
Drain Time Analysis at Scale

Joshi Fullop
National Center for Supercomputing Applications

May 12, 2016

Background

• As the size of machines continues to grow, the
greater the importance for efficiency.

• Capability computing is often characterized by
running jobs with greater node counts.

• Jobs have a drain cost in addition to their
execution time.

• Drain time goes against node occupancy
metrics (utilization).

2

Defining 'Drain Time'

● What it is NOT.

• Scheduler definition of Drain/Draining state.
the state where a node is not currently able to accept additional

workload due to administrative action

● What it IS – for this paper's purposes

• Common definition

amount of time that node is held in reserve and prohibited
from running workload in order to allow enough nodes to

become available to start another job

3

Available Data

● Moab server logs

– Node state dump every iteration.

2015-09-01T00:02:11.000-0500 Node '1' status: state='Busy'
rsvlist='2190780,jmo8k.147195,2183821,2183815,2183819' joblist='2190780'.

2015-09-01T00:02:11.001-0500 Node '4' status: state='Busy'
rsvlist='2201168,jmo8k.147195,2183821,2183815,2183819' joblist='2177494'.

2015-09-01T00:02:11.001-0500 Node '5' status: state='Idle'
rsvlist='jmo8k.147195,2183821,2183815,2183819' joblist='none'.

1.7TB over about 2 years

4

Available Data
● Moab node 'state' has 6 possibilities

– Down, Idle, Busy, Running, Drained*, and Draining*

● Rsvlist – 2 possibilities

• Populated or 'None'

● Joblist – 2 possibilities

• Populated or 'None'

● Totals 24 separate accumulators per node.

5

System-wide Accounting

struct node_acc {
bool bxk; // flags XK vs XE nodes
long last_utime; // last state timestamp
int last_state; // last Moab node state
int last_idx; // last rsvlist/joblist state
long node_basis; // total accounted for seconds
long accum[7][4]; // 24 + 4 accumulators

};

Extra 4 accumulators for an Error state where iteration time
is out of bounds or other problems.

6

Importance of Basis

● Basis is the total number of accumulated node seconds
that are considered.

● Should be compared to the total number of expected
node seconds as a quality of data check.

● Great indicator on the quality of the data.

7

System-wide Analytics

● Identifying Policy Oversight

– Jobs with outlying drain times should be scrutinized.

● Perpetually Sliding Jobs

– Jobs that continue to accrue drain time may be
constantly sliding and may never get launched.

● Evaluate Changes in Scheduler Policy

– Gives one factor for comparison.

8

Example: Topology Aware Scheduling (TAS)

● Jobs are scheduled in contiguous bricks of
nodes on the torus network.

● Reduce or eliminate cross-node network traffic
and minimize average hops between nodes.

● Results in improved performance and
consistency.

● Causes decreased node-occupancy.

9

10

Topology Aware Scheduling Example

Topology Aware Scheduling Example

11

Period Drain Time %
Pre-TAS 9.1%

TAS 22.3%

Non-TAS Experiment 5.8%

Post Experiment TAS 21.3%

TAS increased drain cost 14%.

Per-Job Accounting

● Similar to node-accounting,

1. Use an associative array indexed by job/reservation.

2. Only accumulate drain time.

12

13

Valuation of Preparedness

● Examination of jobs that cause drain and then fail to run.

● Job walltime < 30 seconds

● Over a period of 1.4 years, 1.77 Million Node hours
were wasted draining for these jobs.

● However, that equates to only 0.5% of the system.

● Equivalent to 128 nodes for the entire period.

14

Conclusions

1. Drain time is part of running large jobs.

2. Before you can manage something, you must
measure it.

3. Drain time can accumulate to significant node-hours.

4. Drain time grows incrementally more for larger job.

5. There are many other factors to consider when
selecting a scheduling policy. Drain time should be
one of them.

15

ACKNOWLEDGMENT & DISCLAIMER

This work was supported by the National Science Foundation (NSF) and the
DOE Office of Science (Office of Basic Energy Sciences).

Special to thank Mark Dalton of Cray and Rick McKay of Adaptive Computing for
their verification of the interpretation of the log file information.

Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.

16

17

Joseph ‘Joshi’ Fullop IV

fullop@illinois.edu

http://www.ncsa.illinois.edu/People/jfullop

Fin

mailto:fullop@illinois.edu

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

