. Using the simple
and well-understood Jacobi computational kernel as an ex-
ample, we compare the performance of traditional OpenMP
shared memory-style and OpenMP 4 offload directives with
these compilers to understand their respective performance
characteristics. Based on this, we evaluate the effectiveness
of OpenMP 4 directives as a potential solution to the
performance portability problem of modern architectures.
Section II provides a summary of alternative methods to
OpenMP and related work, with an overview of the core
OpenMP programming models being given in sections III
and IV. In sections V and VI we describe our findings on the
performance portability of the various ways to use OpenMP,
and then we present some conclusions and recommendations
for future directions to further improve OpenMP for perfor-
mance portable programming in sections VII and VIII.

II. RELATED WORK

OpenMP has traditionally played a key role in exposing
parallelism for HPC applications running on homogeneous
nodes, being used alongside MPI as the “X” in the so-
called “MPI+X” configuration. However, OpenMP was orig-
inally designed to handle single address space parallelism;
thus detached accelerators with separate memory hierarchies
requiring explicit data transfer could not be handled by
OpenMP until new features were added in OpenMP 4 to
support this functionality. In conjunction with these devel-
opments in the OpenMP specification and implementations,
alternative programming models are being developed to
efficiently expose node-level parallelism for a variety of
target architectures.

Two projects that have been arisen and were designed
from the start to address the performance portability issue
are Kokkos [8] and RAJA [9]. These make heavy use of
standard C++ features that are able to hide the implementa-
tion details necessary to target good performance on multiple
architectures from the application developer. However, since
these abstractions rely on C++ language features, these pro-
gramming models are not available to strictly C or Fortran
applications without the use of cumbersome foreign function

interface designs, which negates some of the convenience
and abstraction that the models intend to provide.

Perhaps the most closely related alternative to OpenMP
that is currently available is OpenACC [10], which is an-
other directive-based programming model specifically built
to handle accelerator offload computation. The OpenACC
specification was created to unify all the directive-based
approaches to program accelerators including CAPS HMPP,
PGI, and Cray accelerator directives. The purpose of this
multi-organization effort was to develop a portable approach
to directive-based programming and to provide early ex-
periences on the use of directives to program accelerators.
While OpenACC is designed to support multiple hardware
targets, support for host CPU execution is quite recent, and
implementations for offloading to the Xeon Phi platforms
are not supported in production environments. These limita-
tions have prevented OpenACC from becoming a universal
performance portable option for application developers.

In the ideal case, standardized base language features
would be sufficient to achieve good performance on multiple
platforms including discrete accelerators. Indeed, the Fortran
standard [11] has had parallelization features such as co-
arrays and do concurrent since 2008. Also, the up-
coming C++17 standard is expected [12] to include generic
features for parallelization. Unfortunately, these features
presently remain insufficient for the case of accelerator
programming with multiple memory address spaces and
complex compute and memory hierarchies.

Finally, runtime systems designed specifically for HPC
applications have been proposed as a solution for either
node-level parallelism, more sophisticated internode com-
munication than MPI provides, or both. These runtimes
can also have other features besides just exposing the raw
parallelism, such as fault-tolerance, automatic load balanc-
ing, task-based programming abstractions, and data locality-
aware compute scheduling.

Before OpenMP 4.0, Intel supported accelerated program-
ming by use of proprietary directives [13] for Intel Xeon
Phi coprocessors. These nonstandard directives supported
native and offload modes, making it possible either to
run applications on the coprocessors locally or to offload
compute intensive regions from CPU to coprocessors. Other
examples of previous efforts include CAPS HMPP and PGI
compiler accelerator directives and hiCUDA [14]. Early
studies have explored the performance of the directive-based
approach for GPU programming [15] based on the HMPP
and PGI compilers. The results show that using directives
with additional code transformations can achieve compa-
rable performance to optimized hand-written CUDA codes
in many cases. Other research evaluated the effectiveness
of directive-based approach with favorable findings [16].
OpenMPC [17] complemented the OpenMP language with
directives to assist with the translation of OpenMP code to
CUDA.



III. OPENMP PROGRAMMING MODELS

OpenMP is an Application Program Interface (API),
jointly defined by a group of vendors, laboratories, users, and
academia. OpenMP provides a portable and scalable model
for developers of shared memory parallel applications, sup-
porting a directive-based API for C/C++ and Fortran on
multiple shared memory systems. The major features of
OpenMP include its various constructs and directives for
specifying the fork/join of parallel regions, worksharing,
thread synchronization, the creation of tasks, and a data
environment.

A. Background

Directive-based programming models were developed to
reduce the complexity of porting code to accelerators. Their
goal is to let the developer simply insert directives into a
program that serve as a guide for the compiler to generate
underlying code that makes efficient use of accelerators
(though some code restructuring may still be needed to
improve performance). The two major efforts in the field are
OpenACC and OpenMP. As of today, many production codes
use directives, for example, the S3D combustion applica-
tion [18], CAM/SE [19], COSMO [20], [21] and ICON [22]
applications, which all were successfully ported to GPUs by
using OpenACC and achieved substantial speedups.

After the viability of directive-based programming for
accelerators was demonstrated, a larger effort was started
to unify shared memory programming with the accelerator
model. OpenMP 4.0/4.5 addressed this by extending its
original shared memory directives (e.g., parallel regions,
worksharing, tasks) to support the accelerator model. With
this release, a series of new features and concepts was
introduced to improve the interoperability of these models,
for example, by using a unified task-based model in which
tasks can run on the accelerator or on CPU threads. Liao [23]
performed an early evaluation of the OpenMP accelerator
model by using an initial implementation of the Hetero-
geneous OpenMP (HOMP) compiler and showed successes
using this approach.

The accelerator model in both OpenACC and OpenMP
assumes host-directed execution with an attached accelerator
device such as a GPU or a Xeon Phi (the accelerator
model can also be executed on a shared memory system
or self-hosted system). The application begins execution on
the host and accelerated regions of the application code
are offloaded to the accelerator device under control of
the host. The device executes these parallel regions, which
typically contain work-sharing loops, or regions of code,
which in turn can contain one or more loops executed as
kernels. The host orchestrates the execution by allocating
memory on the accelerator device, initiating data transfer,
sending the code to the accelerator, passing arguments to
the accelerated region, queuing the device code, waiting
for completion, transferring results back to the host, and

deallocating memory. In most cases, the host can queue a
sequence of operations to be executed on the device, one
after another.

The memory model for accelerators is based on defining
copy-in and copy-out regions for memory that is synchro-
nized with the host. All data movement between host mem-
ory and device memory is performed by the host through
runtime library calls that explicitly move data between the
separate memories, typically using direct memory access
(DMA) transfers.

B. Accelerator Programming Model Features

The following section describes some OpenMP 4.0 accel-
erator programming features that were used in this study.

1) Executing on the device: In OpenMP, the target
directive begins a region of code to be executed on the
accelerator device. The device clause can be used to
specify the desired device if multiple devices are present. In
OpenMP, asynchronous device operations are not supported
directly but can be achieved by using the OpenMP task
construct.

2) Specifying teams: In OpenMP, the concept of gangs
or teams denotes a collection of thread groups satisfying
certain properties: for example, it is not possible to syn-
chronize across different teams over the lifetime of their
existence. In OpenMP, the teams directive creates a league
of thread teams that execute in the region. For convenience,
this directive can be combined with the target construct;
adjacent directives can also be combined in different con-
texts in OpenMP.

In OpenMP a single master thread from each team is
active in the structured block. The teams directives are
generally not used in this manner in isolation, but are
combined with other directives for additional parallelism at
the thread and SIMD levels.

3) Distributing loop iterations to teams: The OpenMP
distribute directive specifies that the iterations of one
or more loops will be executed by the active thread teams.
In the absence of further specifications, elements of the
iteration space are each assigned to the master thread of
each team and only these master threads are deployed.
In OpenMP, it is possible in some cases to apply loop
directives to multiple nested loops by flattening the iteration
space using the collapse clause. Also, the OpenMP
dist_schedule clause can be used to control how loop
iterations are mapped to teams.

4) Distributing loop iterations to teams with multiple
threads: The distributed parallel loop directive
instructs OpenMP to distribute iterations of a loop across
teams and threads within a team.

5) Distributing loop indices to teams, threads and SIMD
units: In OpenMP the simd directive indicates that a loop
should be vectorized for the targeted platform. When used in
conjunction with the distribute and parallel loop directive the



compiler will schedule the iterations across teams, threads
within the teams and SIMD units.

6) Creating a data region: OpenMP has a mechanism for
specifying a data region, which is a period of execution time
with a distinct beginning and end for which the residence of
a data object on the device can be defined. This region can be
identical to the parallel execution region or can be specified
independently, as described here. The relevant operations
that can be selected are: to allocate memory for the object
on the device, to copy the host data object to the device
on region entry, to copy the data object back to the host,
and to delete the device object on exit. In OpenMP 4.0,
scalars are copied in and out (defaultmap(tofrom:
<scalar>)) of the device by default.

The OpenMP target data directive is used to specify
data transfers between host and accelerator within a code
region. The same effects can be obtained for a target
region by using these clauses to control data behavior on
entry into and exit from the parallel region. OpenMP also
provides the enter data and exit data clauses which
allow a more flexible specification of data regions not
associated with a single code block.

7) Updating data objects: Within the data region it
may be necessary to refresh the host data object with
the corresponding data on the device or vice versa. The
OpenMP target update directive is an executable di-
rective which performs a refresh of a host data item from
the device copy of the item with the from clause or vice
versa with the to clause.

IV. OPENMP PROGRAMMING MODELS IN PRACTICE

In order to compare the two programming models, the
shared memory (OpenMP 3.1) and accelerator styles, we
performed an in-depth study of a representative application
kernel. The performance of this kernel was evaluated on
two different platforms: Chester, a Cray XK7 test system
available at the OLCF, and Beacon, a Cray CS300-AC Linux
cluster available at the National Institute for Computational
Sciences (NICS). In addition, two compilers were used: the
Intel Compiler 16.0.1, and the Cray Compiler Environment
(CCE) 8.4.5. Both were chosen because of the level of
support they provide for OpenMP 4.0.

Several different experiments were conducted to evaluate
the performance of the programming models on a given
architecture. First, the application kernel written in standard
shared memory OpenMP 3.1 was considered. Second, this
kernel was modified to include target directives in order
to compare the performance of the shared memory model
when offloaded to an accelerator device. Finally, the original
OpenMP 3.1 code was fully ported to the accelerator model
using OpenMP 4.0 directives. Table I shows the different
versions of the code that were used and the nomenclature
used to distinguish each one.

App. Kernel Version Abbrev. Executed On Offloading To

shared memory SM CPU n/a
Xeon-Phi n/a

shared+target SM+t

CPU CPU
CPU Xeon Phi
CPU GPU

Xeon Phi Xeon Phi

accelerator accel

CPU CPU
CPU Xeon Phi
CPU GPU

Xeon Phi Xeon Phi

Table I
EXPERIMENTS BY PROGRAMMING MODEL AND PLATFORM

A. Platforms

To test the performance of the OpenMP-based program-
ming models, we make use of two HPC computing plat-
forms: the OLCF Chester Cray XK7 system, and the NICS
Beacon Intel Phi Knights Corner system [24].

Chester is a Cray XK7 system architecturally identical to
the OLCF Titan system but consisting of a single cabinet. It
is used here since its compilers and software are slightly
newer than Titan’s, it being an early deployment system
for new software releases. A detailed description of the
architecture can be found in [25]. Of particular importance to
the present study are the following specifications: a compute
node consists of an AMD Interlagos 16-core processor
with a peak flop rate of 140.2 GF and a peak memory
bandwidth of 51.2 GB/sec, and an NVIDIA Kepler K20X
GPU with a peak double precision flop rate of 1,311 GF and
a peak memory bandwidth of 250 GB/sec. For this platform,
Cray compilers are used, with version 8.4.5. As shown
in Fig. 1 two different execution modes are possible on
Chester: standard using only the CPU, and offload running
the executable on the CPU and offloading to the GPU.

Figure 1. Execution modes on Titan

Beacon is an Intel Phi Knights Corner cluster, each
compute node containing two 8-core Xeon E5-2670 proces-
sors and four 5110P Intel Phi processors. Each Intel Xeon



processor has a peak flop rate of 165 GF and a peak memory
bandwidth of 51.2 GB/sec, yielding aggregate peak rates
for the two CPUs of 330 GF and 102.4 GB/sec. Each Intel
Xeon Phi processor has peak double precision performance
of 1,011 GF and a peak memory bandwidth of 320 GB/sec.
For this platform, Intel compilers are used, with version
16.0.1 from the Intel XE Compiler suite version 2016.1.056.
Fig. 2 depicts the three different execution modes possible on
Beacon: standard running only on the CPU, offload running
the executable on the CPU and offloading to the Intel Xeon
Phi, and also native or self-hosted mode running on the Intel
Xeon Phi directly.

Figure 2. Execution modes on Beacon

B. Test case: Jacobi

To evaluate application portability using OpenMP pro-
gramming models, it is useful to employ small application
kernels that resemble compute-intensive portions of full
applications. For this study we focus on a simple Jacobi
iterative solver for a 2-D structured grid constant coeffi-
cient problem derived from a discretized partial differential
equation. This well-understood kernel represents structured
grid and sparse linear algebra computational motifs. Its
operations resemble those of many application codes, and
the kernel itself is used in cases such as implicit grid solvers
and structured multigrid smoothers.

Jacobi iteration is a simple linear solver method that can
be used, for example, to solve computational fluid dynamics
(CFD) problems based on a finite difference grid by updating
grid cells with neighbor stencil values. Figure 3 shows a
Jacobi iteration applied to a 2-D structured grid with 5-point
stencil implemented in Fortran. The kernel was derived from
the OpenMP Jacobi example available at [26].

do while (k.le.maxit .and. error.gt. tol)
error = 0.0
do j=1,m !---Copy solution
do i=1,n
uold(i,j) = u(i,j)

enddo
enddo
do j = 2,m-1 !---Update interior
do i = 2,n-1
r = &

(ax*(uold(i-1,j) + uold(i+1,j)) &
+ ay*(uold(i,j-1) + uold(i,j+1)) &
- f(i,j))*brecip + uold(i,j)

u(i,j) = uold(i,j) - omega * r
error = error + r*r

enddo
enddo
k = k + 1
error = sqrt(error)/dble(n*m)

enddo

Figure 3. Jacobi iteration

To evaluate OpenMP parallelization of this kernel, we
compare three approaches which are summarized in Table I:

1) Use of OpenMP 3.1 parallel and do directives to
support traditional shared memory parallelism. This
approach is appropriate to CPUs and self-hosted de-
vices for which the host code and the computational
kernel both execute on the same device. See Figure 4.

2) Use of OpenMP 4.0 device directives such
as target, target data, teams, and
distribute. This programming method is
primarily designed for cases in which the host code
launches computational kernels on a separate device.
However, as a special case, it can also be used for
the host processor to launch a kernel on the host
processor itself. See Figure 5.

3) Use of OpenMP 3.1 directives augmented with
OpenMP 4.0 target and target data directives.
This case is considered to evaluate whether compilers
are able to generate efficient parallel code from exist-
ing OpenMP 3.1 code with minor additions to enable
wider portability. See Figure 6.

V. RESULTS

A. Experiment details

In this section, we use the nomenclature previously
defined in Table I to describe the different experiments
conducted.

For each experiment the Jacobi solver is executed for a
fixed number (100) of iterations, and timings are reported for
the Jacobi kernel excluding the runtime for the initialization
and final correctness check steps. The solver is run for a



do while (k.le.maxit .and. error.gt. tol)
error = 0.0

!$omp parallel
!$omp do
do j=1,m !---Copy solution
do i=1,n
uold(i,j) = u(i,j)

enddo
enddo

!$omp do private(r) reduction(+:error)
do j = 2,m-1 !---Update interior
do i = 2,n-1
r = &

(ax*(uold(i-1,j) + uold(i+1,j)) &
+ ay*(uold(i,j-1) + uold(i,j+1)) &
- f(i,j))*binv + uold(i,j)

u(i,j) = uold(i,j) - omega * r
error = error + r*r

enddo
enddo

!$omp enddo nowait
!$omp end parallel
k = k + 1
error = sqrt(error)/dble(n*m)

enddo

Figure 4. Jacobi iteration with OpenMP 3.1 directives

range of problem sizes of the form N×N , where N denotes
the number of grid cells on an edge of the domain, so that
the dimension of the matrix and vectors is N2.

Jacobi is a fundamentally memory-bound algorithm
whose performance is primarily dictated by the speed of
access to memory. Thus, we report the code performance in
terms of attained GB/sec, a scaled inverse of execution time
(i.e., a higher value represents better performance).

B. Experiments: Beacon

Due to the nature of the Intel Xeon Phi, it is possible
to run a kernel either in offload or native mode. In offload
mode, two combinations of experiments are possible, one
using the accelerator as the target device, and another using
the host, where the code is launched, as the target device.
To enable the latter option, the Intel compiler provides the
-qopenmp-offload=host option.

Experiments on the Beacon system were conducted using
all available cores, which, with hyper-threading enabled, is
equivalent to 32 threads per node. By default, all possible
threads are used by the OpenMP runtime. When running
experiments on the Intel Xeon Phi, either via offloading
or in native mode, the default number of hardware threads
was used. In the offload case, one Intel Xeon Phi core is
reserved for the runtime, which results in a total of 236
threads. For experiments run natively on the Xeon Phi, all
cores are used which is equivalent to 240 threads. In cases

!$omp target data map(to:f) map(tofrom:u)
!$omp+ map(alloc:uold)
do while (k.le.maxit .and. error.gt. tol)
error = 0.0

!$omp target
!$omp teams distribute parallel do
do j=1,m !---Copy solution
do i=1,n
uold(i,j) = u(i,j)

enddo
enddo

!$omp end teams distribute parallel do
!$omp end target
!$omp target
!$omp teams distribute parallel
!$omp+ do reduction(+:error)
do j = 2,m-1 !---Update interior

!$omp simd private(r) reduction(+:error)
do i = 2,n-1
r = &

(ax*(uold(i-1,j) + uold(i+1,j)) &
+ ay*(uold(i,j-1) + uold(i,j+1)) &
- f(i,j))*binv + uold(i,j)

u(i,j) = uold(i,j) - omega * r
error = error + r*r

enddo
enddo

!$omp end teams distribute parallel do
!$omp end target
k = k + 1
error = sqrt(error)/dble(n*m)

enddo
!$omp end target data

Figure 5. Jacobi iteration with OpenMP 4 directives

where the OpenMP 4.0 teams directive is used, by default,
only 1 team is created.

Figure 7 shows the results obtained from running experi-
ments in the three different modes described in Table I. The
results show that:

• Jacobi executed natively on the Intel Xeon Phi co-
processor performs well in all three cases: SM/Phi,
SM+t/Phi/offload=Phi, and accel/Phi/offload=Phi. The
best performance is achieved by the SM/Phi case that
is able to reach 180.9 GB/s which is equivalent to
approximately 56% of the peak memory bandwidth
available on the on the coprocessor.

• The shared memory version of Jacobi when executed
on the CPU, SM/CPU, achieves approximately 81.7
GB/s, or 79.7% of peak memory bandwidth on Bea-
con nodes. It is interesting to see that the accelerator
model version, accel/CPU/offload=CPU, as well as
the shared memory with target directives version,
SM+t/CPU/offload=CPU, both achieve similar perfor-
mance for large matrix sizes. The former achieves 80.5
GB/s, whereas the latter obtains 78.4 GB/s, which is



!$omp target data map(to:f) map(tofrom:u)
!$omp+ map(alloc:uold)
do while (k.le.maxit .and. error.gt. tol)
error = 0.0

!$omp target
!$omp parallel
!$omp do
do j=1,m !---Copy solution
do i=1,n
uold(i,j) = u(i,j)

enddo
enddo

!$omp do private(r) reduction(+:error)
do j = 2,m-1 !---Update interior
do i = 2,n-1
r = &

(ax*(uold(i-1,j) + uold(i+1,j)) &
+ ay*(uold(i,j-1) + uold(i,j+1)) &
- f(i,j))*binv + uold(i,j)

u(i,j) = uold(i,j) - omega * r
error = error + r*r

enddo
enddo

!$omp enddo nowait
!$omp end parallel
!$omp end target
k = k + 1
error = sqrt(error)/dble(n*m)

enddo
!$omp end target data

Figure 6. Jacobi iteration with OpenMP 3.1 and target directives

equivalent to 78.6% and 76.6% of the peak memory
bandwidth on the CPU, respectively.

• The results from experiments with the accelerator
version of the Jacobi kernel show that running the
code natively on the coprocessor achieves the high-
est bandwidth. The accel/Phi/offload=Phi experiment
achieves 170.8 GB/s, or 53% of the peak mem-
ory bandwidth available on the Intel Xeon Phi. In
the other two accelerator model cases, accel/CPU/of-
fload=CPU and accel/CPU/offload=Phi, the accelerator
model when executed on the CPU offloading to itself
provides comparable performance to the SM/CPU and
SM+t/CPU/offload=CPU cases.

• On the other hand, the accelerator code executed on
the CPU and offloading to the Intel Xeon Phi does
not perform well for small matrices. It is only with
matrices of 12, 800×12, 800 elements or more that we
start seeing the benefit of offloading to the coprocessor.
For large matrices, the accel/CPU/offload=Phi version
of the code reaches a memory bandwidth of 70.2 GB/s.
It is apparent that overheads pertaining to the offload,
e.g., transfer of data, limit performance.

• The SM+t cases show that offloading to CPU itself

results in performance similar to that achieved
by SM/CPU and accel/CPU/offload=CPU. The
SM+t/CPU/offload=CPU obtains a memory bandwidth
of 78.8 GB/s. In the SM+t/CPU/offload=Phi case,
however, we observe poor performance for matrices
with less than 12, 800× 12, 800 elements.

• On the Intel Xeon processor, performance starts to
decrease when the matrix reaches the 25, 600×25, 600
element count. On the Intel Xeon Phi, however, perfor-
mance starts to tail off much earlier, namely when the
matrix has 12, 800× 12, 800 elements or more. This is
true in both the offload and native cases.

C. Experiments: Chester

Experiments for Chester using CPU threading are done
using the full complement of 16 hardware threads corre-
sponding to the 16 cores of the AMD Interlagos processor, as
specified by OMP_NUM_THREADS. For GPU cases, default
values are used for thread and team counts.

In order to evaluate the performance of the kernel in
a similar fashion as done on Beacon, both experiments
using the accelerator as target and also the host as tar-
get were conducted. The Cray programming environment
provides different accelerator modules that allow the user
to specify the target device. To target the GPU, the
craype-accel-nvidia35 module was used, and to
target the host, the craype-accel-host module was
used.

Results for these experiments are given in Figure 8.
Several features of these results are evident.

• The standard cases SM/CPU and accel/CPU/of-
fload=GPU execute at a significant fraction of peak
memory bandwidth, 51.2 and 250 GB/sec, respectively,
indicating that the baseline cases are performing well.
Notably, for smaller problem sizes, the CPU overper-
forms peak bandwidth, since data fits in cache, and the
GPU underperforms, insofar as the problem size is too
small to hide latencies.

• The CPU self-offload case of accel/CPU/offload=CPU,
unfortunately, does not perform well. Comparisons
show that this case executes merely at single-thread
performance. It is clear that the self-offload feature
of the Cray compiler is not implemented for high
performance but rather as more of a testing tool.

• The SM+t cases do not point to viable options for
developing performant code.

VI. DISCUSSION

During the development phase of this study, we ported
the original application kernel to OpenMP 4.0 by using only
target, teams distribute, and simd directives. As
a next step, we added target data map directives to
reduce the amount of data transferred to and from the
accelerator device. With help from the OFFLOAD_REPORT



Figure 7. Beacon Results

Figure 8. Chester results

reporting feature, we were able to determine that additional
arrays were being transferred with every iteration of the
Jacobi loop. This resulted in a significant impact in the
performance of the accelerator version of the code, both on
Beacon and Chester. To address this issue, we included the
target map(alloc:<var>) directive to allocate the
temporary array used to store previous results. This seem-
ingly minor modification resulted in a drastic improvement
in performance for large matrix sizes, as shown in Fig. 9.

In this study, we evaluated different versions of an appli-
cation kernel in order to identify which programming model
is best suited for multiple architectures without significantly

sacrificing performance. Looking at Fig. 7, it is clear that,
on Beacon, it is beneficial to execute the kernel natively on
the Intel Xeon Phi. Furthermore, out of the three versions
of Jacobi that achieve the best performance on Beacon, only
SM+t and accel can take advantage of the accelerators on
Chester. However, as Fig. 8 shows, SM+t on a GPU based
system does not perform well. In addition, the results on
Chester show the performance of the accel version of Jacobi
increases for a wider range of matrix sizes. The performance
of all other versions of the Jacobi code executed on Chester
begins to tail off at a much smaller matrix size.



Figure 9. Performance difference between Jacobi accelerator version with
and without target map(alloc:<var>) directives.

VII. CONCLUSION

In this paper we have attempted to evaluate the suit-
ability of OpenMP for providing a single programming
approach for code that is performance portable across all
currently-targeted HPC node architectures, including CPU,
CPU+accelerator, and native or self-hosted coprocessor. This
programming model takes the form of OpenMP 4.0 direc-
tives used to target either the CPU or the accelerator as
needed. This approach has the potential of allowing the user
to specify the inherent parallelism in the code with a single
syntax which can be processed by the respective compilers
to adapt to the code to the specific hardware.

Based on experiments with a test kernel, we have shown
that for the Intel Xeon Phi 5110P (Knights Corner), OpenMP
4.0 in “offload-to-self” mode performs nearly as well as
native OpenMP 3.1, respectively, on both the CPU and
the Phi coprocessor. The same code can also be used to
effectively offload computation from CPU to the accelerator.
Since newer generations of Intel Xeon Phi will be self-
hosted, we anticipate that this programming model will be
efficient for future Intel Xeon Phi generations.

For the Cray XK7 system, both OpenMP 3.1 for CPU
and OpenMP 4.0 for offload from CPU to GPU performed
effectively. However, OpenMP 4.0 “offload-to-self” for the
CPU, though supported, did not perform well, yielding only
single-thread performance. It would be beneficial to the
community for Cray to make this option more performant in
its compiler since this will improve the performance porta-
bility of applications across architectures; accomplishing this
objective in the compiler should be feasible insofar as the
viability of this technique has been shown on Beacon.

The results presented here indicate that for memory bound
kernels, such as the test case used in this study, the accel
version of the code provides the highest level of performance
portability between the two architectures evaluated.

Besides performance considerations, it is important to
take into account the effort needed to port a code to a
given programming model. When the code is already using
OpenMP 3.1, porting it to the accelerator model can be

straightforward. However, as described above, because data
transfers between the host and the device can easily become
a performance bottleneck, a good understanding of the data
mapping is crucial when using the accelerator programming
model.

OpenMP 4.0 is a relatively new standard, and compilers
are only recently starting to support the features of OpenMP
4.0 and beyond. It is hoped that as compiler support for these
features becomes more mature, the programming model
described herein will become an avenue for universal per-
formance portability across all HPC platforms. The original
focus of the OpenMP 4.0 target directives was to meet
the needs of codes running on heterogeneous systems with
connected accelerator devices. We believe that now it is
vitally important for vendors and compiler developers to
support the use of OpenMP target directives to access
all available compute hardware (including both CPUs and
accelerators) to allow flexible development of portable code.
The present study shows that this should in principle be
possible, and some vendors are already addressing this.

In the meantime, the primary focus of application devel-
opers is to expose parallelism in their codes, regardless of
the specific syntax used. As a stop gap measure, conditional
compilation may be needed to adapt parallelism to different
APIs and programming models. It is in the best interest of
the developer community for standards bodies and vendors
to support universally performance portable solutions that
allow users to harness the power of multiple emerging
accelerated architectures.

VIII. FUTURE WORK

This study is, to our knowledge, one of the first to evaluate
OpenMP 4.0 on both Intel Xeon Phi coprocessors and GPUs.
The application kernel chosen here is representative of one
of several types of workloads regularly executed on Titan.
We plan to extend this work to include an in-depth analysis
of additional application kernels, including compute-bound
kernels and mini-applications. Additionally, we intend to ex-
pand this analysis to include features introduced in OpenMP
4.5, and eventually OpenMP 5.0, as well as other compilers
as they begin supporting those features.

Our team has regular contact with code projects focused
on early application readiness for upcoming systems such as
OLCF’s Summit system [2]. Increasingly, these teams seek
to use OpenMP directives to program accelerators, as the
compilers become more mature and usable for this purpose.
The findings of this work suggest a way forward for these
projects to make codes portable across accelerated as well as
non-accelerated systems. We intend to work with these teams
to explore this possibility and evaluate the effectiveness of
this approach for more complex use cases.

Forthcoming pre-exascale systems will deliver increasing
node complexity, such as complex NUMA domains and
memory hierarchies. Application development teams require



that standards bodies, vendors and tool developers agree
to standardize universally-applicable methodologies for ex-
ploiting the capabilities of these new hardware features.

In future work we intend to explore ways to use OpenMP
4.0 and later features to address exascale needs such as
resilience (by use of task-based programming), efficient use
of multiple resources on heterogeneous nodes and use of
multiple accelerators per node.
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