
The Hidden Cost of Large Jobs
Drain Time Analysis at Scale

Joseph ’Joshi’ Fullop IV
National Center for Supercomputing Applications (NCSA)

University of Illinois at Urbana-Champaign
Urbana, IL, USA

Email: fullop@illinois.edu

Abstract—At supercomputing centers where many users
submit jobs of various sizes, scheduling efficiency is the key to
maximizing system utilization. With the capability of running
jobs on massive numbers of nodes being the hallmark of large
clusters, draining sufficient nodes in order to launch those jobs
can severely impact the throughput of these systems. While
these principles apply to any sized cluster, the idle node-hours
due to drain on the scale of today’s systems warrants attention.
In this paper we provide methods of accounting for system-
wide drain time as well as how to attribute drain time to a
specific job. Having data like this allows for real evaluation of
scheduling policies and their effect on node occupancy. This
type of measurement is also necessary to allow for backfill
recovery analytics and enables other types of assessments.

Keywords-drain time; scheduling; supercomputer; backfill;

I. INTRODUCTION

In this paper we discuss different ways of measuring and
accounting for the time and resources attributed to scheduler
sequestering for the purpose of allowing jobs or reservations
to run. We look at accounting for this drain in terms of the
system as a whole, as well as attributing drain to individual
jobs. We further delve into some of the analytics that can be
done with this information and how it can be used to drive
policy.

II. DEFINING DRAIN TIME

’Drain Time’ in its simplest form for a single node is the
amount of time that node is held in reserve and prohibited
from running workload in order to allow enough nodes to
become available to start another job. Since jobs run across
multiple nodes, the metric, more loosely referred to as ’Drain
Time’, is actually the sum of time spent by a set of nodes and
is measured in node-hours(nHrs), or node-seconds(nSecs).
This is in line with how jobs are measured in their utilization
of a system and the capital in which an allocation is granted.

One specific differentiation that must be made is between
this definition and the terminology that schedulers and batch
systems will sometimes use to signify the state where a node
is not currently able to accept additional workload due to
administrative action[1].

III. SYSTEM-WIDE DRAIN TIME ACCOUNTING

A. Available Data

On the Blue Waters supercomputer, the scheduler of
choice is Moab by Adaptive Computing. One log line is
generated for each node on every scheduler iteration. Each
line contains a timestamp, the node identifier, the current
state, a reservation list and a job list. Below is a condensed
sample log line for clarity.

2014-12-31T00:03:19.696-0600 21166 INFO
Node ’27453’ status: state=’Idle’
rsvlist=’1292428,1292433’ joblist=’none’

The sheer volume of just these records amounts to over
1.7TB covering a period of around 2 years.

B. Accounting Method

The method of accounting is an accrual of time in seconds
for each node into an appropriate state accumulator for the
assessed time period. Since each log line has only the one
timestamp, we will require a second log line for that node
in order to determine the number of seconds spent in that
state. Therefore the node will not accrue time until the next
record is encountered.

1) Per Node Accumulators: This consists of a multi-
dimensional array, with the prime index being the node
identification number. The secondary axis is the set of
six possible states, which are {Down, Idle, Busy, Running,
Drained, and Draining1}. The third axis is the number of
combinations of the existence of jobs or reservations in
the rsvlist and joblist. This is of course a constant of four
possibilities.

To accomplish the task at hand, we will also need to
store the last state information for each node so that the
appropriate state accumulator can be incremented, once we
determine how much time has passed between the scheduler
iterations.

1Note - not to be confused with our definition of ’Drain’. See Adaptive
Computing’s documentation[1] for further differentiation.



2) Drain State Determination: Our data structure allows
us to account for all possible combinations of states that we
have identified. However, for the purposes of this paper, we
are only concerned with the time spent draining. Other ac-
counting tasks can easily be accomplished with this as well.
Down time assessments or node-occupancy (i.e. utilization)
accounting are a couple of examples.

The identification of a drain state is simply the com-
bination of when the state is ’Idle’ and there exists a
reservation list. The reservations are presented in sorted
order of upcoming occurrence. Therefore, the first in the
list will be the next job or reservation to take place. This is
important for drain accounting for jobs, discussed later.

3) Aggregation and Basis: Aggregation can be done
across any vector of the multi-dimensional array. We can
determine the drain time for the entire system by summing
the appropriate accumulators for all nodes. This will give
us the total node-seconds the system spent in drain as
determined by the available data. However, we must also
have some level of perspective. We will need to determine
the basis, or how much time does the data cover, and how
many nodes are relevant. Since a scheduling iteration outputs
information for every node on each cycle, summing the total
seconds accounted for any one of the nodes should represent
the time basis. And furthermore, all nodes should have the
same sum. The basis for the number of nodes could be static.
Here you can use the number of nodes in the system, or
at least the number of usable nodes. The node-hours basis
would be

((basis seconds) ∗ (basis nodes))/(3600seconds/hour)

In the case of Blue Waters, it has 26,846 schedulable
nodes[2]. This gives us a basis of

(86, 400 ∗ 26, 846)/3600 = 644, 304

node-hours per day potentially available.
Of course, the nodes basis could be dynamic. If you are

interested in framing the percentage in terms of available
node-hours instead of theoretically possible, you could sum
all non-down states instead of multiplying basis nodes by
basis seconds. However for the following analyses, we use
a static basis.

The seconds basis calculation should also be used to
determine if you have a quality set of data. Blindly using a
percentage of drain time over basis time could be dangerous
as you may not know if you only have data for a portion of
the day. The seconds accounted for should be approximately
86,400 for a day.

One of the practicalities of storing log data is breaking it
into files by date. This does have an implication, especially
in terms of determining basis. Since two scheduler iteration
times are necessary to determine accumulation seconds, a
day log file will provide all but an average of one cycle per
day. One cycle will be lost, since the last, partial cycle will

not accumulate because the next cycle will be in the next
daily log file. Additionally, iterations are not in sync with
the day cycle as it might be if it were a cron job. So the
seconds from midnight to the first iteration of the day will
also be unaccounted for. The shortage is the length of one
scheduler iteration on average if data is stored and assessed
in this manner. Given that scheduler iterations are usually
on the order of a couple of minutes, the basis shortage is
generally negligible in the scope of a day.

Where sanity checking the basis seconds really comes in
handy is when you have a maintenance period that spans
the midnight barrier. If the scheduler was stopped the day
before and not resumed until sometime the next day, there
would be a notable skew in the seconds basis. If percentages
are calculated on a purely static number of node-hours for
the day, the percentage would error on the low side. Of
course, we could just use and compare total node-hours, but
normalizing to a daily percentage is far more approachable
and understandable for a broad audience.

C. Benefits of Information Availability

Having a daily number of node-hours or percentage of
time spent draining is a great first step and will allow for a
number of capabilities. First, the ability to track and visual-
ize leads to having a better feel for what is a normal level
of drain time for a particular system. The variability will
also lend to determining how sensitive that system is to the
submitted workload. Submitted workload can significantly
impact the amount of drain time experienced by a system.
A mix of sporadic, high-priority, large jobs amid small, long-
running jobs would likely have a greater drain time than a
mix with regular stacks of same-sized jobs.

This method of accounting is good for determining the
impact of systemic changes on the overall system utilization
and scheduling efficiency. Changing a scheduling policy for
a period of time can now be compared to previous policies
in terms of the drain overhead.

D. Shortcomings of the System-wide Method

While the system-wide drain time accounting method is
useful for seeing things at a high level, it is insufficient for
determining how policy or other changes may be affecting
the user experience. Drain time directly relates to the time
a job spends in the queue, and therefore how long a user
has to wait for their job to launch. It is further inadequate
for determining how policies affect different job classes,
whether that is by size, queue or requested wall time.

IV. PER-JOB DRAIN ACCOUNTING

A. Accounting Method

The accounting method for the per-job method is built
upon the per-node method. Once the number of seconds to
accumulate has been determined for a node, if the state is
determined to be draining, those second are added to the



running total for the appropriate job. Recall that the first job
or reservation in the rsvlist is the next one scheduled to run
on that node and is therefore the job that is responsible for
the drain.

1) Per Job Accumulators: The implementation of the per-
job accumulators is an associative array where the jobid or
reservation maps to a node-seconds accumulator.

2) Drain Across Day Barriers: Another of the issues
with storing log data in day-partitioned files is that jobs can
accumulate node-seconds of drain in multiple periods. To
get the full accounting for a job, the fragments need to be
grouped and summed on the job or reservation id.

3) Unallocated Idle Time: One of the special cases that
shows up in the data is when the rsvlist=’none’. The code
will recognize the literal ’none’ as the job or reservation id
when the state is ’Idle’. When the state is Idle, and there
are no reservations for that node, then there is no work for
that node. This can be an indicator of inadequate submitted
workload.

On a technical level, the jobid ’none’ should be removed
from drain time summaries since it is not drain time.

V. ANALYTICS OF DRAIN TIME

In this section we will examine ways to use the drain time
accounting and present some data from Blue Waters.

A. Refining Scheduler Policy

1) Identifying Oversight: Once a scheduling policy is
decided upon and implemented, it is always a good practice
to evaluate and determine whether those policies are having
the desired effect. The time jobs spend in the queue or
the node occupancy rate are often considered. Drain times
could also be evaluated since they are directly related to
node occupancy rates. More specifically, jobs that exhibit
inordinately high drain time after policy changes should be
scrutinized. These outliers are generally manifestations of
edge cases that may have been overlooked in the definition
of the scheduling policy.

2) Perpetually Sliding Jobs: Sometimes jobs can continu-
ally be bumped to make room for higher priority jobs. This is
normal. Schedulers generally do a decent job of refactoring
and getting a bumped job launched in due course. However,
in reality, sometimes things do not work as intended. To
identify perpetually sliding jobs, one can consider the set
of jobs that are currently queued and sort them based on
their ratio of accumulated drain time to job size. The top of
the list should show those jobs that have accumulated the
most drain time (normalized by job size). The threshold of
concern will have to be established by what is considered
’normal’ for any given system and workload.

B. Evaluating Scheduler Changes

Most operators of a supercomputer tend to strive for
scheduling efficiency. Drain time is generally considered

wasted time, or, at least, a source of inefficiency. Therefore,
measuring this inefficiency can be used to determine relative
efficiency. Simply considering a daily drain time value
or percentage over an affected period can lead to quick
conclusions about the impact of a scheduler modification.

Example Case: Topology Aware Scheduling
Figure 1 shows the percentage of drain time for four

periods. From left to right, it shows an initial period of
running a scheduler before the introduction of Topology
Aware Scheduling (TAS), then the broad section of running
under TAS, followed by an experimental period where TAS
was turned off, then finally the re-introduction of TAS.
Topology Aware Scheduling requires jobs to be placed on
sets of nodes contiguous on the torus network and be of a
certain shape. When scheduling is required to be done in
these blocks, there is a greater propensity for an increase in
drain time, resulting in a decreased node occupancy, given
an unchanged workload. Performance improvements and an
improved consistency are expected on individual jobs since
they should be more isolated from interference by other
workload. The extent of that speed-up can, and should,
be measured and compared to the increased overhead of
drain time costs to determine if such technologies present
any real gain. At least this provides one factor that must
be overcome to justify adoption. Measuring application
performance improvements is a topic for another time.

The table below summarizes the drain time values for the
stated periods.

Period Average Drain Time (%)
Pre-TAS 9.1%
TAS 22.3%
Non-TAS Experiment 5.8%
Post Experiment TAS 21.3%

The Topology Aware Scheduling mode of operation, ex-
amined here, impacts the system in terms of increasing the
time spent draining by 14.4% or more. This also directly
detracts from node-occupancy (utilization).

C. The Real Value of Debugging Code

Drain losses are a practical part of getting work done.
However, when the drain cost is sunk and no work mate-
rializes, then that is a particularly bad case that should be
avoided, when possible. This occurs when jobs fail to launch
or crash shortly after launch. These cases can be identified
by job execution times being very short.

Using the node-hours ratio of [DrainT ime] :
[RunTime], jobs that are responsible for a large drain and
little work can easily be identified.

On Blue Waters, we examined a period of 1.4 years saw
13,500 jobs that accumulated drain time and then ran less
that 30 seconds. These jobs generated 1.77 Million node-
hours of drain. This is equivalent to 1.5 years of constant



Figure 1. Daily Percentage of drain time across Topology Aware Scheduling periods.

run time on a 128 node machine of similar performance.
These jobs can be categorized as ’failure to launch’ types
of jobs. Fortunately, this works out to average only about
0.5% of the daily machine capacity. NCSA’s user services
group actively engages users when these types of situations
arise. But if ignored, it could easily grow as users continue
to submit buggy or faulty workload.

D. Drain Time as a Function of Job Size

There exists a certain expectation that the bigger a job
is in size, the more drain time it may require to launch.
This growth should also be expected to be mitigated by
the scheduler’s ability to stack large jobs of similar size
in succession such that they minimize the total drain time,
much like race cars drafting to share the wind resistance.

In order to search for a trend, we take a look at the average
drain time in node-seconds and how it relates to the size of
a job. We split the job sizes up as follows and summarize
for each size grouping. We also examine the four different
periods separately to see if TAS has a discernible impact.

Group Name Job Size (nodes)
Tiny 1-128
Sub1k 129-999
1k+ 1,000-1,999
2k+ 2,000-3,999
4k+ 4,000-7,999
8k+ 8,000-15,999
16k+ 16,000+

Figure 2 shows a generally upward trend. However, it is by
no means linear. The variability would also tend to suggest
that there are other factors at play. Workload back-log is a
usual suspect.

VI. ENABLED FUTURE WORK AREAS

Having drain time numbers allows for further comparative
analysis, as well as provides measurable evidence to warrant
the pursuit of efficiency-improving efforts.

A. Back-fill Recovery Analysis

If it were possible to accurately determine that a job was
run under a back-fill scenario, the total node-hours of back-
fill jobs could be compared to the total node-hours of back-
fill plus the total node hours of drain to determine back-fill
efficiency.

B. Job Back-log Analysis

Using the unallocated idle time provided by the per-job
drain for job ’none’, one could begin to assess the available



Figure 2. Analysis of drain time as a function of size under different scheduling strategies

backlog of scheduled jobs. This can be used to determine if
the lack of node-occupancy is due to scheduler inefficiencies
or due to the lack of suitable workload. More classification
of scheduled workload will be necessary as the unallocated
idle time is only a component of what is needed for this
task.

C. Back-fill Dynamic Sub-scheduler

An interesting idea to salvage drain time would be to
dynamically schedule workload onto the nodes reserved for
upcoming jobs. It is possible to determine what the currently
largest back-fill job size is. Combine that with the time
until the pending job launches and one could schedule a job
to run in the shadow of upcoming workload. This would
increase overall node-occupancy (utilization) for the system
as a whole.

If the user community had workload that could be sched-
uled with a range of size and could run to termination, or
at least make measured progress, the sub-scheduler could
dynamically submit jobs on their behalf to take advantage
of drained nodes. They could submit these parameters under
which their code could execute and fund it from their
existing allocation of node hours. Heavy discounts could
also be used to entice usage of such a system.

An alternative use of this sub-scheduler could be to run
benchmarking jobs with a fixed input deck. The run times

of these benchmark jobs could be used to measure relative
throughput of the system as a matter of practice. Doing this
could provide vital data for performance analytics without
displacing user workload to do so.

VII. CONCLUSION

The size of supercomputers today are large enough to
warrant efforts to recover or take advantage of available cy-
cles in the wake of large pending jobs. Innovative strategies
in scheduler technologies also have the promise to improve
system throughput. Before something like these efforts can
be managed or properly evaluated, they must first be mea-
sured. We have provided two methods of measurement and
some examples of their use.

ACKNOWLEDGMENT

The author would like to thank Mark Dalton of Cray and
Rick McKay of Adaptive Computing for their verification
of the interpretation of the log file information.

REFERENCES

[1] 10.5 Managing Node State. Moab Workload Manager, Adap-
tive Computing., Web. 7 Apr. 2016.

[2] ”System Summary” Blue Waters, National
Center for Supercomputing Applications, Web
(https://bluewaters.ncsa.illinois.edu/hardware-summary)
Web. 7 Apr. 2016.


