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•  How	to	es#mate	MCDRAM	(or	HBM)	performance	on	
exis#ng	Xeon	nodes	

•  Applica#on	to	VASP	
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Cori	P2,	a	Cray	XC40	based	on	Intel	KNL	processors,		compared	to	Edison,	a	Cray	XC30	based	on	
Intel	Ivy	Bridge	processors		

Efficient use of HBM is important to get 
optimal application performance on Cori P2

-	3	-	
Cori: http://www.nersc.gov/users/computational-systems/cori/cori-phase-ii/ 
Edison: http://www.nersc.gov/users/computational-systems/edison/ 

Cori’s KNL nodes will have 16 GB MCDRAM (HBM) with ~ 5x DDR4 bandwidth 
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Memory	per	node	(GB)	

Hopper	

Edison	

•  Hopper	has	32	GB	nodes,	
Edison	has	64	GB	nodes	

•  8%	of	Edison	workload	uses	
more	than	80%	of	available	
memory	per	node.	

•  16%	of	the	Edison	workload	
would	not	run	on	Hopper’s	
32	GB	nodes.*		

•  71%	of	Edison	workload	will	
fit	into	Cori’s	fast	memory	
(16	GB).	

Users are taking advantage of Edison’s 
increased memory per node.

-	26	-	

*Assuming	MPI+X	concurrency	does	
not	change.	

-	4	-	Slide from http://portal.nersc.gov/project/mpccc/baustin/
NERSC_2014_Workload_Analysis_30Oct2015.pdf 

Memory utilization of NERSC workload in 
allocation year 2014

71% of Edison 
workload used less 
than 16GB memory 
per node. However, 
considering more 
cores on the KNL  
node, we estimate 
about half of the 
Edison workload will 
not fit into the 16GB 
HBM (if no changes). 
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Dual Socket Xeon nodes can serve as proxies 
for HBM on KNL nodes

-	5	-	

• Accessing memory on the remote socket via the QPI bus is 
slower compared to accessing the near socket memory. 

• The near socket memory can mimic the HBM on KNL; while the 
remote socket memory can mimic the DDR memory. 

• This is not an accurate model of the bandwidth and latency 
characteristics of the KNL on package memory (MCDRAM, or 
HBM) but is a reasonable way to determine which data 
structures rely critically on bandwidth.


Edison Compute Node Diagram (Ivy Bridge 
processors) 

Bandwidth via QPI is 33% lower 
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Memkind library is an Intel development tool 
to allocate arrays in HBM

• The	Memkind	library	is	a	user	extensible	heap	manager	built	
on	top	of	Jemalloc	which	enables	control	of	memory	
characteris#cs	and	a	par##oning	of	the	heap	between	kinds	
of	memory	(including	user	defined	kinds	of	memory).			

• Using	the	Intel	compiler	direc#ve,	!DIR$	ATTRIBUTES	
FASTMEM,	for	Fortran	codes,	and/or	using	the	malloc	
wrapper	APIs,	hbw_malloc,	for	C/C++	codes,	one	can	
allocate	selected	arrays	to	HBM	on	KNL	by	linking	the	
applica#on	codes	to	the	Memkind	library.		

• On	today’s	Xeon	nodes,	Memkind	can	be	used	to	simulate/
es#mate	the	HBM	performance	impact	on	the	applica#on	
codes	

h'p://memkind.github.io/memkind	
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Code changes are required to use Memkind 
to selectively allocate arrays in HBM

•  Add	compiler	direc#ve	!DIR$	ATTRIBUTES	FASTMEM	in	
the	Fortran	codes	
–  real,	allocatable	::	a(:,:),	b(:,:),	c(:)	
–  !DIR$	ATTRIBUTES	FASTMEM	::	a,	b,	c	

•  Use	hbw_malloc,	hbw_calloc	to	replace	the	malloc,	
calloc	calls	in	the	C/C++	codes	
–  #include	<hbwmalloc.h>	
–  malloc(size)	->	hbw_malloc(size)	

•  Link	the	codes	to	the	memkind	and	jemalloc	libraries	
using	Intel	compilers	
–  mpiifort	–dynamic	-O3	-openmp	mycode.f90		-L<path-to-mekind-
library>		–lmemkind	–ljemalloc	 		

-	7	-	
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On today’s Xeon nodes (proxies for KNL) an environment variable, 
MEMKIND_HBW_NODES, is needed to designate a socket for HBM

•  Run	the	codes	with	the	numactl	and	
env	MEMKIND_HBW_NODES	
–  export	MEMKIND_HBW_NODES=0		
–  numactl	--membind=1	--cpunodebind=0	./a.out	

•  Notes:	
– Memkind	can	only	allocate	heap	variables	to	the	HBM.	
There	is	no	way	to	allocate	stack	variables	to	HBM	currently.	

–  The	FASTMEM	direccve	may	be	supported	by	other	
compilers	in	the	future,	e.g.,	Cray,	but	may	be	slightly	
different	from	the	Intel	FASTMEM	direccve.	

–  Srun	can	be	used	for	parallel	jobs	

-	8	-	
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AutoHBW tool is another Intel development tool to 
allocate arrays in HBM without code changes

•  AutoHBW	Tool	–	automa#cally	allocate	the	arrays	in	certain	
size	range	to	the	HBM	at	run	#me.		

•  AutoHBW	intercepts	the	standard	heap	alloca#ons	(e.g.,	
malloc,	calloc)	and	allocate	them	out	of	HBM	using	the	
memkind	API.	

•  No	code	change	is	required	
•  Included	in	the	memkind	distribu#on:	

h'p://memkind.github.io/memkind	
Reference:		examples/autohbw_README	
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AutoHBW tool uses the environment variables 
to control its behavior

•  AUTO_HBW_SIZE=x[:y]	
–  Indicates	that	any	allocacon	larger	than	x	and	smaller	than	y	
should	be	allocated	in	HBM.	x,y	(in	K,	M,	or	G)		

–  AUTO_HBW_SIZE=1M:5M		#	allocacons	between	1M	and	5M	
allocated	in	HBM	

•  AUTO_HBW_LOG=level		
–  	Sets	the	verbosity	of	the	logging	level:	

				0	=	no	messages	are	printed	for	allocacons		
				1	=	a	log	message	is	printed	for	each	allocacon	(Default)	
				2	=	a	log	message	is	printed	for	each	allocacon	with	a	backtrace.	

–  Using	the	autohbw_get_src_lines.pl	script	to	find	source	lines	
for	each	allocacon.	

–  Logging	adds	extra	overhead.	Use	0	for	performance	criccal	runs	

-	10	-	
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Application codes need to link to the autohbw 
and memkind libraries

•  MEMKIND_HBW_NODES=<list	of	numa	nodes>	
–  Sets	a	comma	separated	list	of	NUMA	nodes	as	HBW	nodes,	e.g.,	

MEMKIND_HBW_NODES=0	
–  For	non-KNL	node	this	env	must	be	set	

•  AUTO_HBW_MEM_TYPE=<memory_type>	
–  Sets	the	type	of	memory	that	should	be	automaccally	allocated.	

Default:	MEMKIND_HBW.		
–  Examples:	

				AUTO_HBW_MEM_TYPE=MEMKIND_HBW																						(Default)	
				AUTO_HBW_MEM_TYPE=MEMKIND_HBW_HUGETLB	
				AUTO_HBW_MEM_TYPE=MEMKIND_HUGETLB	

•  Link	the	codes	to	the	autohbw,	memkind	and	jemalloc	
libraries	
–  mpiifort	-O3	-openmp	mycode.f90	mycode.f90		-L<path-to-memkind-

library>		-lautohbw	–lmemkind	–ljemalloc		

-	11	-	
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The autohbw libraries may need to be preloaded to make sure the 
malloc commands in applications get intercepted by AutoHBW.

•  Run	the	codes	with	the	numactl	and	proper	environment	variables	
–  export	MEMKIND_HBW_NODES=0	
–  export	AUTO_HBW_LOG=0	
–  export	AUTO_HBW_MEM_TYPE=MEMKIND_HBW	
–  export	AUTO_HBW_SIZE=1K:5K					#	all	allocacons	between	sizes	1K	and	5K	

allocated	in	HBM	
–  Export	LD_LIBRARY_PATH=<path-to-memkind-library>:${LD_LIBRARY_PATH}	
–  numactl	--membind=1	--cpunodebind=0	./a.out		

•  Make	sure	the	malloc	calls	intercepted	by	the	autohbw	library	APIs:	
–  For	dynamic	builds,	using	LD_PRELOAD	or	LD_LIBRARY_PATH	to	allow	

libautohbw.so:libmemkind.so	in	front	of	the	system	default	path.	
–  For	stacc	builds,	make	the	autohbw	and	memkind	libraries	in	front	of	the	

link	line.	May	use	-Wl,-ymalloc	to	confirm	
•  Use	the	numastat	–p	<pid>	command	to	displays	the	memory	

alloca#ons	among	sockets	for	a	running	process	

-	12	-	
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Memkind and AutoHBW applications in VASP

•  The	Vienna	Ab-ini#o	Simula#on	Package	(VASP)	is	a	widely	
used	materials	science	applica#on.		
–  Rank	#1	code	at	NERSC,	uses	about	10-12%	of	total	compucng	cycles	

at	NERSC	each	year	

•  The	fundamental	mathema#cal	problem	that	VASP	solves	is	
a	non-linear	eigenvalue	problem	that	has	to	be	solved	
itera#vely	via	self-consistent	itera#on	cycles	un#l	a	desired	
accuracy	is	achieved.	FFTs	and	Linear	Algebra	libraries	
(BLAS/LAPACK/ScaLAPACK)	are	heavily	depended	on.		

•  Fortran	code	with	MPI	or	MPI	+	OpenMP	

-	13	-	

VASP:  http://www.vasp.at/ 
VASP:  G. Kresse and J. Furthm_ller. Efficiency of ab-initio total energy calculations for 
metals and  semiconductors using a plane-wave basis set. Comput. Mat. Sci., 6:15, 1996 
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VASP versions used and test cases

-	14	-	

Test case 2: PdO@Pd-slab  

•  Two	different	versions	of	VASP	were	used	in	this	study	
–  Currently	released,	version	5.3.5,	a	pure	MPI	code	
–  A	development	version	(as	of	9/29/2015),	a	MPI	+	OpenMP	hybrid	
–  Compiled	with	Intel	compilers	and	used	MKL	/	ELPA	libraries		

Test case 1: B.hR105-s 
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Estimating the performance impact of HBM on VASP 
code using AutoHBW tool on Edison

-	15	-	
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VASP5.3.5$VASP 5.3.5 VASP run time for the 
hybrid functional 
calculation (HSE06) when 
arrays in different size 
range were allocated to 
the HBM. 
The bandwidths of the 
near socket memory 
(simulating MCDRAM) 
and the far socket memory 
via QPI (simulating DDR) 
differ by 33% 

•  VASP performs significantly better (40%) when arrays within 1M to 
5M were allocated to HBM. 

•  Expect to have a larger performance benefit from HBM on KNL 
•  Application End users may use HBM more efficiently using 

AutoHBW. 
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Using Memkind to selectively allocate arrays 
to HBM

•  Profiling			
•  Iden#fy	the	candidate	rou#nes	and	memory	objects	
that	may	get	benefit	from	using	the	HBM	

•  Add	the	Intel	compiler	direc#ve,	FASTMEM,	to	the	
code	

•  Linking	the	code	with	the	memkind	library	
•  Run	with	numactl	on	the	KNL	proxy,	the	Ivy	Bridge	
Edison	compute	node	

-	16	-	
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VASP heavily depends on the math libraries

-	17	-	

The thread scaling of the 
MP I /OpenMP VASP 
code with the test case 
PdO@Pd-slab. These 
are the fixed core (16 
cores) tests running on 
one of the sockets on an 
Intel dual-socket Haswell 
node (Xeon E5-2697 v3 
2 . 6  G H z )  a t  t h e 
University of Vienna.  

•  Top routines, eddiag, eddrmm, fft*, lincom and orht1, all depend 
heavily on the math libraries used. 

•  The real space projection routines, rpromu and racc0mu, could be 
good candidate hotspots for HBM optimization  
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Is VASP memory bandwidth bound?

-	18	-	

T h e V A S P r u n t i m e 
breakdown over the top 
subroutines when running 
on the fully packed (blue) 
and hal f -packed ( red) 
nodes. The tests were done 
on an Intel Xeon E5-2697 
v3 node and used the test 
case PdO@Pd-slab. When 
running on half packed 
n o d e s ,  t h e m e m o r y 
bandwidth available for 
each task is twice as much 
as it is when running on 
fully packed nodes.  

•  Several top subroutines ran faster when running on the 
unpacked nodes, especially rpromu, and racc0mu, indicating 
they might be bandwidth bound. 
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Is VASP compute bound?

-	19	-	

The VASP run t ime 
breakdown over the top 
s u b r o u t i n e s w h e n 
running at the clock 
speeds of 2.5 GHz, and 
1.9 GHz on an Intel Xeon 
E5-2697 v3 node. The 
test case used was 
PdO@Pd-slab, and this 
experiment was designed 
to test if the code is CPU 
bound. 

•  Several top subroutines ran slower when the clock speed was 
decreased, indicating they were likely CPU bound. Relatively 
rpromu and racc0mu were affected less by the clock speed change.  

•  Two real space projection routines, rpromu and racc0mu were 
likely memory bandwidth bound.  
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Allocating arrays in subroutine racc0mu in HBM using the Memkind 
library and the FASTMEM Intel compiler directive

-	20	-	

 SUBROUTINE RACC0MU(NONLR_S, WDES1, CPROJ_LOC, CRACC, LD, NSIM, LDO) 
... 
    REAL(qn),ALLOCATABLE:: WORK(:),TMP(:,:) 
    GDEF,ALLOCATABLE    :: CPROJ(:,:) 
 
 
... 
    ALLOCATE(WORK(ndata*NSIM*NONLR_S
%IRMAX),TMP(NLM,ndata*2*NSIM),CPROJ(WDES1%NPRO_TOT,NSIM)) 
... 
  END SUBROUTINE RACC0MU 

The only change needed to allocate the arrays WORK, TMP, and CPROJ to 
the HBM was adding !DIR$ ATTRIBUTES FASTMEM :: WORK,TMP,CPROJ 

Simple cases 

 
    !DIR$ ATTRIBUTES FASTMEM :: WORK,TMP,CPROJ 
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The FASTMEM directive does not work directly with 
the Fortran array pointers.

-	21	-	

INTEGER, POINTER :: NLI (:,:) ! index for gridpoints 
REAL(qn),POINTER, CONTIGUOUS :: RPROJ (:) ! projectors on real space grid 
COMPLEX(q),POINTER, CONTIGUOUS::CRREXP(:,:,:) ! phase factor exp (i k (R(ion)-
r(grid))) 
 
... 
 
ALLOCATE(NONLR_S%NLI(IRMAX,NIONS),NONLR_S%RPROJ(NONLR_S%IRALLOC)) 
ALLOCATE(NONLR_S%CRREXP(IRMAX,NIONS,1)) 

•  To	allocate	array	pointers	NLI,	RPROJ	and	CRREXP	to	HBM,	
–  Need	to	introduce	intermediate	allocatable	arrays.	
–  Allocate	the	intermediate	arrays	in	HBM	
–  Associate	the	array	pointers	to	these	intermediate	arrays	in	HBM	
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FASTMEM: Working with Fortran array pointers
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INTEGER, POINTER :: NLI (:,:) ! index for gridpoints 
REAL(qn),POINTER, CONTIGUOUS :: RPROJ (:) ! projectors on real space grid 
COMPLEX(q),POINTER, CONTIGUOUS::CRREXP(:,:,:) ! phase factor exp (i k (R(ion)-
r(grid))) 
 
! To exploit fastmem 
INTEGER, ALLOCATABLE :: fm_NLI (:,:) ! index for gridpoints 
REAL(qn), ALLOCATABLE :: fm_RPROJ (:) ! projectors on real space grid 
COMPLEX(q), ALLOCATABLE :: fm_CRREXP(:,:,:) ! phase factor exp (i k (R(ion)-
r(grid))) 
 
!DIR$ ATTRIBUTES FASTMEM :: fm_RPROJ,fm_CRREXP,fm_NL 
 

... 
 

! put NLI and RPROJ into fastmem 
ALLOCATE(NONLR_S%fm_NLI(IRMAX,NIONS),NONLR_S%fm_RPROJ(NONLR_S
%IRALLOC)) 
NONLR_S%NLI =>NONLR_S%fm_NLI 
NONLR_S%RPROJ=>NONLR_S%fm_RPROJ 
 
ALLOCATE(NONLR_S%fm_CRREXP(IRMAX,NIONS,1)) 
NONLR_S%CRREXP=>NONLR_S%fm_CRREXP 
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VASP performance when a few selected arrays were 
allocated in HBM using FASTMEM+Memkind

-	23	-	

VASP performance 
comparison between 
runs when everything 
was allocated in the 
DDR memory (blue/
slow), when only a few 
selected arrays were 
allocated to HBM (red/
mixed), and when 
everything was allocated 
to HBM (green/fast). The 
test case PdO@Pd-slab 
was used, and the tests 
were run on a single 
Edison node. 
 

•  About 9% of speedup of total run time was achieved when a few 
selected arrays were allocated to HBM in comparison to when 
everything was allocated in the DDR memory.  

•  14% of speedup when everything was allocate on the HBM 
•  This test case had a modest memory bandwidth usage. 
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Allocating a few arrays in RACC0MU to the HBM achieved the 
same level of speedup as allocating everything in the HBM

-	24	-	

•  Allocating a few arrays in the real-space projection routine, 
RACC0MU, in the HBM (red:Mixed) showed up to 23% of speedup 
compared to allocating everything in the DDR memory. 
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Allocating a few arrays in RPR0MU to the HBM achieved the 
same level of speedup as allocating everything in HBM
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•  Allocating a few arrays in the real-space projection routine, 
RPROMU, in the HBM (red:Mixed) showed up to 26% of speedup 
compared to allocating everything in the DDR memory. 
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Conclusions
•  HBM	may	have	a	significant	performance	benefit	to	

applica#ons.		
–  Seleccvely	allocacng	arrays	to	HBM	is	a	key	opcmizacon	taccc	
to	use	the	small	amount	of	available	HBM	efficiently	on	KNL	
nodes.		

•  Intel	development	tools	like	Memkind	and	AutoHBW	are	
very	helpful	for	users	and	developers	to	do	HBM	
op#miza#ons	for	KNL	on	today's	architectures.	Early	
adop#on	of	these	tools	is	key	to	produce	the	KNL	ready	
codes.	

•  The	available	tools	such	as	Memkind	and	AutoHBW	are	
only	capable	of	alloca#ng	heap	arrays	in	HBM,	and	there	
is	no	good	way	of	alloca#ng	stack	arrays	to	HBM	so	far.		
–  This	prevents	OpenMP	private	arrays	from	using	HBM.		
–  It	is	also	necessary	to	change	stack	arrays	(where	applicable)	to	
allocatable	arrays	to	use	HBM	
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Conclusions -- continued

•  The	Intel	compiler	direc#ve	!DIR$	ATTRIBUTES	FASTME	
does	not	work	with	array	pointers	directly.	Allocatable	
work	arrays	must	be	introduced	and	allocated	to	the	
HBM	first	before	associa#ng	the	array	pointers	to	them.	

•  The	FASTMEM	direc#ve	is	an	Intel	compiler	specific	
direc#ve,	and	is	not	supported	by	other	compilers.		
–  This	may	cause	the	HBM	opcmizacon	portability	issue.		
–  Cray	compilers	will	support	this	direccve	(with	slight	
modificacon)	in	the	future.	

•  The	es#ma#on	may	not	be	exact	analogy	to	the	HBM	
on	KNL,	however,	the	approach	used	here	will	be	
applicable	for	KNL	without	modifica#on.	
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