
Making the Jump to Light Speed with Cray’s DataWarp
An Administrator’s Perspective

Tina Declerck, Dave Paul
NERSC

Lawrence Berkeley National Laboratory
Berkeley, CA USA

tmdeclerck@lbl.gov, dpaul@lbl.gov

Abstract—Cori, the first phase of NERSC’s next generation
supercomputer, has 144 DataWarp nodes available to it’s
users. Cray’s DataWarp technology provides an intermediate
storage capability, sitting between on node memory and the
parallel file system. It utilizes Cray’s DVS to provide access
from compute nodes on a request basis. In order for this to
work, the workload manager interacts with Cray’s DataWarp
API’s to create the requested file system and make it available
on the nodes requested by the job (or jobs). Some of the tools
needed by an administrator are therefore included in the
workload manager, SLURM at our site, and other information
requires use of tools and commands provided by Cray. It is
important to know what information is available, where to find
it, and how to get it.

Keywords-DataWarp

I. INTRODUCTION
At the National Energy Research Scientific Computing

(NERSC) center, storage is an area that continues to grow –
as is true at most sites. The amount of data increases with
the increase in ability to process more data. Although some
codes do a lot of processing on the same data; even those
require some data to process and will generally also produce
data that needs to be stored. In order to keep a system
balanced, therefore, users need a faster way to get data from
disk storage to on-node memory for processing and then
move processed data back out to disk. Without this,
processors sit idle much of the time waiting for I/O. Tiered
storage is one of the solutions that can provide better access
to data for applications. To address this problem NERSC
was looking for a burst buffer. Cray’s solution is DataWarp.
It provides a solid state disk (SSD) that is integrated with the
Cray XC-40 systems using service nodes. However, this
solution was still under development. NERSC entered into a
non-recurring engineering (NRE) contract to work with Cray
on developing key DataWarp features for our workload and
also to ensure the administrative interface provided the
information required for both debugging and to allow our
work load manager to interact with it. Many sites are
primarily looking for a way to provide better checkpoint /
restart solutions which Cray’s DataWarp addresses but our
users have additional use cases we wanted to ensure were
also addressed. In addition, some of the key features
NERSC was looking for are administrative interfaces to

allow better control and ability to diagnose and resolve
problems. The goal of this paper is to provide some lessons
learned from our experiences and guidelines for
understanding and using Cray’s DataWarp solution.

Administrators are very aware that many tools, although

useful and improve our users’ ability to accomplish their
scientific goals, are yet another thing that will need to be
monitored, verified, and repaired. Cray’s DataWarp
definitely fits in that category. NERSC has been working
with Cray for about a year and a half developing the
DataWarp features and have gained quite a lot of experience
in that time finding problems, diagnosing them, and working
with Cray on finding good solutions, and then testing those
to ensure they work. During this process, Cray has been
quickly providing solutions and patches for the issues we’ve
found to allow us to continue to work with our users. This
has been somewhat hampered by the major software upgrade
with CLE 6.0 / SMW 8.0 since solutions for some issues
were fixed in the update but not on CLE 5.2 UP04 / SMW
7.0 that NERSC is currently using. This has required Cray to
work on two different solutions, which slowed things down a
bit.

II. DATAWARP HARDWARE
The first step is to understand how Cray’s DataWarp is

structured at the hardware level. A service node has 2 PCIe
slots, each of which hosts a SSD. We are using the Intel
P3608 that provides 3.2 TB per SSD. At the system level,
these are each seen as 2 devices so each node sees 4 nvme
devices. Cray supports other options so your configuration
may be different. These can be over-provisioned which
increases the drives endurance but decreases the available
space. The default is 3 drive writes per day (DWPD) over a
period of 5 years. We have configured ours for 10 DWPD.
Since ssd’s are consumable devices and wear out over time
NERSC wanted to ensure the devices would last with the
heavy usage we expect from our users. These are then
configured with LVM and XFS. In our case the four devices
are combined into a single volume group which is then used
to create logical volumes as needed when a request is
generated. The size of the logical volume is a multiple of
the granularity.

 At NERSC we currently have a total of 144 DataWarp
nodes, this will double when our phase 2 system arrives this
summer. Since the XC40 has 2 service nodes per blade,
NERSC’s configuration places 2 DataWarp nodes on the
same service blade. Hardware repairs on these nodes need to
ensure they take that detail into account to ensure no data
loss on the healthy ssd. When maintenance is done on a
DataWarp node on an active system bot the healthy node and
the one requiring work need to be drained prior to
maintenance. This is a procedure most are familiar with on
compute blades. Installing and configuring the DataWarp
are not within the scope of this paper; Cray’s DataWarp
Installation and Configuration Guide provide this
information. Some of the decisions regarding the
configuration will be discussed since this does have an
impact on how the DataWarp can be utilized.

III. USE CASES
Before going further into describing the terminology, it is

good to understand how DataWarp can be allocated for use.
A DataWarp allocation is described as an instance. A
DataWarp instance can be allocated for a job, a job instance,
or for a more extended timeframe which is called a persistent
instance. A persistent instance can be used by any job
requesting it that has the correct unix ownership and
permissions. The instance can include multiple DataWarp
nodes. A DataWarp job instance can be either shared or
private. A persistent instance can’t be private. Note that a
persistent reservation uses a "#BB" prefix rather than the
"#DW" because the command is interpreted by Slurm and
not by the Cray Datawarp software. Access of the persistent
instance is using the #DW with a persistentdw command.
Shared means that all nodes in a job can see the same
DataWarp namespace (i.e. mounted filesystem). In private
mode each node has it’s own local space that other nodes in
the allocation can’t see or access (like /tmp on a compute
node). It can also be striped so the allocated DataWarp space
is striped across multiple DW servers.

The user interface allows users to request either a jobdw

or create_persistent using the #DW job directive. Options
include capacity, access_mode and type; where capacity is
the amount of space needed, access_mode is striped or

private, and type is scratch (currently the only option
available). The type of request is called the configuration.
Since the DataWarp can be used to pre-stage data and then
stage data out after job completion, there are stage_in and
stage_out options for which the user specifies a source,
destination, and type; where type is file or dir. Please note
that these are the directives used by SLURM these may be
different for other workload managers. Once the DataWarp
instance is activated, which basically means a mount point
has been created, the job can access the instance. In
addition, the registration is a way to allow the DataWarp
allocation to exist that is associated with a job but can
continue to exist after the job completes. This allows the
DataWarp instance to continue while data is being written
out to the parallel file system. Once the data is written the
instance can be torn down so the DataWarp can be used for
the next job. Following are some example lines for accessing
DataWarp. The first is a standard job instance using striped
mode. The second is accessing a previously created
persistent instance. The #BB are creating and destroying a
persistent DataWarp instance. The last two are examples of
staging data into and out of a DataWarp instance.

#DW	jobdw	capacity=10GB	
access_mode=striped	type=scratch
	
#DW	persistentdw	name=myBBname	
	
#BB	create_persistent	name=myDWname	
capacity=10GB	access=striped	
type=scratch	
	
#BB	destroy_persistent	name=myBBname	
	
#DW	stage_in	source=/path/to/filename	
destination=$DW_JOB_STRIPED/filename	
type=file	
	
#DW	stage_out	
source=$DW_JOB_STRIPED/dirname	
destination=/path/to/dirname	
type=directory

If a user requests a job using a dw instance, the reference

for the job requesting DataWarp space is a session. It maps
directly to a job or a persistent instance. A job can also have
more than one instance if it is requesting DataWarp for both
striped shared access and private access. Since an instance
can span nodes, the part of the instance that resides on each
of the DataWarp nodes is referred to as a fragment. With
SLURM you can see the status of the DataWarp and the
current active instances using “scontrol show burst”. This
provides general information about the pool and how much
space is available, then it shows each instance that is
allocated, and finally how much space each user is using.

nvme0n1

nvme1n1

nvme2n1

nvme3n1

Volume
group

lv

lv

.

.

.

lv

lv

lv

lv

lv

Figure 2. LVM Configuration

IV. TERMINOLOGY
Now that you understand the basic hardware

configuration and how users can access the DataWarp, it is
even more important to understand how these are configured.
Because these devices can be used in many ways, it was
necessary to provide a flexible interface. Initially, it’s
confusing but one goal of this paper is to walk through the
terms used for DataWarp and their meanings so that their
uses will be clear. May of the terms have been introduced in
the previous examples of use cases. One of the more
confusing aspects of the configuration is the granularity.
There is a granularity setting for the node, which defines the
smallest size an allocation of that node can be divvied into.
There is also a granularity for the pool(s). Once you have
defined your DataWarp nodes, they need to be configured
into pools. A node can belong to only one pool – it can’t be
divided into multiple pools. A node does not have to be part
of a pool, but the workload manager can’t use it if it isn’t
part of a pool. The DataWarp software allows configuration
of multiple pools, however, SLURM currently only supports

a single pool. A pool is the largest allocation of space; all
DataWarp storage on the system is combined into pools.
When a pool is created it you need to specify a granularity.
This is important because it is the smallest unit that can be
allocated (ours is currently 212GB). One other note is that
the node granularity must be a factor of the pools’
granularity. Cray provided a program to help choose a
granularity setting. There are several factors involved so this
is the easiest way to choose a valid granularity setting. One
thing to keep in mind, you notice in the use cases that users
don’t choose how many DataWarp nodes to use in a stripe,
they must choose a size that is a multiple of the granularity to
get more than a single DataWarp node. Depending on use a
larger or smaller granularity may be better. This is one
reason you may want to configure multiple pools. With our
current configuration our users must sometimes request
much larger DataWarp allocations than needed to provide
the stripe required for performance.

The terminology is also important to understand because

it may help when troubleshooting issues to know which layer
is potentially causing a problem. It is much easier to

nid00837:/var/tmp/slurm # scontrol show burst
Name=cray DefaultPool=wlm_pool Granularity=218016M TotalSpace=872936064M UsedSpace=281458656M
 StageInTimeout=86400 StageOutTimeout=86400 Flags=EnablePersistent,TeardownFailure
 GetSysState=/opt/cray/dw_wlm/default/bin/dw_wlm_cli
 Allocated Buffers:
 Name=userdw1 CreateTime=2016-03-02T15:01:01 Size=1090080M State=allocated UserID=user1(11111)
 JobID=2344665 CreateTime=2016-05-26T14:41:04 Size=21147552M State=staged-in UserID=user2(22222)
 JobID=2344663 CreateTime=2016-05-26T14:40:52 Size=21147552M State=staged-in UserID=user3(33333)
 Name=userdw2 CreateTime=2016-05-09T11:00:43 Size=1090080M State=allocated UserID=user3(33333)
 JobID=2360598 CreateTime=2016-05-27T11:55:40 Size=6813G State=staged-in UserID=user4(44444)
 JobID=2360597 CreateTime=2016-05-27T11:55:40 Size=6813G State=staged-in UserID=user4(44444)
 Name=myBBname CreateTime=2016-02-19T13:45:33 Size=218016M State=allocated UserID=user5(55555)
 Name=userdw3 CreateTime=2016-05-18T13:34:43 Size=31612320M State=allocated UserID=user6(66666)
 Name=userdw4 CreateTime=2016-05-05T16:58:02 Size=1090080M State=allocated UserID=user7(77777)
 Name=userdw5 CreateTime=2016-05-25T12:23:25 Size=218016M State=allocated UserID=user8(88888)
 JobID=2360962 CreateTime=2016-05-27T13:33:06 Size=654048M State=staged-in UserID=user9(99999)
 JobID=2361024 CreateTime=2016-05-27T13:56:57 Size=218016M State=staged-in UserID=user10(10101)
 JobID=2360971 CreateTime=2016-05-27T13:56:57 Size=218016M State=staged-in UserID=user11(11000)
 Name=userdw6 CreateTime=2016-05-05T18:42:48 Size=654048M State=allocated UserID=user12(12121)
 Name=userdw7 CreateTime=2016-05-05T18:31:36 Size=654048M State=allocated UserID=user12(12121)
 Name=userdw8 CreateTime=2016-05-05T16:01:02 Size=654048M State=allocated UserID=user12(61692)

 Per User Buffer Use:
 UserID=user1 (11111) Used=1090080M
 UserID=user3(33333) Used=42295104M
 UserID=user2(22222) Used=1090080M
 UserID=user4(44444) Used=13626G
 UserID=user5(55555) Used=218016M
 UserID=user6(66666) Used=31612320M
 UserID=user7(77777) Used=1090080M
 UserID=user8(88888) Used=218016M
 UserID=user9(99999) Used=654048M
 UserID=user10(10101) Used=218016M
 UserID=user11(11000) Used=218016M
 UserID=user12(12121) Used=1962144M

Figure 1. Example of SLURM scontrol show burst output

diagnose problems if you understand the current state of the
DataWarp and the jobs that are accessing them.

Here is a brief rundown of the terms and their meanings.
• Session – equates to a job or a persistent Data Warp

Instance
• Instance – a DataWarp space that is allocated to a

job or persistent over many jobs.
• Fragment – portion of a DataWarp instance on a

DataWarp node
• Configuration – defines how a DataWarp instance is

used
• Namespace – basically a directory or folder in a

scratch configuration. A configuration can have 0 or
more namespaces.

• Registration – binds a session with a configuration.
This is what holds information on the job for stage-
in and stage-out.

• Activation – defines an available instance
configuration on a set of nodes.

Each of these terms describes a part of the DataWarp
service and can help with diagnosing problems.

V. BEST PRACTICES AND LESSONS LEARNED
Give the DataWarp Service (DWS) the opportunity to

complete recovery on its own. This may involve rebooting
the DW-server(s) involved in the failure. The current version
(5.2UP04) is fairly capable of recovery. The next release in
6.0UP01 is expected to have additional enhancements for
recovery.

DW Allocations (Session/Instance/Fragment) that are
stuck or stale can usually be cleared with a reboot of the
Name Server (NS) /MetaData Server (MDS) node for the
Fragment. This node is the first one listed for the Fragments
belonging to the Instance (dwstat fragments | grep
Instance#). The NS/MDS can also be identified from the
client side, the compute node using it, if the DW allocation is
still mounted. Output from the mount command contains
‘mds=cX-0c0sXnX’.

Attempts to aid recovery by restarting DWS and/or DVS
daemons on the DW-servers are NOT recommended and can
lead to unpredictable behavior.

ACKNOWLEDGMENT
 The authors would like to thank all Cray, SLURM and

NERSC staff, who have worked together to make the Cori
Phase 1 DataWarp a great resource for our users.

 This research used resources of the National Energy
Research Scientific Computing Center, a DOE Office of
Science User Facility supported by the Office of Science of
the U.S. Department of Energy under Contract No. DE-
AC02- 05CH11231.

REFERENCES
[1] “Cray DataWarp Installation and Configuration Guide S-2547-

5204,” Cray Inc., Revision: b (03-02-16)
[2] “Cray DataWarp Administration Guide S-2557-5204b,” Cray Inc.,

Revision: b (03-02-16)
[3] NERSC help web pages - batch job examples:

http://www.nersc.gov/users/computational-systems/cori/burst-
buffer/example-batch-scripts/

sess state token creator owner created expiration nodes
2520 CA--- myBBname CLI 33333 2016-02-19T13:45:33 never 0
3041 CA--- u1_bb1 CLI 11111 2016-03-02T15:01:01 never 0
6185 CA--- 2128492 SLURM 55555 2016-05-09T07:13:58 never 96

inst state sess bytes nodes created expiration intact label public confs
2234 CA--- 2520 212.91GiB 1 2016-02-19T13:45:33 never true myBBname true 1
2550 CA--- 3041 1.04TiB 5 2016-03-02T15:01:02 never true u1_bb1 true 1
5534 CA--- 6185 1.87TiB 9 2016-05-09T07:13:58 never true I6185-0 false 1

conf state inst type access_type activs
2505 CA--- 2234 scratch stripe 0
2821 CA--- 2550 scratch stripe 0
5811 CA--- 5534 scratch stripe 1

