
Early Experiences
Writing Performance
Portable OpenMP 4
Codes

Verónica G. Vergara Larrea
Wayne Joubert
M. Graham Lopez
Oscar Hernandez

Oak Ridge National Laboratory

Problem statement

All upcoming leadership-scale systems in the US are accelerated,
of two different types:

–  manycore self-hosted (Intel Phi)
–  CPU + discrete accelerator (NVIDIA GPU)

Many users run on both. How to program portably?

APU
FPGA
neuromorphic
quantum
. . .

Performance portability requirements

• Based on the need, the US
DOE has made it a priority
that science applications be
performance portable
across multiple architectures

•  This has led to several
multi-lab meetings to
discuss this issue, most
recently the DOE Centers of
Excellence workshop in
Glendale, AZ, April 2016

Performance portability requirements
• Users at our center generally run their codes at other

centers as well, on many different kinds of systems
•  Furthermore, science application code bases are tending

to become increasingly large and complex often with
multiple physics, making it unwieldy to maintain
alternative code branches for different systems

• Even within the same product family (e.g., Intel Phi
Knights-X), architectures can be different enough to
warrant different code tuning and possibly different code
execution paths for performance

•  The challenge is expected to increase as nodes become
more complex with deepening memory hierarchies and
complex NUMA domains

Performance portability approaches

•  It is the belief of many that, at least for Fortran and C
codes, the use of OpenMP compiler directives offers the
most promising path forward for performance portability

•  The broadly-supported OpenMP standard defines
programming models to specify node-level parallelism

•  Traditionally, OpenMP 3.1 directives can be used to
specify parallelism for shared memory / self-hosted
systems

• More recently, OpenMP 4.X directives provide data and
computation offload syntax to support discrete accelerator
devices

Performance portability approaches
• OpenMP thus offers (at least) two distinct programming models

within the same standard: one that supports self-hosted
devices, another supporting offload to discrete accelerators

• We want to address: How can an application developer use a
single OpenMP-based programming style to support both
architectures?

•  In this study we examine how to use a single approach within
the OpenMP standard to develop performance portable code
across both broad classes of systems

•  To test this approach, we use the Intel compiler for a
representative Phi-based system (for Xeon multicore processor
and for a Phi coprocessor) and also the Cray compiler for a
GPU-based system

OpenMP 3.1 directives - review

We are primarily focused on parallelizing loops in the following
fashion:

!$omp parallel !---parallel region
!$omp do !---parallelize loop iterations
do j=1,m
...
enddo
...

OpenMP 4.X offload directives - review

For OpenMP 4.X, we have more structure, including data and
execution offload directives:
!---specify data transfer to/from device
!$omp target data map(...)
!---execute on device
!$omp target
!---specify thread teams
!---distribute loop iterations to teams,
!---threads and SIMD units
!$omp teams distribute parallel do simd
do j=1,m
...
enddo

This is more verbose, but potentially more helpful to the compiler
because it specifies more information, e.g., data motion

Fundamental approach

•  To achieve performance portability in a single programming
model, we select the OpenMP 4 offload approach

•  To run code on either a self-hosted processor or a discrete
accelerator device, we use an “offload to self” strategy,
which is supported by these compilers via compilation
options

• Our fundamental question is whether compilers will generate
code using this technique that is (nearly) as efficient as
using the best approach (whether shared or offload), for
each respective hardware choice

• Also want to observe how each of these cases compares to
“best performance attainable” for the algorithm and
hardware

Test case: Jacobi iteration kernel

• A commonly studied and well-understood kernel
•  Jacobi iterative solver for 2-D structured finite difference

discretization of the Poisson equation
•  5-point constant coefficient stencil with nearest-neighbor

updates

Jacobi kernel: serial case

Jacobi kernel: OpenMP 3.1 directives

Jacobi kernel: OpenMP 4.X directives

Jacobi kernel: OpenMP 3.1 + target

Execution modes: CPU + GPU system

Execution modes: Knights Corner system

Systems used

• ORNL Chester system – Cray XK7 system with AMD Series 6200
Interlagos processors and NVIDIA K20X GPUs, architecturally
identical to Titan but with slightly newer software stack
–  Cray compiler, CCE 8.4.5
–  Offload to host enabled by module load craype-accel-host

• UTK Beacon system – Cray CS-300-AC Linux cluster with Intel
Xeon E5-2670 processors and Phi 5110P coprocessors
–  Intel compiler, 16.0.1 (XE compiler suite 2016.1.056)
–  Offload to host enabled by ifort -qopenmp-offload=host

Experiment set

Computational results
Codes are run on a single node of Beacon or Chester

Fixed iteration count of 100 iterations

Run across different problem sizes, to the maximum size that fits in memory

Compare different execution modes

Note that the Jacobi kernel performance is fundamentally memory-bound

Thus, we will report performance in terms of GB/sec of memory bandwidth attained

Beacon results – Intel Phi

Compare to peak bandwidth: 102.4 GB/s (CPUs), 330 GB/s (Phi)

accel/phi/offload=phi and SM+t/phi/offload=phi perform similarly to SM/phi

accel/CPU/offload=CPU and SM+t/CPU/offload=CPU perform similarly to SM/CPU

accel/CPU/offload=phi and SM+t/CPU/offload=phi perform similarly

Chester results - GPU

Compare to peak bandwidth: 51.2 GB/s (CPU), 250 GB/s (GPU)

SM/CPU and accel/CPU/offload=GPU are high-performing

accel/CPU/offload=CPU performs poorly—compiler warns single-threaded code

SM+t/CPU/* performs poorly

Summary

•  The Intel compiler on Beacon, a Knights Corner system,
gave performance as we had hoped, providing good
performance using the self-offload approach that was nearly
as effective as native OpenMP 3.1. Thus is an existence
proof that this approach to performance portability can in
principle work.

•  The Cray compiler on Chester, a GPU-based system,
generated good code using standard approaches but did not
perform well using self-offload. The craype-accel-host
option is not a widely documented feature and appears to be
primarily intended for testing rather than production. Making
this feature performant would help to enable this approach
as a generally usable technique for performance portability

Discussion
•  The end objective of this work is to seek a way to provide users

with a means to express parallelism and data motion in their
codes in a way that compilers can understand and use to
generate performant code

•  To satisfy portability, a standards-based approach seems most
reasonable. OpenMP’s directives-based approach is one of
only a small number of current candidates

•  This work shows how OpenMP can, at least in principle, enable
true performance portability across the two major architectural
classes of modern HPC systems, as well as standard multicore
CPUs

• As OpenMP 4-capable compilers become mature, vendor
support of this approach will help make this a viable strategy for
performance portability

Future work

•  This is a small study of very restricted scope. We would like
to explore how well this approach applies to other kinds of
code constructs prevalent in user codes

• Also, through our contact with code teams preparing for
future systems, e.g., Summit, we wish to evaluate the
effectiveness of this approach for those codes

• As OpenMP 4 support is improved for other compilers, we
intend to evaluate those also

• Examine how to achieve performance portability with regard
to other issues, e.g., memory hierarchies, NUMA issues and
resilience

This research used resources of the Oak Ridge Leadership
Computing Facility at Oak Ridge National Laboratory, which
is supported by the Office of Science of the U.S. Department

of Energy under Contract No. DE-AC05-00OR22725.

This material is in part based upon work supported by the National
Science Foundation under Grant Number 1137097 and by the

University of Tennessee through the Beacon Project. Any
opinions, findings, conclusions or recommendations

expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science

Foundation or the University of Tennessee.

Questions?

Wayne Joubert, joubert@ornl.gov

