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Background

• As the size of machines continues to grow, the 
greater the importance for efficiency. 

• Capability computing is often characterized by 
running jobs with greater node counts.

• Jobs have a drain cost in addition to their 
execution time.

• Drain time goes against node occupancy 
metrics (utilization).

2



Defining 'Drain Time'

● What it is NOT.

• Scheduler definition of Drain/Draining state.
the state where a node is not currently able to accept additional 

workload due to administrative action

● What it IS – for this paper's purposes

• Common definition

amount of time that node is held in reserve and prohibited
from running workload in order to allow enough nodes to

become available to start another job
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Available Data

● Moab server logs

– Node state dump every iteration.

2015-09-01T00:02:11.000-0500     Node '1' status: state='Busy' 
rsvlist='2190780,jmo8k.147195,2183821,2183815,2183819' joblist='2190780'.

2015-09-01T00:02:11.001-0500     Node '4' status: state='Busy' 
rsvlist='2201168,jmo8k.147195,2183821,2183815,2183819' joblist='2177494'.

2015-09-01T00:02:11.001-0500     Node '5' status: state='Idle' 
rsvlist='jmo8k.147195,2183821,2183815,2183819' joblist='none'.

1.7TB over about 2 years
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Available Data
● Moab node 'state' has 6 possibilities

– Down, Idle, Busy, Running, Drained*, and Draining*

● Rsvlist – 2 possibilities

• Populated or 'None'

● Joblist – 2 possibilities

• Populated or 'None'

● Totals 24 separate accumulators per node.
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System-wide Accounting

struct node_acc {
bool bxk; // flags XK vs XE nodes
long last_utime; // last state timestamp
int last_state; // last Moab node state
int last_idx; // last rsvlist/joblist state
long node_basis; // total accounted for seconds
long accum[7][4]; // 24 + 4 accumulators 

};

Extra 4 accumulators for an Error state where iteration time 
is out of bounds or other problems.
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Importance of Basis

● Basis is the total number of accumulated node seconds 
that are considered.

● Should be compared to the total number of expected 
node seconds as a quality of data check.

● Great indicator on the quality of the data.

7



System-wide Analytics

● Identifying Policy Oversight

– Jobs with outlying drain times should be scrutinized.

● Perpetually Sliding Jobs

– Jobs that continue to accrue drain time may be 
constantly sliding and may never get launched.

● Evaluate Changes in Scheduler Policy

– Gives one factor for comparison.
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Example: Topology Aware Scheduling (TAS)

● Jobs are scheduled in contiguous bricks of 
nodes on the torus network.

● Reduce or eliminate cross-node network traffic 
and minimize average hops between nodes.

● Results in improved performance and 
consistency.

● Causes decreased node-occupancy.
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Topology Aware Scheduling Example



Topology Aware Scheduling Example
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Period Drain Time %
Pre-TAS 9.1%

TAS 22.3%

Non-TAS Experiment 5.8%

Post Experiment TAS 21.3%

TAS increased drain cost 14%.



Per-Job Accounting

● Similar to node-accounting, 

1. Use an associative array indexed by job/reservation.

2. Only accumulate drain time.
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Valuation of Preparedness 

● Examination of jobs that cause drain and then fail to run. 

● Job walltime < 30 seconds

● Over a period of 1.4 years, 1.77 Million Node hours 
were wasted draining for these jobs.

● However, that equates to only 0.5% of the system.

● Equivalent to 128 nodes for the entire period.
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Conclusions

1. Drain time is part of running large jobs.

2. Before you can manage something, you must 
measure it.

3. Drain time can accumulate to significant node-hours.

4. Drain time grows incrementally more for larger job.

5. There are many other factors to consider when 
selecting a scheduling policy. Drain time should be 
one of them.
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