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Abstract— NERSC is preparing for its next petascale system, 
named Cori, a Cray XC system based on the Intel KNL MIC 
architecture. Each Cori node will have 72 cores (288 threads), 
512 bit vector units, and a low capacity (16GB) and high 
bandwidth (~5x DDR4) on-package memory (MCDRAM or 
HBM). To help applications get ready for Cori, NERSC has 
developed optimization strategies that focus on the 
MPI+OpenMP program model, vectorization, and the HBM. 
While the optimization on MPI+OpenMP and vectorization 
can be carried out on today’s multi-core architectures, 
optimization of the HBM is difficult to perform where the 
HBM is unavailable. In this paper, we will present our HBM 
performance analysis on the VASP code, a widely used 
materials science code, using Intel's development tools, 
Memkind and AutoHBW, and a dual-socket Ivy Bridge 
processor node on Edison, a Cray XC30, as a proxy to the 
HBM on KNL. 
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I.  INTRODUCTION 
NERSC’s next petascale system will be a Cray XC 40 

system based on the Intel Knights Landing (KNL), Many 
Integrated Core (MIC) Architecture [1], named Cori [2]. 
Cori is scheduled to arrive at NERSC this fall (August, 
2016), and will have over 9300 single-socket KNL, MIC 
processor nodes, interconnected with Cray’s Aries 
Dragonfly high-speed network. Each Cori node will have 72 
cores (288 threads or logical cores with Hyperthreading) 
running at a <1.4 GHz clock-speed, 512 bit vector units, 96 
GB DDR4 memory, and a 16 GB on-package high 
bandwidth memory, named Multi-Channel DRAM 
(MCDRAM, or HBM for simplicity), which will have about 
5 times bandwidth of the DDR4 memory (>400GB/s). To 
help the current MPI predominant NERSC workload [3] 
make a successful transition to this new energy efficient 
architecture, NERSC has developed optimization strategies 
in collaboration with vendors, which focus on the 
MPI+OpenMP program model, vectorization, and the 
efficient use of the HBM. NERSC has also initiated a 
program, named NESAP [4], to help the applications get 
ready for Cori (Phase II). While optimization on 
MPI+OpenMP and vectorization can be performed on 
today’s multi-core architectures, optimization on the HBM 
is difficult to perform where the HBM is unavailable. If 

entire NERSC workload can fit into the 16 GB HBM on the 
KNL nodes, optimization of the HBM would be less of a 
concern. However, at least 50% of the NERSC workload 
will not be able to fit into the HBM, as shown in our recent 
workload analysis [3]. Therefore, the efficient use of the low 
capacity HBM on the KNL nodes will be an important 
optimization for applications to get the most performance 
out of Cori. Specifically users and developers need memory 
management tools that can selectively allocate data 
structures to the HBM while allocating the rest of the data to 
the DDR memory.  

Intel has developed multiple tools to manage the HBM 
on KNL, such as the Memkind [5] and AutoHBW [6] 
libraries. Furthermore, it possible to emulate the HBM 
performance on today’s dual-socket Xeon nodes by making 
use of the fact that the bandwidths of accessing the near 
socket memory and the far socket memory via QPI are 
different. For example, on a dual-socket Ivy Bridge node, 
the Stream Triad bandwidths of the two memory accessing 
modes differ by 33%.  The near socket memory can be used 
as the proxy of the HBM (MCDRAM) on KNL, and the far 
socket memory can be used as the proxy of the DDR 
memory on KNL. Note that this is not an accurate model of 
the bandwidth and latency characteristics of the HBM 
(MCDRAM) on KNL, but it is a reasonable way to 
determine which data structures rely critically on 
bandwidths, and get applications ready for the HBM before 
the KNL nodes arrive. In this paper, we will present our 
HBM performance analysis on the VASP [7-8] code, a 
widely used materials science application, using Intel's 
development tools, Memkind and AutoHBW, and the dual-
socket Ivy Bridge processor nodes on Edison [9], a Cray 
XC30, as the proxies to the HBM on KNL. Our analyses 
were performed on the two representative VASP workloads.  

The work described here is based on one of the 
optimizations attempted during the VASP Dungeon Session 
1 in Oct. 2015, which is a part of the NESAP activities to get 
the applications ready for KNL. Some of the pre-dungeon 
preparation and the post-dungeon follow-up work are 
included as well. The rest of the paper is organized as 

                                                             
1 Intel Dungeon Session is a multi-day intense application optimization 
session held at Intel Office at Hillsboro, OR with a team of application 

developers, Intel engineers, and NERSC staff to get the NESAP application 
codes (selected among the NERSC workload) ready for Cori (KNL). 



follows: We will describe the environment and methods 
used for our HBM analysis in Section II, and will describe 
the VASP code and the test cases used in Section III. In 
Section IV, we will apply the HBM analysis methods to the 
VASP code and will analyze the HBM performance results. 
We will conclude the paper by summarizing our 
observations in Section V. 
 

II. ENVRIONMENTS AND METHODS FOR HBM ANALYSIS 

A.  HBM (MCDRAM) on KNL 
The KNL architecture brings in new memory 

technology, a high bandwidth on package memory called 
Multi-Channel DRAM (MCDRAM or HBM for simplicity) 
in addition to the traditional DDR4 memory. MCDRAM is a 
high bandwidth (~5x more than DDR4) and low capacity 
(16GB) memory, packaged with the Knights Landing 
Silicon (Fig. 1). MCDRAM can be configured (boot time 
options) as a third level cache (cache mode) or as a distinct 
NUMA node (flat mode) or somewhere in between (hybrid 
mode). If the MCDRAM is configured as a third level 
cache, no application source code changes are required, 
however, the misses are expensive because applications 
need to access both the MCDRAM and the DDR memory. 
If the MCDRAM is configured in the flat mode, it is 
mapped to physical address space and exposed as a NUMA 
node (allocatable memory). The advantage of this mode is 
allowing application developers and users have the full 
control over the HBM use. The downside is that code 
modifications may be required to be able to utilize the 
available HBM efficiently. It is very challenging from a 
software perspective to understand the best mode suitable 

for an application. In this study, we will focus on the flat 
mode in which the MCDRAM is configured as a NUMA 
node (or multiple NUMA nodes). 

B. Edison as HBM proxy 
Edison is NERSC’s current petascale system, a Cray 

XC30, which has about 5600 dual-socket Ivy Bridge 
processor nodes, interconnected with Cray’s Aries 
Dragonfly high speed network. Each Edison node has two 
sockets, and each socket has 12 cores (24 cores/48 threads 
per node) at 2.4GHz. Each node has 64 GB DDR3 1866 
MHz memory utilizing eight 8 GB DIMMs. Stream TRIAD 
bandwidth per node is 103 GB/s. The two sockets on the Ivy 
Bridge node is connected with the QPI links (Fig. 2). The 
bandwidths of accessing the near socket memory and the far 
socket memory via QPI differ by 33%. This bandwidth 
difference can be used to emulate the MCDRAM and DDR 
on KNL. The near socket memory can be used as the proxy 
of the MCDRAM on KNL, and the far socket memory can 
be used as the proxy of the DDR on KNL. This is not an 
accurate model of the bandwidth and latency characteristics 
of the KNL on package memory, but is a reasonable way to 
determine which data structures rely critically on memory 
bandwidths. 

C. Intel development tools to manage HBM on KNL 
1)  Memkind – code changes are required 
The Memkind [5] library is a user extensible heap 

manager built on top of Jemalloc [10], a general purpose 
heap manger, which enables the control of memory 
characteristics and a partitioning of the heap between kinds 
of memory (including user defined kinds of memory). The 
Memkind library is capable of managing a few different 
memory types including HBM, hugepage memory, HBM 
with hugepages, etc., with the HBM being the default 
memory type. The Memkind library requires minimal code 
changes. For the Fortran codes, the Memkind library uses 

 

 
 

Figure 1. Intel KNL overview (source: Intel). Each KNL processor will 
have 72 cores (288 threads) at <1.4 GHz, 96GB DDR4 memory 
utilizing six 16GB DIMMs at 2400GHz, and a 16 GB MCDRAM with 
about 5x memory bandwidth of the DDR4 memory. Processor cores 
will be interconnected in a 2D mesh network with two cores per tile 
(36 tiles in total), with a 1-MB L2 cache shared between two cores in a 
tile, with two 512 bit vector processing units per core, and 
with multiple NUMA domain support per socket.  

 

 
 
Figure 2. Edison compute node diagram (source: Cray). Each Edison 
compute node has two 12 cores Ivy Bridge processors (24cores/48 
threads per node) at 2.4 GHz. Each node has 64GB DDR3 1866 MHz 
memory utilizing eight 8 GB DIMMs. Each core has its own L1 and 
L2 caches, with 64 KB (32 KB instruction cache, 32 KB data) and 256 
KB, respectively; a 30-MB L3 cache shared between 12 cores on the 
processor (socket). Stream TRIAD bandwidth per node is 103 GB/s.  



the Intel compiler directive, !DIR$ ATTRIBUTES 
FASTMEM to select data arrays in the code and to allocate 
them in the HBM. For the C/C++ codes, it uses the malloc 
or calloc wrapper APIs, such as hbw_malloc, hbw_calloc, 
etc., to replace the malloc or calloc calls in the codes, to 
place those memory objects on to the HBM. The 
applications need to be linked to the Memkind library (and 
Jemalloc library as well). To use the Memkind library on 
Xeon nodes (non-KNL nodes) where the HBM is 
unavailable, an environment variable, 
MEMKIND_HBW_NODE, is needed to designate a socket 
(or a NUMA node) as the HBM node (Note multiple 
NUMA nodes can be set as the HBM nodes on a node with 
more than two sockets or NUMA nodes). Fig. 3 shows the 
steps to use the Memkind library on a dual socket Xeon 
node.  

In Fig. 3 the memory on Socket 0 on a dual-socket node 
simulates the HBM on a KNL node (via 
MEMKIND_HBW_NODES=0), and the memory on Socket 
1 simulates the DDR memory on KNL. The code, ./a.out, 
runs (bound to) on Socket 0, allocating the memory from 
the DDR memory (Socket 1). Only the arrays, which were 
prefixed with the FASTMEM directive (for example, the 
arrays a, b, and c in Fig. 3), will be allocated to the HBM 
(Socket 0). Note that the FASTMEM directive is currently 
an Intel compiler specific directive. This causes 
optimization of the HBM to lack of portability between 
different compilers. Fortunately, Cray compilers will soon 
support this directive as well [11]. In addition, the Memkind 
library can only allocate heap variables to the HBM. There 
is no good way to allocate stack variables to the HBM 
currently. We showed the steps to use the Memkind library 

on a standalone dual-socket Xeon node (e.g., under Edison 
Cluster Compatibility Mode (CCM) [12]). However, the 
same steps are applicable to the native environment on Cray 
XC systems where the Cray compiler wrappers and the Cray 
MPICH libraries are used (see [13]). The Memkind library 
is an open source tool. See [5] for more details about the 
Memkind library. 

 
2) AutoHBW – no code changes are required 

The AutoHBW [6] library is a tool that can be used to 
automatically allocate arrays within certain size ranges to 
the HBM without modifications to the application source 
codes. AutoHBW intercepts the standard heap allocations 
(e.g., malloc, calloc, etc.,) in the application codes and 
allocates them in the HBM if the arrays are within the 
specified size range. An environment variable, 
AUTO_HBW_SIZE (in M, K, or G) is used to specify the 
size range for the arrays to be allocated in the HBM. This 
tool is built on top of the Memkind library. Application 
codes need to be linked to the AutoHBW and Memkind 
libraries. If applications are linked dynamically, then the 
AutoHBW and Memkind libraries need to be preloaded (via 
LD_PRELOAD) or added to the library search path 
(LD_LIBRARY_PATH). AutoHBW uses environment 
variables to control its behavior and to interact with the 
application codes. See Fig. 4 for the available environment 
variables. To use AutoHBW on non-KNL nodes the 
environment variable, MEMKIND_HBW_NODES, must be 
used to specify which socket/NUMA node to set as the to 
use the AutoHBW library on a dual-socket Xeon node.  
Similar to the Memkind library, the AutoHBW library can 
also be used within the native environment on Cray XC 
systems with the Cray compiler wrappers and the Cray 
MPICH libraries (See [13]). 

In Fig. 5 all arrays sized between1M to 5M will be 
1) Modify the codes: 

a) Fortran codes: Add Intel compiler directive !DIR$ 
ATTRIBUTES FASTMEM  
real, allocatable :: a(:,:), b(:,:), c(:) 
!DIR$ ATTRIBUTES FASTMEM :: a, b, c 

b) C/C++ codes: Use hbw_malloc, hbw_calloc to 
replace the malloc, calloc calls in the codes 
#include <hbwmalloc.h> 
malloc(size) -> hbw_malloc(size) 
 

2) Link the codes to the memkind and jemalloc libraries using 
Intel compilers 

mpiifort -O3 -qopenmp mycode.f90  -L<path-to-
mekind-library>  –lmemkind –ljemalloc 

 

3) Run the codes with the numactl and 
env MEMKIND_HBW_NODES 

export MEMKIND_HBW_NODES=0  
numactl --membind=1 --cpunodebind=0 ./a.out 
 

Figure 3. The steps to use the Memkind library on a (standalone) dual-
socket Xeon node. To run on multiple nodes, or when a job lands on a 
mom node instead of a head compute node, a parallel job launcher, 
e.g., mpirun, srun, aprun or ccmrun, should be used in front of the 
numactl command in Step 3 as shown above. Then, the “numactl --
membind=1 --cpunodebind=0” command could be replaced by the 
corresponding task/memory affinity options of the job launchers. 

 

AUTO_HBW_SIZE=x[:y] 
Indicates that any allocation larger than x and smaller than 
y should be allocated in HBM. x,y (in K, M, or G)  

AUTO_HBW_LOG=level  
 Sets the verbosity of the logging level: 
0 = no messages are printed for allocations; 1 = a log 
message is printed for each allocation (Default); 2 = a log 
message is printed for each allocation with a backtrace. 

MEMKIND_HBW_NODES=<list of numa nodes> 
Sets a comma separated list of NUMA nodes as HBW 
nodes, e.g., MEMKIND_HBW_NODES=0 
For non-KNL node this env must be set 

AUTO_HBW_MEM_TYPE=<memory_type> 
Sets the type of memory that should be automatically 
allocated. Default: MEMKIND_HBW.  
Examples: 
AUTO_HBW_MEM_TYPE=MEMKIND_HBW  
(Default)                 
AUTO_HBW_MEM_TYPE=MEMKIND_HBW_HUGET
LB 
AUTO_HBW_MEM_TYPE=MEMKIND_HUGETLB 

 
Figure 4. The environment variables used in AutoHBW.  



allocated to the HBM. As with the Memkind library, this 
library also works with the heap arrays only. See [6] for 
more details about the AutoHBW tool. 

III. APPLICATION CODE AND TEST CASES 

A. VASP code description and computational problem 
The Vienna Ab-initio Simulation Package (VASP) [7-

8] is a widely used materials science application for 
performing Ab-initio electronic structure calculations and 
quantum-mechanical molecular dynamics (MD) simulations 
using pseudopotentials or the projector-augmented wave 
method and a plane wave basis set. VASP computes an 
approximate solution to the many-body Schrödinger 
equation, either within the Density Functional Theory 
(DFT) to solve the Kohn-Sham equation or the Hartree-
Fock (HF) approximation to solve the Roothaan equation. 
Hybrid functionals that mix the HF approach with DFT are 
implemented, and Green's functions methods (GW quasi-
particles and ACFDT-RPA) as well as many-body 
perturbation theory (2nd-order Møller-Plesset) are available 
in VASP. 

The fundamental mathematical problem that VASP 
solves is a non-linear eigenvalue problem that has to be 
solved iteratively via self-consistent iteration cycles until a 
desired accuracy is achieved. This application makes use of 
efficient iterative matrix diagonalization techniques like the 
residual minimization method with direct inversion of the 
iterative subspace (RMM-DIIS) and the blocked Davidson 
algorithms. FFTs and Linear Algebra libraries 
(BLAS/LAPACK/ScaLAPACK) are heavily depended on.  

Currently, the released production code (e.g., 5.3.5) is a 
pure MPI code. There is also an MPI+OpenMP hybrid code 
that the developers (Marsman) are working on to get ready 
for the next generation multi-core/many-core HPC systems. 
The majority of the VASP code is written in Fortran. In this 
study, we used the pure MPI code, version 5.3.5, and the 
MPI+OpenMP hybrid code as well (the development 
version as of 9/29/2015). The code was compiled with Intel 
compilers (15.1.133) and linked to the MKL (11.02 
update1) and ELPA (2015.05.001) libraries. The FFT 
routines were also from MKL via the wrapped fftw3 
interfaces. 

B. Test cases 
In this study, we used two different test cases. The first 

case was used with the VASP 5.3.5 to test the HBM 
performance impact to the hybrid functional calculations 
(HSE06) in the VASP code. The hybrid functional 
calculations are memory intensive, and are one of the 
representative VASP workloads at NERSC. See Fig. 6 for 
its atomic structure configuration (denoted as B.HR105-s 
hereafter).  

The second test case was used with the development 
version of VASP (as of 9/29/2015, an MPI+OpenMP hybrid 
code) to optimize the HBM use in the typical code path in 

VASP (the RMM-DIIS iteration scheme). This is a PdO 
slab, containing 174 atoms in total (denoted as PdO@Pd-
slab hereafter). This system was carefully chosen so that it 
could fit in the single socket memory on the Haswell node 
(Xeon processor E5-2697 v3 at 2.6 GHz). The developers 
(Marsman) used this to prepare for the Dungeon Session, 
where single node performance was focused on. Fig. 7 
illustrates the structure of this test system. 

IV. HBM ANALYSIS AND DISCUSSION 

A. Estimating HBM effect on VASP performance using 
AutoHBW. 
For the application end users, who do not modify the 

source code, the AutoHBW library could be a convenient 
tool for them to experiment with HBM performance to use 
the available HBM optimally on the KNL nodes. Using the 
AutoHBW library, we estimated the HBM performance 
impact on the VASP code. Fig. 8 shows the VASP run time 
when arrays with certain sizes were allocated to the 

 

 
 
Figure 6. This benchmark test case is a system with 105 Boron atoms, 
315 electrons in 216 bands, and 110592 planewaves per band. This 
system was used to test if the VASP hybrid functional calculations get 
benefit from using the HBM. 

 

 
 
Figure 7. The benchmark test case used in profiling the MPI/OpenMP 
hybrid VASP code (the development version up-to 9/29/2015). The 
test system contains 150 Palladium (Pd) atoms and 24 Oxygen atoms 
(O) (denoted as PdO@Pd-slab hereafter), 1644 electrons in 1024 
bands, and 33967 planewaves per band. The RMM-DIIS iteration 
scheme was tested, and it was executed over multiple bands 
simultaneously.  

 



emulated HBM (the near socket memory) on Edison 
compute nodes. A production VASP code (version 5.3.5, 
pure MPI code) was used, and the memory intensive hybrid 
functional computation (HSE06) was tested with the test 
case, B.HR105-s. With only a 33% difference in 
bandwidths, the total run time of the VASP code was 
reduced by about 40% when all arrays sized from 1M to 5M 
were allocated to the HBM. Given the fact that the HBM on 
a KNL node has a bandwidth five times the size of the DDR 
memory, one could expect a much larger performance boost 
from utilizing the HBM on KNL. This experiment was very 
encouraging and motivated the VASP code team to look 
into HBM optimization during the Dungeon Session (Oct. 
2015). To efficiently use the limited amount of the HBM on 
the KNL nodes, it is critical to allocate only the arrays that 
generate the most memory traffic to the HBM.  

B. Indentifying HBM candidate routines in the code 
To participate a Dungeon Session, developers are 

required to do some preparation work [14], including code 
profiling to select the hotspots to work on during the 
Dungeon Session. In the context of the HBM optimization, 
the developers need to determine if their applications (the 
hotspots) are memory bandwidth or CPU bound, as the 
HBM would benefit the applications only when they are 
memory bandwidth bound. Instead of the VTune memory 
access analysis, which is a proper tool to identify the arrays 
that generate the most memory traffic in the code, Ref. [14] 
recommended to run the half packed node and half clock-
speed tests to determine if a code is memory or CPU bound 
(roughly). This was to avoid the complexity from using the 

VTune memory access analysis, which was still developing 
when the VASP Dungeon Session was held (Oct. 2015) and 
required some learning effort. This was also due to other 
limitations, such as licenses (some developers carried out 
the pre-dungeon preparation work on non-NERSC systems). 

The profiling of the hybrid code showed a reasonable 
thread scaling up to 8 threads (Fig. 9), where the 
performance of the hybrid code matched the pure MPI code. 
The best performance was achieved with 4 threads per MPI 
task (15% speedup in comparison to the pure MPI code). 
Beyond 8 threads and up, the poor thread performance of 
the FFTs (threaded 3d cfftw from MKL), BLAS1 calls (in 
eddrmm), and an increase in the MPI_alltoall costs with a 
decreasing number of MPI ranks caused the code to stop 
scaling. Note that the top routines, eddiag, eddrmm, fft*, 
lincom and orht1, all depend heavily on the math libraries.  

The run time comparison between running on the fully 
packed and half packed nodes (Fig. 10) showed that most of 
the subroutines such as FFTs (fftwav_mpi and fftext_mpi), 
the routines that map to the ZGEMM (lincom and orth1), 
and the DGEMM (rpromu and racc0mu) were likely 
bandwidth bound, especially the real-space projection 
routines rpromu and racc0mu (the bars in the blue box). 
They had the most run time reduction (30-35%) when 
running on the half-packed nodes doubled the memory 
bandwidth available per task. The FFTs work on contiguous 
data structures. The ZGEMM calls work on contiguous data 
structures and are blocked to reach peak performance. 
Unfortunately, rpromu and racc0mu access their relevant 
input and output data through an index table (gather/scatter), 
and that could be a contributing factor for the higher 
bandwidth demand on these two routines. 

 
 
Figure 9. The thread scaling of the MPI/OpenMP VASP code with the 
test case PdO@Pd-slab.  These are the fixed core (16 cores) tests 
running on one of the sockets on an Intel dual-socket Haswell node 
(Xeon processor E5-2697 v3 at 2.6 GHz) at the University of Vienna. 
The horizontal axis shows the number of MPI tasks and the OpenMP 
threads per tasks, and the vertical axis shows the total run time of the 
code (blue) and the run time breakdown for the top subroutines in the 
code. All run times were from the VASP internal profiler (compile 
VASP with the –DPROFILER preprocessor option to enable the 
internal profiler).  

 

 
 
Figure 8. The simulated HBM performance impact to the VASP hybrid 
functional (HSE06) calculations on Edison. The production code 
VASP 5.3.5 (pure MPI code) was used. The tests were run with 4 
Edison nodes, and had 48 tasks in total. The horizontal axis shows the 
size range of the arrays that were allocated to the HBM using the 
AutoHBW library tool, and the vertical axis shows the total run time of 
the VASP code. The leftmost bar (All DDR) shows the total run time 
when everything is allocated to the DDR memory (the far socket 
memory), and the rightmost bar (All HBM) shows the run time when 
everything is allocated to the HBM (the near socket memory). The test 
case used was the system containing 105 Boron atoms (B.HR105-s). 
 



The run time comparison between running on two 
different clock-speeds (Fig. 11) showed that the most of the 
subroutines were likely CPU bound as well. However, the 
two real-space projection routines, rpromu and 
racc0mu, hardly benefited from the increased clock-speed 
(the bars in the blue box), indicating that they are firmly 
memory bandwidth bound (See Fig. 10 as well). This 
suggests that the two routines would likely get the most 
performance benefit from allocation to the HBM.  

C. Allocating arrays in HBM using the Memkind library 
and the FASTMEM Intel compiler directive  
Based on the analysis in the previous subsection, we 

decided to allocate the largest arrays in the real-space 
projection routines RACC0MU and RPROMU in the HBM. 
Since the code is written in Fortran 90, we must add the 
Intel compiler directive FASTMEM in front of the arrays 

that will be allocated out of the HBM. Adding the 
FASTMEM directive to the code was straightforward if the 
arrays to be allocated in the HBM are allocatable (heap 
variables). For example, in the code example below (Fig. 
12, upper panel), the only change needed to allocate the 
arrays WORK, TMP, and CPROJ to the HBM was to add a 
line, !DIR$ ATTRIBUTES FASTMEM :: WORK,TMP,CPROJ, in 
the code. See the lower panel in Fig. 12 for the changed 
code. Note the code snippets hereafter were based on the 
real code in VASP but were slightly modified for simplicity. 

However, allocating the arrays associated with the array 
pointers was not straightforward. Intel compiler does not 
support the FASTMEM directive for the array pointers. For 
example, in the following code example (Fig. 13, upper 
panel), to allocate the arrays pointed by the three array 
pointers, NLI, RPROJ, and CRREXP to the HBM, we had 
to introduce three allocatable work arrays, fm_NLI, 
fm_RPROJ and fm_CRREXP, allocate them to the HBM by 
adding the !DIR$ ATTRIBUTES FASTMEM directive in 
front of them, and then associate the array pointers to these 
work arrays, respectively. See the lower panel in Fig. 13 for 
the changed code.  

After the FASTMEM directive was added to the code, 
it was compiled and run on Edison. Fig. 14 (upper panel) 
shows the comparison between the total run time when 
everything was allocated in the DDR memory (blue:All 
DDR), when only a few selected arrays were allocated to the 
HBM (red:Mixed), and when all arrays were allocated to the 

 
 
Figure 10. The VASP run time breakdown over the top subroutines 
when running on the fully packed (blue) and half-packed (red) nodes. 
The tests were done on an Intel Xeon E5-2697 v3 node and used the 
test case PdO@Pd-slab. When running on half packed nodes, the 
memory bandwidth available for each task is twice as much as it is 
when running on fully packed nodes. This experiment was designed to 
test if an application code is bandwidth bound. 

 

SUBROUTINE RACC0MU(NONLR_S, WDES1, 
CPROJ_LOC, CRACC, LD, NSIM, LDO) 
... 
REAL(qn),ALLOCATABLE:: WORK(:),TMP(:,:) 
GDEF,ALLOCATABLE    :: CPROJ(:,:) 
... 
ALLOCATE(WORK(ndata*NSIM*NONLR_S%IRMAX),TMP
(NLM,ndata*2*NSIM),CPROJ(WDES1%NPRO_TOT,NSIM)) 
... 
END SUBROUTINE RACC0MU 
 

SUBROUTINE RACC0MU(NONLR_S, WDES1, 
CPROJ_LOC, CRACC, LD, NSIM, LDO) 
... 
REAL(qn),ALLOCATABLE:: WORK(:),TMP(:,:) 
GDEF,ALLOCATABLE    :: CPROJ(:,:) 
 
!To allocate WORK,TMP, CPROJ to HBM 
!DIR$ ATTRIBUTES FASTMEM :: WORK,TMP,CPROJ 
... 
ALLOCATE(WORK(ndata*NSIM*NONLR_S%IRMAX),TMP
(NLM,ndata*2*NSIM),CPROJ(WDES1%NPRO_TOT,NSIM)) 
... 
END SUBROUTINE RACC0MU 
 

Figure 12. The upper panel shows the original code before adding the 
FASTMEM directive; the lower panel shows the code after adding the 
FASTMEM directive. 

 
 
Figure 11. The VASP run time breakdown over the top subroutines 
when running at the clock speeds of 2.5 GHz, and 1.9 GHz on an Intel 
Xeon E5-2697 v3 node. The test case used was PdO@Pd-slab, and this 
experiment was designed to test if the code is CPU bound. 



HBM (green:All HBM). About 9% of speedup in the total 
run time was achieved when a few selected arrays were 
allocated to the HBM in comparison to when everything 
was allocated in the DDR memory, while about 14% of 
speedup was achieved when allocating everything out of the 
HBM. Further looks into the run time breakdown of the two 
real space projection routines (middle and lower panels) 
revealed that allocating only a few selected arrays in the 
HBM (red:Mixed) achieved the same level of speedup as 
allocating everything to the HBM (23-26%). In fact as one 
can see from the lower panel (RPROMU) results, allocating 
only a few selected arrays to the HBM (Mixed runs, red 
bars) outperforms allocating everything in the HBM (green 
bars). (Note this is a reproducible result, not due to the run 

time variation). This should be related to the increased 
memory bandwidth from using both sockets on the node for 
the Mixed runs while the All DDR and All HBM runs used 
the memory from a single socket only on the dual-socket 
Edison node. This test case (PdO@Pd-slab) had a modest 
memory bandwidth usage. One could expect a further 
performance boost for the systems with higher memory 
bandwidth need. Given the fact that the HBM on a KNL 

 
 

 
 

 
 
Figure 14. VASP performance comparison when everything was 
allocated in the DDR memory (blue: All DDR), when only a few 
selected arrays were allocated in the HBM (red: Mixed), and when 
everything was allocated to the HBM (green: All HBM). The upper 
panel shows the comparison of the total run time. The middle and 
lower panels show the run time of the real space projection routines, 
RACC0MU, and RPROMU, and the top two subroutines, respectively. 
The tests were run on a single socket on an Edison node with two MPI 
tasks and six threads per task. Al time shown here were from the 
VASP internal profiler. 

INTEGER, POINTER :: NLI (:,:) ! index for gridpoints 
REAL(qn),POINTER, CONTIGUOUS :: RPROJ (:) ! projectors 
on real space grid 
COMPLEX(q),POINTER, CONTIGUOUS::CRREXP(:,:,:) ! 
phase factor exp (i k (R(ion)-r(grid))) 
 
... 
 
ALLOCATE(NONLR_S%NLI(IRMAX,NIONS),NONLR_S%R
PROJ(NONLR_S%IRALLOC)) 
ALLOCATE(NONLR_S%CRREXP(IRMAX,NIONS,1)) 
 

INTEGER, POINTER :: NLI (:,:) ! index for gridpoints 
REAL(qn),POINTER, CONTIGUOUS :: RPROJ (:) ! projectors 
on real space grid 
COMPLEX(q),POINTER, CONTIGUOUS::CRREXP(:,:,:) ! 
phase factor exp (i k (R(ion)-r(grid))) 
 
! To exploit fastmem, introduce extra allocatable work arrays 
INTEGER, ALLOCATABLE :: fm_NLI (:,:) ! index for 
gridpoints 
REAL(qn), ALLOCATABLE :: fm_RPROJ (:) ! projectors on 
real space grid 
COMPLEX(q), ALLOCATABLE :: fm_CRREXP(:,:,:) ! 
phase factor exp (i k (R(ion)-r(grid))) 
 
!add FASTMEM directive 
!DIR$ ATTRIBUTES FASTMEM :: 
fm_RPROJ,fm_CRREXP,fm_NLI 
 
... 
 
! allocate work arrays to HBM 
ALLOCATE(NONLR_S%fm_NLI(IRMAX,NIONS),NONL
R_S%fm_RPROJ(NONLR_S%IRALLOC)) 
ALLOCATE(NONLR_S%fm_CRREXP(IRMAX,NIONS,1)) 
 
!associate arrays pointers to the work arrays 
NONLR_S%NLI =>NONLR_S%fm_NLI 
NONLR_S%RPROJ=>NONLR_S%fm_RPROJ 
NONLR_S%CRREXP=>NONLR_S%fm_CRREXP 
 

Figure 13. The upper panel shows the original code before adding the 
FASTMEM directive; the lower panel shows the code after adding the 
FASTMEM directive. In this code snippet, the arrays associated to the 
array pointers, NLI, RPROJ, and CRREXP, will be allocated to the 
HBM. 

 



node has a bandwidth five times the size of the DDR 
memory, one could expect a larger performance boost from 
utilizing the HBM on KNL for the systems that have high 
memory bandwidth usage.  To achieve a level of speedup of 
allocating everything in HBM (green bars) the VTune 
memory access analysis could be used to identify the arrays 
that generate most memory traffic, and allocate them to the 
HBM. After the Dungeon Session, the developers 
(Marsman) have added the FASTMEM directive to the rest 
of the codes. As far as the HBM is concerned, VASP code is 
ready to exploit KNL.  

Note that the Memkind (also AutoHBW) library is not 
capable of allocating the stack arrays to the HBM, such as 
the automatic arrays in Fortran and the OpenMP private 
arrays. Therefore one has to change them to the allocatable 
arrays prior to place them to the HBM. However, changing 
arrays that are placed in the stack to the heap so to use the 
HBM may slowdown the memory accessing speed 
significantly in some cases. These are the limitations of the 
Memkind and AutoHBW methods (and Intel compilers) 
currently. Hopefully, Intel could address these issues in the 
near future.  

V. CONCLUSIONS AND FUTURE WORK 
We simulated and analyzed the performance impact of 

the HBM (MCDRAM), which will be available on the 
future KNL architecture, on the VASP code, a commonly 
used materials science code, using the Memkind and 
AutoHBW tools and using the dual-socket Ivy Bridge nodes 
as the HBM proxy on KNL. With only 33% difference in 
bandwidths between the emulated HBM (near socket 
memory) and the DDR (far socket memory), we have 
observed up to 40% performance boost when using the 
HBM.  Our analyses show that the HBM on KNL may have 
a significant performance benefit to applications. Identifying 
an application is memory bound or CPU bound is the first 
step to the HBM optimizations. The run time comparison 
between running an application on the fully and half packed 
nodes could be used to tell roughly if an application is 
memory bound or not. Selectively allocating arrays on the 
HBM is a key optimization tactic to use the small amount of 
the available HBM efficiently on KNL nodes. The VTune 
memory-access analysis is useful to identify the candidate 
arrays for HBM. Once the candidate arrays are identified, 
using Intel compiler directive, FASTMEM, or using 
Memkind APIs, one can selectively allocate those arrays to 
the HBM. For the application end users who rarely change 
the source codes, the AutoHBW tool could be used to 
achieve the optimal use of the HBM conveniently. Early 
adoption of the Memkind and AutoHBW tools is key to get 

applications ready for KNL as far as the HBM is concerned. 
Using Edison Ivy Bridge nodes as the HBM proxy to 

estimate the HBM performance is not an exact analogy to 
the HBM on KNL, however, the approach used in this study 
will be applicable for KNL without modifications. Using 
Memkind to do the HBM optimizations still have some 
limitations and optimization portability concerns. 
Applications developers and end users rely on Intel and 
other compiler vendors to mitigate and/or resolve these 
issues in the near future.  

ACKNOWLEDGEMENT 
The work presented in this paper was based on the 

VASP Dungeon Session held in Oct. 2015. Many Intel 
engineers and NERSC staff provided valuable insights for 
this work. Authors would like to thank Jeongnim Kim, 
Martyn Corden, Christopher Cantalupo, Sumedh Naik, 
Gregory Junker, Ruchira Sasanka and other engineers at 
Intel, and also Jack Deslippe at NERSC. This work was 
supported by the ASCAR Office in the DOE, Office of 
Science, under contract number DE-AC02-05CH11231. It 
used the resources of National Energy Scientific Computing 
Center (NERSC) and the computing resource at University 
of Vienna. 

REFERENCES 
 

[1] https://www.nersc.gov/assets/Uploads/Preparing-Software-for-KNL-
ISC15-IXPUG-Keynote.pdf 

[2] http://www.nersc.gov/users/computational-systems/cori/ 
[3] http://portal.nersc.gov/project/mpccc/baustin/NERSC_2014_Workloa

d_Analysis_30Oct2015.pdf 
[4] http://www.nersc.gov/nesap 
[5] http://memkind.github.io/memkind 
[6] http://memkind.github.io/memkind/examples/autohbw_README 
[7] http://www.vasp.at/ 
[8] G. Kresse and J. Furthm_ller. Efficiency of ab-initio total energy 

calculations for metals and semiconductors using a plane-wave basis 
set. Comput. Mat. Sci., 6:15, 1996 

[9] http://www.nersc.gov/users/computational-systems/edison/ 
[10] https://github.com/jemalloc/ 
[11] Luis DeRose, “The Cray Programming Environment: Current Status 

and Future Directions”, 2016 Cray User Group Meeting, 5-8-12, 
2016, England UK.  

[12] http://www.nersc.gov/users/computational-systems/edison/cluster-
compatibility-mode/ 

[13] http://www.nersc.gov/users/computational-systems/cori/application-
porting-and-performance/using-high-performance-libraries-and-tools 

[14] http://www.nersc.gov/users/computational-systems/cori/application-
porting-and-performance/dungeon-session-worksheet/ 

 


