
SLURM. Our Way.

Douglas M. Jacobsen, James F. Botts, and Yun (Helen) He
National Energy Research Scientific Computing Center

Lawrence Berkeley National Laboratory
Berkeley, CA, USA

Abstract—NERSC recently migrated its primary batch sys-
tem and workload manager from an ALPS-based solution to
SLURM running “natively” on our Cray XC30 and XC40
systems. The driving motivation for making this change is
to gain access to features NERSC has long implemented in
alternate forms, such as a capacity for running large numbers
of serial tasks, and gaining tight user-interface integration with
new features of our systems, such BurstBuffers, Shifter, and
VTune, while still retaining access to a flexible batch system
that can deliver high utilization of our systems. We we have
derived successes in all these areas. The largest unexpected
impact has been the change in how our staff interacts with
the system. Using SLURM as the native workload manager
(WLM) has blurred the line between system management and
operation. This has been greatly beneficial in the impact our
staff can have on system configuration and deployment of
new features, becoming a platform for innovation. Conversely,
SLURM overlaps in some places with Cray-provided tools
that have required some significant adjustment in our system
management procedures. On the positive side, this has allowed
our engineers to create new ways to performing “rolling”
updates of compute nodes while isolating running jobs from
negative effects. The interactions between SLURM and the
Cray provided tools such as xtprocadmin or the NHC have
required increased low level understanding and procedural
changes to maintain appropriate resilience.. This transition
has required some adjustment from our users, as the “native”
SLURM solution uses different methods for launching jobs
and tasks. Some former points of contention (e.g. there is now
little-to-no reliance on internal login nodes) have disappeared
as a result of these changes in batch system architecture. The
use of the “native” SLURM allows greater control over how
applications are launched and access our resources. With more
flexibility, significant user-training has been required, especially
in the areas of task/CPU-binding. The adoption of natively
running SLURM on our systems has greatly increased our
capabilities and broadened staff involvement in detailed system
management work. We are still measuring the impact on our
user base.

Keywords-slurm; cray; hpc; scheduling; backfill

I. INTRODUCTION

The National Energy Research Scientific Computing cen-
ter (NERSC) operates two XC-class Cray supercomputer
systems. Our XC30, edison, has 134,064 Intel Ivybridge
cores over 5,586 compute nodes. Our XC40, cori, is in
the first stage of its deployment and currently contains
52,096 Intel Haswell cores over 1,628 compute nodes. In the
Summer of 2016, the second phase of its deployment will
be augmented with 9,300 Intel Knights Landing many-core

processors. NERSC uses these systems to serve the needs
of over 7,700 users running a wide variety of hundreds of
different scientific codes.

Throughout 2015 and early 2016 NERSC moved from
Oakland, CA to a new building at the primary Lawrence
Berkeley National Lab site in Berkeley, CA. During this
period, the first phase of the cori (Haswell) system was
delivered and integrated at the new site during summmer
and fall of 2015. We opted to introduce native SLURM as
the scheduler and resource manager (collectively Workload
Manager) on the cori and edison systems as they became
available at the new Berkeley site. From the perspective of
our users, cori was introduced with SLURM in October of
2015, and edison was returned to service in January, 2016
with SLURM.

One significant difference between SLURM and other
scheduler software available for Cray XC systems, is that,
starting with version 15.08, SLURM does not make use
of the apbasil interface to Cray’s ALPS product. Instead,
SLURM uses the so-called “native” interface on the Cray
system to allow SLURM to directly manage the hardware
resources of the system. In practical terms, this has a number
of consequences:

• aprun is no longer used, instead one can directly use
“srun” within a batch script

• slurmd, a daemon, is run on each compute node (instead
of apinit)

• SLURM makes heavy use of the full Linux envi-
ronment, requiring slurmd to be exclusively bound
(chroot’d) within the /dsl environment for CLE 5.2

• The job batch script is executed on a compute node
instead of a service node

• SLURM needs to acquire user information at job start
on each compute node, requiring proper configuration
of all compute nodes to access site user authentication
services to function (e.g., LDAP), which may require
RSIP or other means of accessing remote authentication
services. Formerly, this external access was only needed
by a handful of service nodes acting as intermediaries.

This paper will relate some of our experiences and some
of the choices we have made in order to make SLURM
a success on our systems. We have worked closely with
SchedMD (SLURM vendor) [1] and Cray throughout this



process.

II. SLURM ARCHITECTURE ON CRAY XC SYSTEM

SLURM is comprised of a number of daemons, user
executables, libraries, and binary-compiled plugins. All of
the major functionality for managing on-node resources
and maintaining communication are handled by slurmd, a
single daemon. Any job step, such as the batch script or a
particular srun, is managed by one slurmstepd daemon per
node of the allocation, forked from the associated slurmd
on the node. slurmctld, the control daemon, implements
all the core functionality of the scheduler and orchestrates
the activities of all the slurmds. Any jobs submitted to
the system are achieved via direct tcp connection to the
slurmcltd. Slurmctld is the central point of communication
for both user interaction as well as system management.

At NERSC, we have a number of requirements for our
batch system with respect to resource management, avail-
ability and accessibility:

• users should be able to submit jobs and query job status
at almost any time, regardless of the booted or powered
state of the supercomputer

• with a dynamic base of over 7,500 users and over
14,000 unix groups, up-to-date user/group authentica-
tion information is needed to be directly accessible on
the compute nodes

• we need to update the SLURM configurations without
rebooting the system

• we need to update SLURM software (minor revisions)
without rebooting the system

To achieve this, SLURM necessarily requires access
within the supercomputer to perform node management and
job maintenance, and have a strong presence on the user
facing external network to enable direct communication with
the user front-end processes.

To this end we created a new class of node on our
mainframe termed “ctl” (control) nodes. Owing to the fact
that internal login nodes are no longer needed (also called
“mom” nodes in torque parlance), our former “net” nodes,
service nodes which have ethernet connectivity, were no
longer required in the formerly necessitated quantities. As
a result we run slurmctld on an internal service node with
direct ethernet network connectivity to the external service
network (also known as the es network).

A. Optimal slurmd and slurmctld communication

To provide access to SLURM even when the supercom-
puter is down, we run a backup instance of slurmctld on
the external service network. Since it cannot communicate
directly with the slurmds on the compute nodes, it is not
competent to schedule or manage but can accept jobs into
the queue. This maximizes batch system availability to a
high degree. There is one exception; Cray DataWarp inte-
gration with SLURM requires access to the supercomputer

DataWarp services, so jobs requiring DataWarp BurstBuffers
cannot be submitted to the external slurmctld instance.
The slurm.conf needs to specify “no backup scheduling”
amongst the scheduler parameters to enable this.

To ensure proper routes of communication, it is important
that compute nodes access slurmctld via the ipogif (high
speed network) interface, not via RSIP. To that end, we
explicitly specify NodeAddr within slurm.conf as the ipogif0
address for each compute node definition to ensure that
slurmd only binds for listening on the ipogif0 interface. In
addition the ControlMachine configuration for slurm needs
to match the hostname resolvable as being on the ipogif
network; however, the slurm.conf that the primary slurmctld
reads must not specify ControlAddr, to ensure that it does
listen on all network interfaces.

On the es network, external to the supercomputer, we
deploy a slightly modified slurm.conf that specifies a new
ControlAddr that points all the slurm commands to use
the es-network facing interface on the ctl node. These
configurations ensure that slurm daemons and executables
have a robust and correct route to communicate with each
other.

B. Deployment Issues

As we deployed SLURM we ran into a number of issues,
the resolution of which have greatly improved our productiv-
ity and may be of interest to others. In particular, we found
that having a mechanism for rapidly re-deploying SLURM,
the slurmctld in particular was of great value. The value
therein is largely because we found that the more we worked
with SLURM and SchedMD, we would get, from time to
time, patches to solve particular issues (that would appear in
future versions). Also, we have a small quantity of our own
patches to implement NERSC-specific behavior. Therefore,
we constructed an automated build system which would
integrate these patches and automatically build SLURM
thrice. Our three SLURM installations are:

• the supercomputer installation in
/dsl/opt/slurm/<version >(linked to “default”)

• the es-network installation in /opt/slurm/<version
>(linked to “default”)

• an es-network installation for managing the es network
resources (this is a separate cluster and is managed
independently from the supercomputer installation)

For both of the es-network installations we modified
(and upstreamed) slurm to add the “–enable-really-no-cray”
configure option which disables all the Cray-specific build
requirements. This allows the es-network versions to avoid
attempting to link against Cray XC-specific libraries (like
libjob, for example). This was necessary because some of
the paths used by SLURM to detect that it is being built on
a Cray are present in the es network service images.

It is critical that the environments on the eslogins and the
supercomputer match in most ways. In particular, the PATH



environment variable should work similarly to ensure that
SLURM forwarding of the environment from the eslogin
environment is correct. To that end, it is important that the
SLURM binaries exist in the same path in both environ-
ments. This is why both the supercomputer and es versions
of SLURM are installed in /opt/slurm/default (effectively).

1) Avoiding Reboots when Updating SLURM in CLE5.2:
Because SLURM is chroot’d to the /dsl environment, it is
therefore installed within the shared root, which is served
out to the compute nodes via DVS. Early on we found that
we could not easily update SLURM, because some subset of
the compute nodes would still “see” the previous version of
SLURM. The recommendation from Cray was to reboot the
supercomputer after updating SLURM. This, as mentioned
earlier, was at odds with the need to update SLURM for
minor repairs or small modifications of functionality.

We discovered that this was actually caused by the DVS
attribute cache on the client (compute-node) side. The at-
tribute cache stores the file ownership, permissions, and
the dereferenced values of symlinks for whatever the cache
timeout is to prevent excessive metadata lookups. By default
this attribute cache timeout is four hours, meaning it could
take nodes up to eight hours to see the updated version in
the worst case.

To deal with this we modified the fstab of our compute
node image to mount /dsl/opt/slurm with an attribute cache
timeout of 15s. This means that we can update SLURM,
and within 30s all compute nodes will “see” the new
version. This does require that the symlink not run through
/etc/alternatives though, since /etc will have the same at-
tribute timeout as the other portions of the shared root.

Similarly, we found that there were sometimes im-
proper effects when updating SLURM configuration files
in /etc/opt/slurm. These have been mostly rare bugs that
only appeared at the scale our cori and edison systems.
However, taking advantage of the same DVS mount from
earlier, we simply synchronize our configurations into
/dsl/opt/slurm/config.<svn revision >and link config.<svn
revision >to “etc”, such that the final effective path for the
slurm configuration is /opt/slurm/etc. Of course, SLURM
needs to be configured with a “–sysconfdir=/opt/slurm/etc”
for this to work.

These changes allow us to update SLURM and SLURM
configuration files in production in a repeatable and script-
able way, which avoids the need to reboot any portion of
the system. At the worst, we need to restart some daemons
in these situations.

2) salloc, srun, sshare from eslogins: The es-network de-
ployment of SLURM cannot directly communicate with the
SLURM compute nodes. Direct communication is required
for using srun directly or srun within an salloc allocation.
sstat has similar requirements. To allow interactive use of
the system, we therefore needed some way to allow salloc,
srun and sstat to directly communicate with the compute-

node slurmds. Building on the existing concepts of CSCS’s
ssh-based wrappers and on the Cray’s eswrap functionality.
We constructed a set of wrappers that would properly
conserve user environment (except DISPLAY) and command
line options. These wrappers automatically ssh the user
from the esnetwork to an internal login node, source their
environment, and run their specified command. By wrapping
these specific commands and leaving the other SLURM
commands (e.g., sbatch, sacct, etc.) alone, we are assured
that non-interactive SLURM functionality can continue to
run diring outages.

3) Scaling SLURM Up: We first deployed SLURM to
cori phase 1, a 1,628 compute node system. Other than
balancing the priorities of the system, we have had very
few issues running the system.

When we deployed SLURM on edison, however, a 5,586
compute node system, we found that there were some scaling
issues that required attention before it would work well. In
particular, some of the standard tuning to increase max TCP
connections and SYN backlog are useful (sysctl parame-
ters net.core.somaxconn and net.ipv4.tcp max syn backlog
should be larger than the quantity of slurmds). Beyond this
however, we found that we had to limit the slurm.conf
TreeWidth to the cubed root of the number of nodes to
reduce communication backlogs within the slurmd commu-
nication tree (the usual default is the square root). The Srun-
PortRange also needed to increase to allow for a sufficient
quantity of ports to allow the primary slurmstepd of a job
to setup the stdio communication ports. For edison, 2,000
ports per node was found to be sufficient, and that these
ports should be non-overlapping with the RSIP port range.

The most critical scaling issue, however, was that the
very largest of jobs would frequently fail to run. When jobs
requesting a large quantity of tasks (e.g., >60,000 tasks),
the job step would exit with a PMI2 failure to initialize
message. In the end, we found that this was because of a
difference in behavior between srun and aprun. By default,
aprun copies executables prior to executing them, whereas
srun does not. For most small to medium jobs, the srun
behavior is probably fine, if not, “better”. However, running
a large quantity of ranks directly from the parallel filesystem
(lustre, DVS, whatever) would fail because the filesystem
could not deliver the executable at that level of parallelism
within the default ALPS timeout of 60s.

The workaround is to set
PMI MMAP SY NC WAIT TIME = 300 in
the application environment, which will increase the
timeout to 300s instead of 60s. However, the solution was
a feature that SchedMD implemented in later verions of
15.08 which merged the functionality of srun and sbcast
(srun –bcast) to automatically copy the executable prior
to execution. In 16.05 a further improvement of this to
enable compression is coming. That is expected to put
srun performance on the same level as aprun job startup



performance (in combination with CLE6.0).
4) Expected deployment changes upcoming for CLE6.0:

In CLE6.0 the shared root will not exist. Instead things
are moving to a site-customizeable prescriptive image-based
scheme. The “netroot” image capability will allow sites
to determine which files are memory-resident and which
are network accessible. The root filesystem of the node is
writable, and thus updateable.

Our current plan, which we will begin to test in the
coming weeks, is to migrate our deployment machinery to
supporting RPM installation, but with a “–prefix” of /usr.
This should simplify the deployment as well as the version
management. Updated versions of the SLURM RPMs can
then be performed between jobs.

Since we can specify that SLURM should be memory-
resident, we are expecting an improvement in performance
since SLURM depends strongly of dlopen()ing shared ob-
jects within the SLURM lib directory. Based on some initial
timings, this may reduce each srun on large scale systems
by as much as 4 seconds.

Deployment of the SLURM configuration files is less
well understood. Those may remain in a network-share to
expedite updates of those more-frequently-updated files.

C. Interactions with Cray Node Health Check

The Cray Node Health Check is run by SLURM and it
does perform all of its existing functionality. However, it
is run from the slurmctld node following the completion of
all slurmds in the allocation. SLURM is quite aggressive
about cleaning the node and terminiating all processes prior
to allowing the NHC to run. This has greatly reduced the
quantity of issues the NHC discovers. However, the concept
that the NHC must be run from a central location across
the entire allocation (ALPS reservation) simultaneously is
somewhat conceptually at odds with SLURM. SLURM has
features which can allow a job to reduce (or increase) the
size of the allocation dynamically. SLURM can return nodes
to the scheduling pool while some are still trying to clean up.
These features could allow us to improve utilization and user
productivity greatly. With the current way the NHC runs, all
nodes must complete prior to running the NHC, and cannot
move to new jobs until the NHC runs. This means that if one
process on one node is stuck in an unkillable state (waiting
upon disk IO, for example), that all of the remaining nodes
in the allocation will be held idle until that clears up or
is manually handled by an administrator (e.g., by marking
the node “down” in SLURM). We believe that if the NHC
could be run separately for each node, perhaps in the epilog
of the job, it would continue to deliver value, but would be
more compatible with the SLURMish way of doing things.
We hope to work with Cray and SchedMD to make this
workflow a reality in (near) future versions.

III. SCHEDULING

We have spent significant time and resources learning how
to most effectively schedule the NERSC workload using
SLURM. We have a great many different codes that are run
on the systems, and NERSC users take advantage of every
scale. We typically have on the order of 100s (edison) to
1,000s (cori phase 1) jobs running, with a queue at least
10x larger than the job count. This means that we have a
large dynamic range of jobs to schedule, with different job-
class-based priorities in the mix. The edison system runs a
large quantity of small jobs, but the focus is on large jobs
consuming at least 1/8th of the system (683 compute nodes).
Cori phase 1, however, is our “data” partition which is is
more focused on a High-Throughput style workload, which
a large quantity of “shared” and “realtime” jobs.

A. Backfill and Utilization

SLURM has two scheduling algorithms it uses. Because
of the large dynamic range in the scale of the NERSC
workload, almost all jobs are started by the “backfill” sched-
uler. The backfill scheduling algorithm is, by default, very
conservative, but does respond very effectively to changing
system conditions.

It has no memory from one cycle to the next and al-
ways works down the priority-ordered queue of jobs. The
algorithm works by first sorting the queue of jobs, then
determining the earliest time the highest priority job can run.
That start time is then a constraint for all future scheduling
operations in the backfill run (for all intents and purposes,
could be considered a “running” job, just in the future). The
next job is then considered with all the current running jobs
and the planned future job and so on. Thus the SLURM
backfill logic will start any job so long as it does not delay
any higher priority job.

Furthermore, only the backfill scheduler can start jobs out
of order. The combination of these behaviors means that
SLURM backfill is effectively infinite resource reservation
depth scheduling – which is very computationally intensive.

To prevent the scheduler from ineffectively draining the
system to start jobs, it is therefore extremely important that
the priority function is stable if there is any large range of
job sizes being considered. This is because the calculation
of the schedule is path dependent, meaning the sort of the
jobs should stay the same from backfill cycle to the next
backfill cycle.

While this method is very effective in responding to
changing conditions on the system, it also means that
the high priority portion of the job queue has probably
been examined many times. Meaning that from a backfill
perspective, the high priority segment of the queue is “low
value” – if a job couldn’t start on the last cycle it is unlikely
to be able to start on this cycle. It is the low priority segment
of the queue that presents the most recently submitted jobs



(in our priority scheme) and thus represent the most likely
candidates for backfill.

Thus, working with SchedMD, we designed new
functionality implemented in NERSC deployments of
SLURM, and available generally in 16.05, which add the
“bf min prio reserve” backfill parameter. This adds a spe-
cific priority level above which the scheduler will reserve
resources (i.e., add scheduling constraints), and below which
jobs will simply be tested to see if they can start “now”.
This effective relaxing of scheduling policies enables small
jobs to start very quickly maximize the backfill opportunities
realized on the system. We observed an average increase
of about 7% utilization by using this algorithm for our
workload.

In the future, we plan to work on methods to manage
priority levels to better manage how jobs proceed from the
low priority to the high priority segment of the list.

IV. NERSC CUSTOMIZATIONS TO SLURM

SLURM is itself fantastically customizable and highly
configurable, and NERSC has tried to take full advantage
of that to introduce desirable functionality. One particularly
useful tool in the SLURM software architecture is that of the
SPANK plugin framework. This enables site-configurable
plugins to interact with the batch system, prior job submis-
sion, during job allocation, and following job conclusion.

A. Custom SPANK Plugins

We have implemented two SPANK plugins. The first
is actually a component of “shifter” [2] and enables tight
integration between SLURM and shifter. That is generally
available as part of the shifter open source project.

The second plugin bundles two important capabilities:
• enable users to run Intel vtune amplifier within their

job
• perform client-side quota-check validation prior to al-

lowing job submission, used to gate job submission if
the user has exceed a soft quota

These functionalities are best introduced as SPANK plu-
gins because they require tight integration into the job
submission and allocation logic, as well as ensuring that
the work is distributed across the resource, rather than
concentrated on the single slurmctld node.

If a user requests the vtune capability at job submission
time (using the custom “–vtune” flag to sbatch), a vtune-
specific prolog is run during job allocation to load the needed
kernel modules. At the conclusion of the job the kernel
module is unloaded. It is important to dynamically load
and unload the vtune kernel module, and to only allow
node-exclusive jobs to access this functionality both from
a security and system stability perspective.

Lustre quota checks are performed entirely within the
SPANK callouts when sbatch, salloc, or srun (not as part
of an existing job allocation) are executed by the user. Were

lustre MDS slow or nonresponsive, it is considered better to
distribute that work rather than centralize it as part of the
direct job submit.lua filter.

B. Accounting

NERSC makes heavy use of the slurmdbd accounting
system, in particular the job execution limit functionality that
it can enable. However, NERSC has long maintained an in-
house account management database, NERSC Information
Management (NIM). NIM implements all of the NERSC
business logic and coordinates the many project allocations
and users across the center. We have written a set of python
scripts that synchronize the NIM and SLURM databases,
supporting both in-bulk replication, and replication on a fine-
grained basis in coordination with the job submit.lua script.

These scripts create the following in the SLURM account-
ing database: accounts, users, associations between accounts
and users, QoS access lists, per-association TRES limits
(only for BurstBuffer). A secondary redis cache is updated
to track account and association balances. The redis cache is
used to perform out-of-band enforcement of limits because
we do not reject jobs for out-of-time users, but rather
route those jobs into a very low priority QoS (“scavenger”)
through the job submit.lua script.

The NIM accounting system runs a detailed sacct query
nightly to accumulate the daily usage for billing. NIM also
directly queries the SLURM mysql database to charge for
reservation time.

C. Job Submit and Update Plugin

SLURM provides a site-configurable job submit plugin,
which allows a site to review and potentially modify jobs
prior to acceptance into the queue. NERSC uses the lua[3]-
based job submit plugin supported by SLURM to allow
fairly flexible and updatable (changing a script is much
easier than rebuilding SLURM) review and modification of
jobs.

Our job submit.lua is primarily engaged in validating that
the user is allowed to access the functionality they have
requested. This includes verifying that the user is known in
the SLURM database and, if not, dynamically attempting
the NIM ↔ SLURM integration to lookup that user. It
estimates the quantity of resources requested by the job
and checks against the redis cache if the user has sufficient
balance to access those resources. If not, the job may be
rejected or modified to go into the low-priority “scavenger”
QoS. The job submit.lua script is also used to implement
and validate our network filesystem “licenses”. When a
network filesystem is unavailable, either due to maintenance
or misfortune, an administrator can set the number of these
licenses available to zero, preventing jobs that would require
the file system from starting. If the job requests the shared
partition, job submit.lua will remove the craynetwork GRES



to disable access to the aries network, thus enabling more
than four concurrent jobs per node.

D. User Accessibility

1) sqs: “sqs” is a NERSC custom batch queue monitoring
script that provides basic batch job info plus the job ranking
information. The original version provides priority ranking
based on start time estimated by the backfill scheduler. Most
of the jobs in the queue do not have a start time hence no
ranking info. In order to provide users with more information
of their jobs position in the queue, a new version of sqs was
deployed with two columns of ranking values to give users
more perspective of their jobs in queue. Job priority ranking
with absolute priority value (a function of partition, QOS,
job wait time, and fair share is also provided.

2) MyNERSC: The NERSC website integrates large
amounts of information from SLURM via the MyNERSC
[5] portal. This information is collected and integrated with
a decades worth of batch information from previous NERSC
systems to give users a great deal of current and past
information. The aggregation of this data is done by merging
information collected from sacct, direct database query,
sqs, scontrol, and other job completion sources. The data
is merged into the NERSC jobcompletion database. That
database is then used to deliver information, via MyNERSC,
about current queued jobs, past progress of those jobs in
terms of prioritization, starting time estimates, and finally
information about past job resource usage and performance.
This data is also integrated into a dashboard showing other
NERSC resources such as parallel filesystem utilization
and performance monitoring. Users can additionally submit,
hold, release and delete jobs from the MyNERSC web-portal
- this functionality utilizes the NERSC API (NEWT) [6] to
communicate with the SLRUM scheduler via a REST API.

V. TRANSITIONING TO SLURM: USER SUPPORT
PERSPECTIVE

Overall our SLURM adoption for users has been relatively
smooth. In order to help users, we have provided detailed
documentation on SLURM in a transition guide, containing
example batch scripts and tutorials. NERSC staff has worked
directly with some specific applications and users to ease
porting particularly complex workflows.

Many features of SLURM gives users more flexibility
in running their applications, for example: No separate
partitions for “premium” or “low” priorities etc. These are
now available via QOS settings in the “regular” partition.
There is no need to support CCM (Cluster Compatibility
Mode) [4] applications in a separate partition. It is now
supported via a custom SLURM plug-in, leveraging Shifter
to provide this capability.

One particularly noticable change for users with the
SLURM transitioning is that hyperthreading is on by default,
so SLURM sees all the logical cores. Submitting a job with

“#SBATCH -n” but without “#SBATCH -N” will get half
the number of nodes desired. For a hybrid MPI/OpenMP
program (if compiled with OpenMP enabled), when running
in pure MPI mode, without setting OMP NUM THREADS
to 1 (for Intel and GNU compilers), the program will run
with 2 threads implicitly.

Multiple iterations of task/CPU-binding
configurations were tested during our early
user period on Cori. With our current setting
(slurm.conf TaskPlugin=cgroup,cray; SelectTypeParam-
eters=CR SOCKET MEMORY,OTHER CONS RES),
when an application specifies number of nodes (-N),
number of MPI tasks (-n), and number of OpenMP threads
(set via OMP NUM THREADS environment variable),
the default process and thread affinity with srun is good.
Users need to explore with advanced settings for more
complicated binding options, such as memory binding,
different MPI tasks and threads per node (MPMD), etc.

One issue is that SLURM has no job “idle limits” can
be used to limit the quantity of jobs per queue eligible
for accruing priority. In SLURM, all jobs in the queue are
eligible for priority accrual, except held jobs and dependent
jobs. To ensure fair access to system resources, other queue
policies such as submit limits and the great variety of
SLURM run limits must be used.

VI. CONCLUSION AND FUTURE DIRECTIONS

NERSC has consistently delivered highly usable and
highly utilized systems with SLURM. It has enabled
new functionality on our existing hardware, and its open-
source nature allows a close collaboration with the vendor
(SchedMD) to work through issues rapidly. Typically, our
incident reports have been resolved within a day, frequently
with a modification to the SLURM code-base to better
meet our needs. The introduction of a site-controllable agent
on the node, in the form of slurmd, and the embrace of
more Linux-standard environments has greatly enhanced the
manageability of the system and its usability by users.

Looking forward, our immediate challenge will be to
deploy SLURM 16.05 in CLE6. There are some significant
expected changes in our deployment strategy. We anticipate
no loss of function and hope for a substantial gain in
performance. Following that, we will embark on integrating
Cori Phase 2 into the existing system, introducing 9,300 Intel
Knights Landing nodes. This will present several new chal-
lenges, most especially that of managing a heterogeneous
system with a heterogeneous workload (HPC + Data). The
KNL makes new scalability demands on the slurmstepd rel-
ative to the Haswell in terms of thread management. Special
attention and management will be required to support user-
requested hardware modes, possibly requiring compute node
reboots to shift between modes. The scheduler will have to
manage the timing of these reboots to intermix in the queue
most effectively. Cori phase 2 will be the largest quantity



of schedule-able units within a single system that NERSC
has ever deployed, and we anticipate new and interesting
challenges in scaling to this level.

ACKNOWLEDGMENT

The authors would like to thank all the folks at SchedMD,
in particular Danny Auble, Brian Christiansen, Moe Jette,
and Tim Wickberg for their rapid and effective support
throughout the NERSC SLURMification.

The authors would also like to thank Terence Brewer,
Brian Gilmer, Mark Green, Robert Johnson, Shawn Le,
Steve Luzmoor, Pete Martinez, and Randy Palmer from Cray
for their advice and continuing support.

The authors thank and are greatly appreciative of the con-
tributions of everyone at NERSC, but in particular those of
Katie Antypas, Brian Austin, Deborah Bard, Wahid Bhimji,
Tina Declerck, Lisa Gerhardt, Scott French, Richard Gerber,
Rebecca Hartman-Baker, Steve Leak, Ian Nascimento, Dr. R.
K. Owen, Zhengji Zhao to making SLURM a success on our
systems.

The authors would finally like to thank all the NERSC
users for their many helpful bug reports and patience during
the transition to SLURM.

REFERENCES

[1] SLURM, http://slurm.schedmd.com

[2] Canon and Jacobsen, Contain This! Unleashing Docker for
HPC. Cray User Group, 2015

[3] LUA Programming Language 5.1,
https://www.lua.org/manual/5.1/

[4] Using Cluster Compatibility Mode in CLE,
http://docs.cray.com/books/S-2496-4101/html-S-2496-
4101/chapter-9b6qil6d-craigf.html, Cray Inc.

[5] MyNERSC - NERSC User Information Portal,
http://my.nersc.gov

[6] NEWT - NERSC Web Toolkit, http://newt.nersc.gov


