

VASP: DFT and Beyond

Martijn Marsman, and Georg Kresse

Computational Materials Physics, Faculty of Physics, University Vienna,
Vienna, Austria

Theory and Computation for Interface Science and Catalysis,
3-7th November 2014, Brookhaven National Laboratories, USA

Zhengji Zhao1) and Martijn Marsman2)
1) NERSC User Engagement Group
2) University of Vienna

Estimating
Performance
Impact of MCDRAM
on KNL Using Dual-
Socket Ivy Bridge
Nodes on Cray XC30

Cray User Group Meeting,
March 8-12, 2016, London UK

Acknowledgement:

Jeongnim Kim, Martyn Corden, Christopher
Cantalupo, Sumedh Naik, other engineers
at Intel, Inc and Jack Deslippe at NERSC
who helped during the VASP “Dungeon
session” in Oct, 2015 at Intel Offices in
Hillsboro, OA.

VASP: DFT and Beyond

Martijn Marsman, and Georg Kresse

Computational Materials Physics, Faculty of Physics, University Vienna,
Vienna, Austria

Theory and Computation for Interface Science and Catalysis,
3-7th November 2014, Brookhaven National Laboratories, USA

Outline

•  Mo#va#on		
•  How	to	es#mate	MCDRAM	(or	HBM)	performance	on	
exis#ng	Xeon	nodes	

•  Applica#on	to	VASP	
•  Conclusions	

VASP: DFT and Beyond

Martijn Marsman, and Georg Kresse

Computational Materials Physics, Faculty of Physics, University Vienna,
Vienna, Austria

Theory and Computation for Interface Science and Catalysis,
3-7th November 2014, Brookhaven National Laboratories, USA

0.0	

2.0	

4.0	

6.0	

8.0	

10.0	

12.0	

TF/node	 Clock	Speed	 Cores/socket	 Threads/socket	 Sockets/node	 Cores/node	 Threads/node	 Vector	units	 Memory	BW/
node	

Memory	
capacity/node	

System	
Memory	

#	of	nodes	 Disk	I/O	
bandwidth	

I/O	bandwidth	
(w/	BB)	

Disk	Capacity	

Ra
Mo

	C
or
i	P
2	
to
	E
di
so
n	

Cori	P2,	a	Cray	XC40	based	on	Intel	KNL	processors,		compared	to	Edison,	a	Cray	XC30	based	on	
Intel	Ivy	Bridge	processors		

Efficient use of HBM is important to get
optimal application performance on Cori P2

-	3	-	
Cori: http://www.nersc.gov/users/computational-systems/cori/cori-phase-ii/
Edison: http://www.nersc.gov/users/computational-systems/edison/

Cori’s KNL nodes will have 16 GB MCDRAM (HBM) with ~ 5x DDR4 bandwidth

VASP: DFT and Beyond

Martijn Marsman, and Georg Kresse

Computational Materials Physics, Faculty of Physics, University Vienna,
Vienna, Austria

Theory and Computation for Interface Science and Catalysis,
3-7th November 2014, Brookhaven National Laboratories, USA

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

0	 8	 16	 24	 32	 40	 48	 56	 64	

Cu
m
ul
a/

ve
	d
is
tr
ib
u/

on
	o
f	c
or
e	
ho

ur
s	
(%

)	

Memory	per	node	(GB)	

Hopper	

Edison	

•  Hopper	has	32	GB	nodes,	
Edison	has	64	GB	nodes	

•  8%	of	Edison	workload	uses	
more	than	80%	of	available	
memory	per	node.	

•  16%	of	the	Edison	workload	
would	not	run	on	Hopper’s	
32	GB	nodes.*		

•  71%	of	Edison	workload	will	
fit	into	Cori’s	fast	memory	
(16	GB).	

Users are taking advantage of Edison’s
increased memory per node.

-	26	-	

*Assuming	MPI+X	concurrency	does	
not	change.	

-	4	-	Slide from http://portal.nersc.gov/project/mpccc/baustin/
NERSC_2014_Workload_Analysis_30Oct2015.pdf

Memory utilization of NERSC workload in
allocation year 2014

71% of Edison
workload used less
than 16GB memory
per node. However,
considering more
cores on the KNL
node, we estimate
about half of the
Edison workload will
not fit into the 16GB
HBM (if no changes).

VASP: DFT and Beyond

Martijn Marsman, and Georg Kresse

Computational Materials Physics, Faculty of Physics, University Vienna,
Vienna, Austria

Theory and Computation for Interface Science and Catalysis,
3-7th November 2014, Brookhaven National Laboratories, USA

Dual Socket Xeon nodes can serve as proxies
for HBM on KNL nodes

-	5	-	

• Accessing memory on the remote socket via the QPI bus is
slower compared to accessing the near socket memory.

• The near socket memory can mimic the HBM on KNL; while the
remote socket memory can mimic the DDR memory.

• This is not an accurate model of the bandwidth and latency
characteristics of the KNL on package memory (MCDRAM, or
HBM) but is a reasonable way to determine which data
structures rely critically on bandwidth.

Edison Compute Node Diagram (Ivy Bridge
processors)

Bandwidth via QPI is 33% lower

VASP: DFT and Beyond

Martijn Marsman, and Georg Kresse

Computational Materials Physics, Faculty of Physics, University Vienna,
Vienna, Austria

Theory and Computation for Interface Science and Catalysis,
3-7th November 2014, Brookhaven National Laboratories, USA

Memkind library is an Intel development tool
to allocate arrays in HBM

• The	Memkind	library	is	a	user	extensible	heap	manager	built	
on	top	of	Jemalloc	which	enables	control	of	memory	
characteris#cs	and	a	par##oning	of	the	heap	between	kinds	
of	memory	(including	user	defined	kinds	of	memory).			

• Using	the	Intel	compiler	direc#ve,	!DIR$	ATTRIBUTES	
FASTMEM,	for	Fortran	codes,	and/or	using	the	malloc	
wrapper	APIs,	hbw_malloc,	for	C/C++	codes,	one	can	
allocate	selected	arrays	to	HBM	on	KNL	by	linking	the	
applica#on	codes	to	the	Memkind	library.		

• On	today’s	Xeon	nodes,	Memkind	can	be	used	to	simulate/
es#mate	the	HBM	performance	impact	on	the	applica#on	
codes	

h'p://memkind.github.io/memkind	

VASP: DFT and Beyond

Martijn Marsman, and Georg Kresse

Computational Materials Physics, Faculty of Physics, University Vienna,
Vienna, Austria

Theory and Computation for Interface Science and Catalysis,
3-7th November 2014, Brookhaven National Laboratories, USA

Code changes are required to use Memkind
to selectively allocate arrays in HBM

•  Add	compiler	direc#ve	!DIR$	ATTRIBUTES	FASTMEM	in	
the	Fortran	codes	
–  real,	allocatable	::	a(:,:),	b(:,:),	c(:)	
–  !DIR$	ATTRIBUTES	FASTMEM	::	a,	b,	c	

•  Use	hbw_malloc,	hbw_calloc	to	replace	the	malloc,	
calloc	calls	in	the	C/C++	codes	
–  #include	<hbwmalloc.h>	
–  malloc(size)	->	hbw_malloc(size)	

•  Link	the	codes	to	the	memkind	and	jemalloc	libraries	
using	Intel	compilers	
–  mpiifort	–dynamic	-O3	-openmp	mycode.f90		-L<path-to-mekind-
library>		–lmemkind	–ljemalloc	 		

-	7	-	

VASP: DFT and Beyond

Martijn Marsman, and Georg Kresse

Computational Materials Physics, Faculty of Physics, University Vienna,
Vienna, Austria

Theory and Computation for Interface Science and Catalysis,
3-7th November 2014, Brookhaven National Laboratories, USA

On today’s Xeon nodes (proxies for KNL) an environment variable,
MEMKIND_HBW_NODES, is needed to designate a socket for HBM

•  Run	the	codes	with	the	numactl	and	
env	MEMKIND_HBW_NODES	
–  export	MEMKIND_HBW_NODES=0		
–  numactl	--membind=1	--cpunodebind=0	./a.out	

•  Notes:	
– Memkind	can	only	allocate	heap	variables	to	the	HBM.	
There	is	no	way	to	allocate	stack	variables	to	HBM	currently.	

–  The	FASTMEM	direccve	may	be	supported	by	other	
compilers	in	the	future,	e.g.,	Cray,	but	may	be	slightly	
different	from	the	Intel	FASTMEM	direccve.	

–  Srun	can	be	used	for	parallel	jobs	

-	8	-	

VASP: DFT and Beyond

Martijn Marsman, and Georg Kresse

Computational Materials Physics, Faculty of Physics, University Vienna,
Vienna, Austria

Theory and Computation for Interface Science and Catalysis,
3-7th November 2014, Brookhaven National Laboratories, USA

AutoHBW tool is another Intel development tool to
allocate arrays in HBM without code changes

•  AutoHBW	Tool	–	automa#cally	allocate	the	arrays	in	certain	
size	range	to	the	HBM	at	run	#me.		

•  AutoHBW	intercepts	the	standard	heap	alloca#ons	(e.g.,	
malloc,	calloc)	and	allocate	them	out	of	HBM	using	the	
memkind	API.	

•  No	code	change	is	required	
•  Included	in	the	memkind	distribu#on:	

h'p://memkind.github.io/memkind	
Reference:		examples/autohbw_README	

	

VASP: DFT and Beyond

Martijn Marsman, and Georg Kresse

Computational Materials Physics, Faculty of Physics, University Vienna,
Vienna, Austria

Theory and Computation for Interface Science and Catalysis,
3-7th November 2014, Brookhaven National Laboratories, USA

AutoHBW tool uses the environment variables
to control its behavior

•  AUTO_HBW_SIZE=x[:y]	
–  Indicates	that	any	allocacon	larger	than	x	and	smaller	than	y	
should	be	allocated	in	HBM.	x,y	(in	K,	M,	or	G)		

–  AUTO_HBW_SIZE=1M:5M		#	allocacons	between	1M	and	5M	
allocated	in	HBM	

•  AUTO_HBW_LOG=level		
–  	Sets	the	verbosity	of	the	logging	level:	

				0	=	no	messages	are	printed	for	allocacons		
				1	=	a	log	message	is	printed	for	each	allocacon	(Default)	
				2	=	a	log	message	is	printed	for	each	allocacon	with	a	backtrace.	

–  Using	the	autohbw_get_src_lines.pl	script	to	find	source	lines	
for	each	allocacon.	

–  Logging	adds	extra	overhead.	Use	0	for	performance	criccal	runs	

-	10	-	

VASP: DFT and Beyond

Martijn Marsman, and Georg Kresse

Computational Materials Physics, Faculty of Physics, University Vienna,
Vienna, Austria

Theory and Computation for Interface Science and Catalysis,
3-7th November 2014, Brookhaven National Laboratories, USA

Application codes need to link to the autohbw
and memkind libraries

•  MEMKIND_HBW_NODES=<list	of	numa	nodes>	
–  Sets	a	comma	separated	list	of	NUMA	nodes	as	HBW	nodes,	e.g.,	

MEMKIND_HBW_NODES=0	
–  For	non-KNL	node	this	env	must	be	set	

•  AUTO_HBW_MEM_TYPE=<memory_type>	
–  Sets	the	type	of	memory	that	should	be	automaccally	allocated.	

Default:	MEMKIND_HBW.		
–  Examples:	

				AUTO_HBW_MEM_TYPE=MEMKIND_HBW																						(Default)	
				AUTO_HBW_MEM_TYPE=MEMKIND_HBW_HUGETLB	
				AUTO_HBW_MEM_TYPE=MEMKIND_HUGETLB	

•  Link	the	codes	to	the	autohbw,	memkind	and	jemalloc	
libraries	
–  mpiifort	-O3	-openmp	mycode.f90	mycode.f90		-L<path-to-memkind-

library>		-lautohbw	–lmemkind	–ljemalloc		

-	11	-	

VASP: DFT and Beyond

Martijn Marsman, and Georg Kresse

Computational Materials Physics, Faculty of Physics, University Vienna,
Vienna, Austria

Theory and Computation for Interface Science and Catalysis,
3-7th November 2014, Brookhaven National Laboratories, USA

The autohbw libraries may need to be preloaded to make sure the
malloc commands in applications get intercepted by AutoHBW.

•  Run	the	codes	with	the	numactl	and	proper	environment	variables	
–  export	MEMKIND_HBW_NODES=0	
–  export	AUTO_HBW_LOG=0	
–  export	AUTO_HBW_MEM_TYPE=MEMKIND_HBW	
–  export	AUTO_HBW_SIZE=1K:5K					#	all	allocacons	between	sizes	1K	and	5K	

allocated	in	HBM	
–  Export	LD_LIBRARY_PATH=<path-to-memkind-library>:${LD_LIBRARY_PATH}	
–  numactl	--membind=1	--cpunodebind=0	./a.out		

•  Make	sure	the	malloc	calls	intercepted	by	the	autohbw	library	APIs:	
–  For	dynamic	builds,	using	LD_PRELOAD	or	LD_LIBRARY_PATH	to	allow	

libautohbw.so:libmemkind.so	in	front	of	the	system	default	path.	
–  For	stacc	builds,	make	the	autohbw	and	memkind	libraries	in	front	of	the	

link	line.	May	use	-Wl,-ymalloc	to	confirm	
•  Use	the	numastat	–p	<pid>	command	to	displays	the	memory	

alloca#ons	among	sockets	for	a	running	process	

-	12	-	

VASP: DFT and Beyond

Martijn Marsman, and Georg Kresse

Computational Materials Physics, Faculty of Physics, University Vienna,
Vienna, Austria

Theory and Computation for Interface Science and Catalysis,
3-7th November 2014, Brookhaven National Laboratories, USA

Memkind and AutoHBW applications in VASP

•  The	Vienna	Ab-ini#o	Simula#on	Package	(VASP)	is	a	widely	
used	materials	science	applica#on.		
–  Rank	#1	code	at	NERSC,	uses	about	10-12%	of	total	compucng	cycles	

at	NERSC	each	year	

•  The	fundamental	mathema#cal	problem	that	VASP	solves	is	
a	non-linear	eigenvalue	problem	that	has	to	be	solved	
itera#vely	via	self-consistent	itera#on	cycles	un#l	a	desired	
accuracy	is	achieved.	FFTs	and	Linear	Algebra	libraries	
(BLAS/LAPACK/ScaLAPACK)	are	heavily	depended	on.		

•  Fortran	code	with	MPI	or	MPI	+	OpenMP	

-	13	-	

VASP: http://www.vasp.at/
VASP: G. Kresse and J. Furthm_ller. Efficiency of ab-initio total energy calculations for
metals and semiconductors using a plane-wave basis set. Comput. Mat. Sci., 6:15, 1996

VASP: DFT and Beyond

Martijn Marsman, and Georg Kresse

Computational Materials Physics, Faculty of Physics, University Vienna,
Vienna, Austria

Theory and Computation for Interface Science and Catalysis,
3-7th November 2014, Brookhaven National Laboratories, USA

VASP versions used and test cases

-	14	-	

Test case 2: PdO@Pd-slab

•  Two	different	versions	of	VASP	were	used	in	this	study	
–  Currently	released,	version	5.3.5,	a	pure	MPI	code	
–  A	development	version	(as	of	9/29/2015),	a	MPI	+	OpenMP	hybrid	
–  Compiled	with	Intel	compilers	and	used	MKL	/	ELPA	libraries		

Test case 1: B.hR105-s

VASP: DFT and Beyond

Martijn Marsman, and Georg Kresse

Computational Materials Physics, Faculty of Physics, University Vienna,
Vienna, Austria

Theory and Computation for Interface Science and Catalysis,
3-7th November 2014, Brookhaven National Laboratories, USA

Estimating the performance impact of HBM on VASP
code using AutoHBW tool on Edison

-	15	-	

0"

100"

200"

300"

400"

500"

600"

700"

800"

All"DDR" >5M" >2M" 1M:5M" >1M" 1K" All"HBM"

Ru
n$
%m

e$
(s
)$

Array$sizes$ontheHBM$

Es%ma%ngHBMImpacttoVASP$Code$PerformanceonEdison$$

VASP5.3.5$VASP 5.3.5 VASP run time for the
hybrid functional
calculation (HSE06) when
arrays in different size
range were allocated to
the HBM.
The bandwidths of the
near socket memory
(simulating MCDRAM)
and the far socket memory
via QPI (simulating DDR)
differ by 33%

•  VASP performs significantly better (40%) when arrays within 1M to
5M were allocated to HBM.

•  Expect to have a larger performance benefit from HBM on KNL
•  Application End users may use HBM more efficiently using

AutoHBW.

VASP: DFT and Beyond

Martijn Marsman, and Georg Kresse

Computational Materials Physics, Faculty of Physics, University Vienna,
Vienna, Austria

Theory and Computation for Interface Science and Catalysis,
3-7th November 2014, Brookhaven National Laboratories, USA

Using Memkind to selectively allocate arrays
to HBM

•  Profiling			
•  Iden#fy	the	candidate	rou#nes	and	memory	objects	
that	may	get	benefit	from	using	the	HBM	

•  Add	the	Intel	compiler	direc#ve,	FASTMEM,	to	the	
code	

•  Linking	the	code	with	the	memkind	library	
•  Run	with	numactl	on	the	KNL	proxy,	the	Ivy	Bridge	
Edison	compute	node	

-	16	-	

VASP: DFT and Beyond

Martijn Marsman, and Georg Kresse

Computational Materials Physics, Faculty of Physics, University Vienna,
Vienna, Austria

Theory and Computation for Interface Science and Catalysis,
3-7th November 2014, Brookhaven National Laboratories, USA

VASP heavily depends on the math libraries

-	17	-	

The thread scaling of the
MP I /OpenMP VASP
code with the test case
PdO@Pd-slab. These
are the fixed core (16
cores) tests running on
one of the sockets on an
Intel dual-socket Haswell
node (Xeon E5-2697 v3
2 . 6 G H z) a t t h e
University of Vienna.

•  Top routines, eddiag, eddrmm, fft*, lincom and orht1, all depend
heavily on the math libraries used.

•  The real space projection routines, rpromu and racc0mu, could be
good candidate hotspots for HBM optimization

VASP: DFT and Beyond

Martijn Marsman, and Georg Kresse

Computational Materials Physics, Faculty of Physics, University Vienna,
Vienna, Austria

Theory and Computation for Interface Science and Catalysis,
3-7th November 2014, Brookhaven National Laboratories, USA

Is VASP memory bandwidth bound?

-	18	-	

T h e V A S P r u n t i m e
breakdown over the top
subroutines when running
on the fully packed (blue)
and hal f -packed (red)
nodes. The tests were done
on an Intel Xeon E5-2697
v3 node and used the test
case PdO@Pd-slab. When
running on half packed
n o d e s , t h e m e m o r y
bandwidth available for
each task is twice as much
as it is when running on
fully packed nodes.

•  Several top subroutines ran faster when running on the
unpacked nodes, especially rpromu, and racc0mu, indicating
they might be bandwidth bound.

VASP: DFT and Beyond

Martijn Marsman, and Georg Kresse

Computational Materials Physics, Faculty of Physics, University Vienna,
Vienna, Austria

Theory and Computation for Interface Science and Catalysis,
3-7th November 2014, Brookhaven National Laboratories, USA

Is VASP compute bound?

-	19	-	

The VASP run t ime
breakdown over the top
s u b r o u t i n e s w h e n
running at the clock
speeds of 2.5 GHz, and
1.9 GHz on an Intel Xeon
E5-2697 v3 node. The
test case used was
PdO@Pd-slab, and this
experiment was designed
to test if the code is CPU
bound.

•  Several top subroutines ran slower when the clock speed was
decreased, indicating they were likely CPU bound. Relatively
rpromu and racc0mu were affected less by the clock speed change.

•  Two real space projection routines, rpromu and racc0mu were
likely memory bandwidth bound.

VASP: DFT and Beyond

Martijn Marsman, and Georg Kresse

Computational Materials Physics, Faculty of Physics, University Vienna,
Vienna, Austria

Theory and Computation for Interface Science and Catalysis,
3-7th November 2014, Brookhaven National Laboratories, USA

Allocating arrays in subroutine racc0mu in HBM using the Memkind
library and the FASTMEM Intel compiler directive

-	20	-	

 SUBROUTINE RACC0MU(NONLR_S, WDES1, CPROJ_LOC, CRACC, LD, NSIM, LDO)
...
 REAL(qn),ALLOCATABLE:: WORK(:),TMP(:,:)
 GDEF,ALLOCATABLE :: CPROJ(:,:)

...
 ALLOCATE(WORK(ndata*NSIM*NONLR_S
%IRMAX),TMP(NLM,ndata*2*NSIM),CPROJ(WDES1%NPRO_TOT,NSIM))
...
 END SUBROUTINE RACC0MU

The only change needed to allocate the arrays WORK, TMP, and CPROJ to
the HBM was adding !DIR$ ATTRIBUTES FASTMEM :: WORK,TMP,CPROJ

Simple cases

 !DIR$ ATTRIBUTES FASTMEM :: WORK,TMP,CPROJ

VASP: DFT and Beyond

Martijn Marsman, and Georg Kresse

Computational Materials Physics, Faculty of Physics, University Vienna,
Vienna, Austria

Theory and Computation for Interface Science and Catalysis,
3-7th November 2014, Brookhaven National Laboratories, USA

The FASTMEM directive does not work directly with
the Fortran array pointers.

-	21	-	

INTEGER, POINTER :: NLI (:,:) ! index for gridpoints
REAL(qn),POINTER, CONTIGUOUS :: RPROJ (:) ! projectors on real space grid
COMPLEX(q),POINTER, CONTIGUOUS::CRREXP(:,:,:) ! phase factor exp (i k (R(ion)-
r(grid)))

...

ALLOCATE(NONLR_S%NLI(IRMAX,NIONS),NONLR_S%RPROJ(NONLR_S%IRALLOC))
ALLOCATE(NONLR_S%CRREXP(IRMAX,NIONS,1))

•  To	allocate	array	pointers	NLI,	RPROJ	and	CRREXP	to	HBM,	
–  Need	to	introduce	intermediate	allocatable	arrays.	
–  Allocate	the	intermediate	arrays	in	HBM	
–  Associate	the	array	pointers	to	these	intermediate	arrays	in	HBM	

VASP: DFT and Beyond

Martijn Marsman, and Georg Kresse

Computational Materials Physics, Faculty of Physics, University Vienna,
Vienna, Austria

Theory and Computation for Interface Science and Catalysis,
3-7th November 2014, Brookhaven National Laboratories, USA

FASTMEM: Working with Fortran array pointers

-	22	-	

INTEGER, POINTER :: NLI (:,:) ! index for gridpoints
REAL(qn),POINTER, CONTIGUOUS :: RPROJ (:) ! projectors on real space grid
COMPLEX(q),POINTER, CONTIGUOUS::CRREXP(:,:,:) ! phase factor exp (i k (R(ion)-
r(grid)))

! To exploit fastmem
INTEGER, ALLOCATABLE :: fm_NLI (:,:) ! index for gridpoints
REAL(qn), ALLOCATABLE :: fm_RPROJ (:) ! projectors on real space grid
COMPLEX(q), ALLOCATABLE :: fm_CRREXP(:,:,:) ! phase factor exp (i k (R(ion)-
r(grid)))

!DIR$ ATTRIBUTES FASTMEM :: fm_RPROJ,fm_CRREXP,fm_NL

...

! put NLI and RPROJ into fastmem
ALLOCATE(NONLR_S%fm_NLI(IRMAX,NIONS),NONLR_S%fm_RPROJ(NONLR_S
%IRALLOC))
NONLR_S%NLI =>NONLR_S%fm_NLI
NONLR_S%RPROJ=>NONLR_S%fm_RPROJ

ALLOCATE(NONLR_S%fm_CRREXP(IRMAX,NIONS,1))
NONLR_S%CRREXP=>NONLR_S%fm_CRREXP

VASP: DFT and Beyond

Martijn Marsman, and Georg Kresse

Computational Materials Physics, Faculty of Physics, University Vienna,
Vienna, Austria

Theory and Computation for Interface Science and Catalysis,
3-7th November 2014, Brookhaven National Laboratories, USA

VASP performance when a few selected arrays were
allocated in HBM using FASTMEM+Memkind

-	23	-	

VASP performance
comparison between
runs when everything
was allocated in the
DDR memory (blue/
slow), when only a few
selected arrays were
allocated to HBM (red/
mixed), and when
everything was allocated
to HBM (green/fast). The
test case PdO@Pd-slab
was used, and the tests
were run on a single
Edison node.

•  About 9% of speedup of total run time was achieved when a few
selected arrays were allocated to HBM in comparison to when
everything was allocated in the DDR memory.

•  14% of speedup when everything was allocate on the HBM
•  This test case had a modest memory bandwidth usage.

170	
175	
180	
185	
190	
195	
200	
205	
210	
215	
220	

All	DDR	 Mixed	 All	HBM	

Ru
n	
#m

e	
(s
)	

DDR	and	HBM	usage		

Es#ma#ng	HBM	performance	Impact	to	VASP	code	on	Edison		

VASP: DFT and Beyond

Martijn Marsman, and Georg Kresse

Computational Materials Physics, Faculty of Physics, University Vienna,
Vienna, Austria

Theory and Computation for Interface Science and Catalysis,
3-7th November 2014, Brookhaven National Laboratories, USA

Allocating a few arrays in RACC0MU to the HBM achieved the
same level of speedup as allocating everything in the HBM

-	24	-	

•  Allocating a few arrays in the real-space projection routine,
RACC0MU, in the HBM (red:Mixed) showed up to 23% of speedup
compared to allocating everything in the DDR memory.

0	

5	

10	

15	

20	

25	

racc0mu	 gemm	 crrexp_mul_work_add		

Ti
m
e	
(s
)	

RACC0MU	and	its	top	subrou#nes	

RACC0MU	

All	DDR	

Mixed	

All	HBM	

VASP: DFT and Beyond

Martijn Marsman, and Georg Kresse

Computational Materials Physics, Faculty of Physics, University Vienna,
Vienna, Austria

Theory and Computation for Interface Science and Catalysis,
3-7th November 2014, Brookhaven National Laboratories, USA

Allocating a few arrays in RPR0MU to the HBM achieved the
same level of speedup as allocating everything in HBM

-	25	-	

•  Allocating a few arrays in the real-space projection routine,
RPROMU, in the HBM (red:Mixed) showed up to 26% of speedup
compared to allocating everything in the DDR memory.

0	

5	

10	

15	

20	

25	

	rpromu		 gemm		 crrexp_mul_wave	

Ti
m
e	
(s
)	

RPROMU	and	its	top	subrou#nes	

RPROMU	

All	DDR	

Mixed	

All	HBM	

VASP: DFT and Beyond

Martijn Marsman, and Georg Kresse

Computational Materials Physics, Faculty of Physics, University Vienna,
Vienna, Austria

Theory and Computation for Interface Science and Catalysis,
3-7th November 2014, Brookhaven National Laboratories, USA

Conclusions
•  HBM	may	have	a	significant	performance	benefit	to	

applica#ons.		
–  Seleccvely	allocacng	arrays	to	HBM	is	a	key	opcmizacon	taccc	
to	use	the	small	amount	of	available	HBM	efficiently	on	KNL	
nodes.		

•  Intel	development	tools	like	Memkind	and	AutoHBW	are	
very	helpful	for	users	and	developers	to	do	HBM	
op#miza#ons	for	KNL	on	today's	architectures.	Early	
adop#on	of	these	tools	is	key	to	produce	the	KNL	ready	
codes.	

•  The	available	tools	such	as	Memkind	and	AutoHBW	are	
only	capable	of	alloca#ng	heap	arrays	in	HBM,	and	there	
is	no	good	way	of	alloca#ng	stack	arrays	to	HBM	so	far.		
–  This	prevents	OpenMP	private	arrays	from	using	HBM.		
–  It	is	also	necessary	to	change	stack	arrays	(where	applicable)	to	
allocatable	arrays	to	use	HBM	

-	26	-	

VASP: DFT and Beyond

Martijn Marsman, and Georg Kresse

Computational Materials Physics, Faculty of Physics, University Vienna,
Vienna, Austria

Theory and Computation for Interface Science and Catalysis,
3-7th November 2014, Brookhaven National Laboratories, USA

Conclusions -- continued

•  The	Intel	compiler	direc#ve	!DIR$	ATTRIBUTES	FASTME	
does	not	work	with	array	pointers	directly.	Allocatable	
work	arrays	must	be	introduced	and	allocated	to	the	
HBM	first	before	associa#ng	the	array	pointers	to	them.	

•  The	FASTMEM	direc#ve	is	an	Intel	compiler	specific	
direc#ve,	and	is	not	supported	by	other	compilers.		
–  This	may	cause	the	HBM	opcmizacon	portability	issue.		
–  Cray	compilers	will	support	this	direccve	(with	slight	
modificacon)	in	the	future.	

•  The	es#ma#on	may	not	be	exact	analogy	to	the	HBM	
on	KNL,	however,	the	approach	used	here	will	be	
applicable	for	KNL	without	modifica#on.	

-	27	-	

