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Problem statement 

All upcoming leadership-scale systems in the US are accelerated, 
of two different types: 

–  manycore self-hosted (Intel Phi) 
–  CPU + discrete accelerator (NVIDIA GPU) 

Many users run on both.  How to program portably? 

APU 
FPGA 
neuromorphic 
quantum 
. . . 

 



Performance portability requirements 

• Based on the need, the US 
DOE has made it a priority 
that science applications be 
performance portable 
across multiple architectures 

•  This has led to several 
multi-lab meetings to 
discuss this issue, most 
recently the DOE Centers of 
Excellence workshop in 
Glendale, AZ, April 2016  

 



Performance portability requirements 
• Users at our center generally run their codes at other 

centers as well, on many different kinds of systems 
•  Furthermore, science application code bases are tending 

to become increasingly large and complex often with 
multiple physics, making it unwieldy to maintain 
alternative code branches for different systems 

• Even within the same product family (e.g., Intel Phi 
Knights-X), architectures can be different enough to 
warrant different code tuning and possibly different code 
execution paths for performance 

•  The challenge is expected to increase as nodes become 
more complex with deepening memory hierarchies and 
complex NUMA domains 



Performance portability approaches 

•  It is the belief of many that, at least for Fortran and C 
codes, the use of OpenMP compiler directives offers the 
most promising path forward for performance portability 

•  The broadly-supported OpenMP standard defines 
programming models to specify node-level parallelism 

•  Traditionally, OpenMP 3.1 directives can be used to 
specify parallelism for shared memory / self-hosted 
systems 

• More recently, OpenMP 4.X directives provide data and 
computation offload syntax to support discrete accelerator 
devices 



Performance portability approaches 
• OpenMP thus offers (at least) two distinct programming models 

within the same standard: one that supports self-hosted 
devices, another supporting offload to discrete accelerators 

• We want to address: How can an application developer use a 
single OpenMP-based programming style to support both 
architectures? 

•  In this study we examine how to use a single approach within 
the OpenMP standard to develop performance portable code 
across both broad classes of systems 

•  To test this approach, we use the Intel compiler for a 
representative Phi-based system (for Xeon multicore processor 
and for a Phi coprocessor) and also the Cray compiler for a 
GPU-based system 



OpenMP 3.1 directives - review 

We are primarily focused on parallelizing loops in the following 
fashion: 
 
!$omp parallel !---parallel region 
!$omp do !---parallelize loop iterations 
do j=1,m 
... 
enddo 
... 

 

 

 



OpenMP 4.X offload directives - review 

For OpenMP 4.X, we have more structure, including data and 
execution offload directives: 
!---specify data transfer to/from device 
!$omp target data map(...) 
!---execute on device 
!$omp target 
!---specify thread teams 
!---distribute loop iterations to teams, 
!---threads and SIMD units 
!$omp teams distribute parallel do simd 
do j=1,m 
... 
enddo 

This is more verbose, but potentially more helpful to the compiler 
because it specifies more information, e.g., data motion 



Fundamental approach 

•  To achieve performance portability in a single programming 
model, we select the OpenMP 4 offload approach 

•  To run code on either a self-hosted processor or a discrete 
accelerator device, we use an “offload to self” strategy, 
which is supported by these compilers via compilation 
options 

• Our fundamental question is whether compilers will generate 
code using this technique that is (nearly) as efficient as 
using the best approach (whether shared or offload), for 
each respective hardware choice 

• Also want to observe how each of these cases compares to 
“best performance attainable” for the algorithm and 
hardware 



Test case: Jacobi iteration kernel 

• A commonly studied and well-understood kernel 
•  Jacobi iterative solver for 2-D structured finite difference 

discretization of the Poisson equation 
•  5-point constant coefficient stencil with nearest-neighbor 

updates 
 



Jacobi kernel: serial case 



Jacobi kernel: OpenMP 3.1 directives 



Jacobi kernel: OpenMP 4.X directives 



Jacobi kernel: OpenMP 3.1 + target 



Execution modes: CPU + GPU system 



Execution modes: Knights Corner system 



Systems used 

• ORNL Chester system – Cray XK7 system with AMD Series 6200 
Interlagos processors and NVIDIA K20X GPUs, architecturally 
identical to Titan but with slightly newer software stack 
–  Cray compiler, CCE 8.4.5 
–  Offload to host enabled by module load craype-accel-host 

• UTK Beacon system – Cray CS-300-AC Linux cluster with Intel 
Xeon E5-2670 processors and Phi 5110P coprocessors 
–  Intel compiler, 16.0.1 (XE compiler suite 2016.1.056) 
–  Offload to host enabled by ifort -qopenmp-offload=host  

 



Experiment set 



Computational results 
Codes are run on a single node of Beacon or Chester 

Fixed iteration count of 100 iterations 

Run across different problem sizes, to the maximum size that fits in memory 

Compare different execution modes 

Note that the Jacobi kernel performance is fundamentally memory-bound 

Thus, we will report performance in terms of GB/sec of memory bandwidth attained 

 



Beacon results – Intel Phi 

Compare to peak bandwidth: 102.4 GB/s (CPUs), 330 GB/s (Phi) 

accel/phi/offload=phi and SM+t/phi/offload=phi perform similarly to SM/phi 

accel/CPU/offload=CPU and SM+t/CPU/offload=CPU perform similarly to SM/CPU 

accel/CPU/offload=phi and SM+t/CPU/offload=phi perform similarly 

 



Chester results - GPU 

Compare to peak bandwidth: 51.2 GB/s (CPU), 250 GB/s (GPU) 

SM/CPU and accel/CPU/offload=GPU are high-performing 

accel/CPU/offload=CPU performs poorly—compiler warns single-threaded code 

SM+t/CPU/* performs poorly 

  



Summary 

•  The Intel compiler on Beacon, a Knights Corner system, 
gave performance as we had hoped, providing good 
performance using the self-offload approach that was nearly 
as effective as native OpenMP 3.1.  Thus is an existence 
proof that this approach to performance portability can in 
principle work. 

•  The Cray compiler on Chester, a GPU-based system, 
generated good code using standard approaches but did not 
perform well using self-offload.  The craype-accel-host 
option is not a widely documented feature and appears to be 
primarily intended for testing rather than production.  Making 
this feature performant would help to enable this approach 
as a generally usable technique for performance portability 



Discussion 
•  The end objective of this work is to seek a way to provide users 

with a means to express parallelism and data motion in their 
codes in a way that compilers can understand and use to 
generate performant code 

•  To satisfy portability, a standards-based approach seems most 
reasonable.  OpenMP’s directives-based approach is one of 
only a small number of current candidates 

•  This work shows how OpenMP can, at least in principle, enable 
true performance portability across the two major architectural 
classes of modern HPC systems, as well as standard multicore 
CPUs 

• As OpenMP 4-capable compilers become mature, vendor 
support of this approach will help make this a viable strategy for 
performance portability 



Future work 

•  This is a small study of very restricted scope.  We would like 
to explore how well this approach applies to other kinds of 
code constructs prevalent in user codes 

• Also, through our contact with code teams preparing for 
future systems, e.g., Summit, we wish to evaluate the 
effectiveness of this approach for those codes 

• As OpenMP 4 support is improved for other compilers, we 
intend to evaluate those also 

• Examine how to achieve performance portability with regard 
to other issues, e.g., memory hierarchies, NUMA issues and 
resilience 
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