
ORNL is managed by UT-Battelle
for the US Department of Energy

Improving User
Notification on
Frequently
Changing HPC
Environments

Chris Fuson
William Renaud
James Wynne III

CUG2016
May 8-12, 2016

London

2 CUG2016

Oak Ridge Leadership Computing Facility

•  Users cover multiple science domains
and experience levels

•  New projects and users are added to
system throughout year

•  Average over 1,000 active users yearly

•  Projects receive 100x more hours than
at other generally available centers.

•  Average 250 projects per year

•  OLCF users are spread out all over the
globe and come from academia,
national laboratories, other government
agencies, and industry

Cray XC30
11,776 Processor Cores
47 TB
Aries interconnect

Eos
Cray XK7
#2 HPC Top 500
27 petaflops
299,008 Processor Cores
18,688 GPUs

Titan

Data Transfer Nodes
Interactive nodes
Batch scheduled nodes
Tuned for wide-area

DTNs
Linux cluster
8,192 Processor cores
9 1TB big memory nodes
9 nodes: 2 NVIDIA® K80

Rhea

Center-wide Lustre
32 PB
2 Filesystems:
 - atlas1
 - atlas2

Spider
High Performance
Storage System
Longer-term storage
Tape and Disk storage

HPSS

3 CUG2016

Frequently Changing Environment

Changes
•  System user environment

–  Software, libraries, compilers
–  Batch system
–  Environment variables
–  Login resources, compute

resources

•  Adding, removing, changing
defaults

•  OS upgrades

•  Center policies

Impacts

•  Changing center resources
impacts use of system

•  Recompile often required

•  Software, library, compiler,
driver versions dependencies

•  Compute time allocations are
limited

4 CUG2016

Complications
•  Many environment variables, libraries, and similar exist behind the scenes

–  Programming environment used to hide complexity also hide many libraries,
versions, variable triggers

–  Build processes hide libraries and dependencies

•  Changes made to systems during production
–  Project allocations start and end throughout year
–  Can not wait until end of project allocation

•  Not all change impacts all users
–  multiple science categories
–  variety of codes and workflows

•  Many have access to multiple centers with varying policies and configurations

•  Varying levels of experience

•  Systems available and accessible 24x7

5 CUG2016

Average Hourly Logins

6 CUG2016

Notification Methods

Passive Interrupt

web email wall

7 CUG2016

Email

•  Most common communication method
–  Center events
–  System change
–  Policy change

•  Management systems
–  Dissemination to large groups
–  Allows staff to send message on behalf of center

•  Issues
–  Easy to loose in email mass
–  “I’ll read later”

8 CUG2016

Too Much vs. Not Enough Email

Only the Necessities
•  Low volume

–  Mandatory
–  Contains all valid OLCF

users
–  Weekly email

More, Please

•  High volume
–  Optional, can choose to

opt-out
–  Contains active users
–  Automated system state

change

List for each resource
–  Titan
–  Rhea
–  HPSS

–  Eos
–  DTNs
–  Lustre

9 CUG2016

Email Automation

Active Users
•  High volume list membership

changed from opt-in to opt-out

•  Automatically populate each
resource list with active users

•  Active user defined:
–  Successful authentication
–  Job in the batch queue

System Status Change
•  Automatically email resource’s

high volume list when resource
state changes

•  Based on resource log
monitoring

10 CUG2016

Email Format and Size

• Emails are more useful if they are read

• Short, concise
–  Details on web

• Bulleted topics
–  Allows quick scan

11 CUG2016

Targeting Smaller Groups of Users

•  Notifying entire user community not always most effective
–  Not all change impacts all users
–  Users may not have access to all center resources

•  Staying out of the spam folder
–  Too much irrelevant email

•  Contact only those impacted by change
–  System access, software/library users
–  Contact at time of use

•  Methods to be discussed

–  Wrapping command-line tools
–  Email groups

–  Web authentication
–  Write to ALL

12 CUG2016

Email, Web, Write to All

•  Write to All
–  Still effective
–  Message to screen of all connected
–  Provide warning of resource outage

•  Email
–  Individual/small group emails
–  Multiple email lists

•  Group by resource access
– Enabled users for system or resource
– Titan, Eos, Rhea, HPSS, Spider

•  Active user lists containing users who have authenticated recently

•  Web
–  Main site, can only target users based on page/section
–  Authentication, allows altering page content based on viewing user

13 CUG2016

Wrapping Command-Line Tools

1.  Rename tool

•  Example actions
–  Verify given arguments
–  Enforce center policy
–  Log tool execution
–  Provide user friendly notice
–  Reject before executing original tool

•  Example command line tools
–  qsub
–  aprun
–  module

aprun aprun_org

site
defined
action

aprun
script aprun_org

•  Goal: Insert center created action between user and existing tool

2.  Create script with same name as tool

3.  Script performs center-defined action before
calling the original tool

1

2 3

14 CUG2016

Environment Modules

• Environment modules used on all OLCF systems
• Diverse user community requiring multiple versions

of software, libraries, compilers
• Center must provide multiple packages and

versions of each
• Control defaults, future and previous versions,

parings
• Multiple maintainers

–  Cray provides as part of Programming Environment
–  Center maintained

15 CUG2016

Why Wrap Environment Modules

• Provides opportunity to target users who are using
a tool, library, or compiler

• Load tool
specific module
prior to use

• Change
versions for
non-default

16 CUG2016

Wrapping Environment Module

titan> module load ddt/5.1

module ()
{
 eval `modulecmd bash load ddt/5.1`
}

#%Module

set ddt_version 5.1
set apppath /sw/xk7/ddt/5.1
setenv DDT_HOME $apppath
prepend-path PATH $apppath/bin

/sw/modulefiles/ddt/5.1

•  Module is a function/alias
•  Can not simply wrap module

•  Modulefiles maintained by Cray and center

•  Need a solution that supports both

17 CUG2016

Wrapping Environment Module

Perform center defined actions
if (defined $ENV{'OLCF_MODULE_MSG'})
 {
 $module_msg = $ENV{'OLCF_MODULE_MSG'}.'/bin/module_msg';

 if (-e $module_msg)
 {
 $results = `timeout 2 $module_msg @ARGV 2>&1`;
 print STDERR "$results";
 }
 }

 ### Call the real binary
 $return = system(“$modulecmd @ARGV");

modulecmd_wrap

•  Replacing modulecmd with wrapper allows interaction with both Cray
and center maintained modulefiles without modifying modulefile

•  Using environment variable keys allows users to disable features

18 CUG2016

Conclusion

• Our systems will continue to change
• Change will likely be no less impactful
• Centers must continue to notify
• Notifications evolve to reach user base

19 CUG2016

Acknowledgements

• Many people contributed to this effort: Cathy Willis,
Ross Miller, Scott Atchley, Robert French.

•  This research used resources of the Oak Ridge
Leadership Computing Facility at the Oak Ridge
National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under
Contract No. DE-AC05-00OR22725.

20 CUG2016

Questions?

Thank you!

