
Opportunities for container environments on

Cray XC30 with GPU devices

Lucas Benedicic, Miguel Gila, Sadaf Alam, Thomas C. Schulthess

April 8, 2016

Abstract

Thanks to the significant popularity gained lately by Docker, the HPC
community has recently started exploring container technology and po-
tential benefits its use would bring to the users of supercomputing systems
like the Cray XC series. In this paper, we explore feasibility of diverse,
nontraditional data and computing oriented use cases with practically no
overhead thus achieving native execution performance. Working in close
collaboration with NERSC and an engineering team at Nvidia, CSCS is
working on extending the Shifter framework in order to enable GPU access
to containers at scale. We also briefly discuss the implications of using
containers within a shared HPC system from the security point of view to
provide service that does not compromise the stability of the system or
the privacy of the use. Furthermore, we describe several valuable lessons
learned through our analysis and share the challenges we encountered.

Keywords Linux containers; Docker; GPU; GPGPU; HPC systems

1 Introduction

In contrast with the now long known hypervisor-based virtualization technolo-
gies, containers provide a level of virtualization which allows running multiple
isolated user-space instances on top of a common host kernel. Since a hypervisor
emulates the hardware, both the ”guest” operating system and the ”host” op-
erating system run different kernels. The communication of the ”guest” system
with the actual hardware is implemented through an abstraction layer provided
by the hypervisor. Clearly, this software layer creates a performance overhead
due to the mapping between the emulated and bare-metal hardwares. Con-
tainers, on the other hand, are light, flexible and easy to deploy. Their size
is measured in megabytes, which is much less than hypervisors that require a
much larger software stack and gigabytes of memory. This characteristic makes
containers easily transferable across nodes within an HPC system (horizontal
scaling), and deployable within one compute node and thereby increasing its
density (vertical scaling).

1



As the role of graphics processing units (GPUs) is becoming increasingly im-
portant in providing power-efficient and massively-parallel computational power
to the scientific community in general and HPC in particular. It is well known
that even a single GPU-CPU framework provides advantages that multiple
CPUs on their own do not offer due to the distinguished design of discrete
GPUs.

Despite previous studies on GPU virtualization, the possibilities provided by
different virtualization approaches in a strict HPC context still remain unclear.
The lack of standardized designs and tools that would enable container access
to GPU devices means this is still an active area of research. For this reason,
it is important to understand the tradeoffs and the technical requirements that
container-based technology imposes on GPU devices when deployed in a hybrid
supercomputing system. One example of such a system is the Cray XC30 called
Piz Daint, which is in production at the Swiss National Supercomputing Center
(CSCS) in Lugano, Switzerland. The system features 28 cabinets with a total
of 5,272 compute nodes, each of which is equipped with an 8-core 64-bit Intel
SandyBridge CPU (Intel® Xeon® E5-2670), an Nvidia® Tesla® K20X with
6 gigabytes of GDDR5 memory, and 32 gigabytes of host memory.

Working in close collaboration with the National Energy Research Scientific
Computing Center (NERSC) and an engineering team of the Nvidia CUDA
division, CSCS is working on extending the Shifter framework [2] in order to
enable scalable GPU access from containers. Container environment opened up
opportunities to enable workload that were typically constrained by a specialized
light weight operating system. It allows CSCS to consolidate workloads and
workflows that currently require dedicated clusters and specialized systems. As
an example, by closely collaborating with the Large Hadron Collider (LHC)
experiments ATLAS, CMS and LHCb and their Swiss representatives in the
Worldwide LHC Computing Grid (WLCG), CSCS is able to utilize the Shifter
framework to enable complex, specific High Energy Physics (HEP) workflows
on our Cray supercomputers.

The preliminary results of this work show an improvement in vertical scaling
of the system and consolidation of complex workflows with minimal impact to
users and performance. This is possible thanks to the deployment of multiple in-
dependent containers (processes) sharing the same GPU device. The increased
density can significantly improve the overall performance of distributed, GPU-
enabled applications by increasing GPU utilization and, at the same time, re-
ducing their communication footprint. Additionally, it is also possible to tailor
specific versions of the CUDA toolkit and scientific libraries to different appli-
cations without having to perform a complex configuration at the system level.
This use case is even feasible for different applications sharing the same compute
node. Using examples and results of a subset of LHC experiments workflows,
we demonstrate that there is a minimal impact to user interface (job submission
script) and utilization of resources as compared to a dedicated environment.

The layout of the paper is as follows: we begin with the motivation for this
work, specifically extension of containers to include GPU resources and design
challenges that are associated with incorporating one and more GPU devices.

2



This will be followed by implementation details for GPU and LHC workflows in
the Cray environment. In section 4, we describe vertical scaling of the solution
to accommodate GPU and node sharing for multiple containers. We conclude
with future plans and opportunities to build on our efforts.

2 Motivation

The goal is to provide container’s users the ability to access the compute re-
sources of the GPUs available in the Piz Daint hybrid system. In particular,
accessing the compute resources of Nvidia’s GPU like the Tesla K20x installed
on each of the compute nodes of Piz Daint is done through CUDA [1].

2.1 CUDA

CUDA is Nvidia’s GPGPU solution that provides access to the GPU hardware
through a C-like language (CUDA C), rather than the traditional approach of
relying on the graphics programming interface. CUDA extends the C language
by allowing the programmer to define CUDA kernels, i.e., special C functions,
that are executed in parallel by several concurrent CUDA threads on the GPU
CUDA exposes two programming interfaces: the driver API and the runtime
API, this last one being built on top of the CUDA driver API. Providing access
to the CUDA runtime API to container’s users by extending Shifter’s function-
ality is the main focus of this paper. Since CUDA is not a fully open standard,
some internal details have not been officially documented. For this reason, an
engineering team at Nvidia has been engaged to understand the details about
the underlying hardware driver and its runtime libraries.

2.2 Complex workflows on Cray

Certain scientific workflows do not adhere to common HPC practices, consider
for example the case of the WLCG, where the software is pre-built and pre-
validated by each of the LHC experiments and centrally exposed to all comput-
ing facilities using a http-based, read-only filesystem. In this specific context, the
software is pre-packaged for RHEL-compatible operating systems and running
it on Cray Linux Environment is not immediate, as re-building all the software,
taking into account the interdependencies of the various applications is a very
complex task on its own and can, potentially, imply application re-validation by
the experiments.

Shifter enabled our Cray XC supercomputers to overcome this limitation by
being able to run unmodified ATLAS, CMS and LHCb production jobs.

2.3 Security aspects

From a security standpoint, Shifter suits much better than Docker the HPC
environment. This is because, by default, Docker allows any user to become

3



root within the context of the container, and this may have implications if the
container has access to shared filesystems. Consider the case in which an con-
tainer image has malicious code embedded in it, since no validation and security
checks are usually performed to the images prior to executing applications, this
malicious code could have root access to any filesystem mounted on the com-
pute node. On the other hand, Shifter runs applications in userland, with a
very small part of it requiring root privileges (SUID) to create and destroy loop
devices and mountpoints. Effectively, this limits the effects of malicious code to
what the user could do outside the container.

3 Implementation

A number of relatively small contributions have been done to the Shifter code-
base, having done most of the customizations to support these use cases at
the configuration entry points provided by Shifter, to the images utilized, or to
external points that any user can modify.

3.1 Design considerations

In formulating our design, we had several goals in mind:

• Functionality Whenever possible, Shifter’s GPU support should be com-
patible with different programming models, e.g., CUDA or OpenCL, and
should support the same level of compatibility as the kernel driver re-
garding the runtime versions, e.g., CUDA 6.5 or 7.0, and OpenCL 1.0 or
1.1. In regards of complex scientific workflows, there was a clear need for
seamlessly supporting unmodified applications, regardless of the operating
system or kernel version on the compute node.

• Performance Accessing the resources of the compute nodes from con-
tainers should not introduce any performance penalty, and should allow
GPU-enabled applications to run as fast as the native case.

• Transparency Shifter’s GPU support should be intuitive and useful in a
variety of use cases. Additionally, it should be compatible with applica-
tions originally designed to run natively on the system.

3.2 CUDA

Clearly, the motivation comes from extending the benefits of containers to GPU
devices and to seamlessly deploy GPU-based applications on multiple machines.
But when accessing GPUs, the containers are no longer hardware nor platform
agnostic, since they are using specialized hardware and their deployment re-
quires, at least in the Cray XC case, the installation of the Nvidia driver in the
host kernel.

Because of the way Nvidia’s GPGPU solution for Linux is engineered, the
container needs to have access to both of its main components: the kernel

4



driver and the CUDA runtime libraries. Since containers share the kernel and
its drivers with the host system, only the CUDA user space libraries are left
to be handled separately in the container. However, it is important that the
version of these user space libraries matches the version of the Nvidia driver
currently loaded into the host kernel.

One of the first working prototypes featured a complete installation of both
the Nvidia driver and a supported CUDA toolkit inside a container. The pro-
totype would then mount the character devices corresponding to the Nvidia
GPUs (e.g., /dev/nvidia0) during startup of the container. However, this so-
lution had a significant disadvantage: the version of the host driver had to
exactly match the driver version installed in the container. Consequently, such
container images could not be shared and had to be built locally on each host
system.

The latest working solution for Shifter makes container images portable while
still leveraging GPUs, since they are Nvidia-driver agnostic. The required char-
acter devices and driver files are mounted at deployment time, when starting
the container on the target machine.

Before mounting the driver files, the prototype scans the target system look-
ing for the driver libraries that match the currently loaded kernel driver. Two
methods can be used to make these libraries available inside the container. The
first one involves the use of environment variables LD LIBRARY PATH, CUDA ROOT.
The second one modifies the configuration of the ldconfig cache in order for
the dynamic linking engine to find the libraries. This set of user-space libraries
works as an interface, giving the CUDA applications access to the GPU device
via the kernel driver itself. Since Shifter does not currently support mount-
ing individual files, the ”discovered” driver libraries are placed in a common
directory before launching the container, this directory is then mounted inside
the container, and its dynamic-linking configuration is altered in order for the
runtime to access the ”discovered” libraries.

By using this procedure, it is possible to successfully execute different CUDA
and OpenCL applications achieving native performance.

3.3 Complex workflows on Cray

Given the complexity already inherent to the High Energy Physics workloads of
WLCG, it was established that porting them to a Cray systems would require
some sort of abstraction solution to let these applications run without modi-
fications. Different approaches were evaluated and tested, KVM and Docker,
but quickly showed that that Shifter was a better choice because of its relative
simplicity in getting it to work, while providing minimal operational overhead.

For this particular case, a Docker image with all the required packages and
tools needed for the HEP software to run is used, and deployed on our Cray
systems without further modifications. The image itself is based on the official
CentOS 6.7 image available on DockerHub with the basic RPMs that every site
in WLCG needs to deploy. Shifter is built on a common filesystem that all

5

http://hub.docker.com/r/miguelgila/wlcg_wn/
http://hub.docker.com/_/centos/
http://hub.docker.com/_/centos/
https://wlcg-mw-readiness.cern.ch/baseline/current/


Docker Shifter
Requires a daemon running on
the compute nodes

Does not require any daemon on
the compute nodes

Allows user to be root within
their container and on shared
filesystems

User cannot run anything as root

Is not Slurm-friendly Well integrated with Slurm and
other WLMs

Can isolate network by creating
NAT or Bridge devices

Shows /dev, /sys and /proc to
the container environment

Can run on multiple nodes with
own tool (Swarm)

Can run on multiple nodes using
WLM integration

Complex to build from scratch Easy to build from scratch

Table 1: A quick comparison between Docker and Shifter features on an HPC
environment

compute nodes mount and thanks to the SPANK Plugin provided, operating
this environment is extremely straightforward.

The only modification required on the compute nodes, other than installing
Shifter, is supporting CernVM File System (CVMFS), the read-only http-based
filesystem containing the applications. Originally CVMFS was exposed to the
compute nodes via DVS, but due to load issues, CVMFS had to be mounted
natively using a preloaded cache on all compute nodes. Note that this is for
performance issues, from a purely functional perspective, no other change is
needed on the compute nodes to run this type of workload.

Then, to expose the compute resources to the WLCG community, a piece of
software called Advanced Resource Connector Computing Element (ARC-CE,
or simply ARC) is installed on an external node to Cray, connected to Slurm
in a way that it is able to submit jobs. It has been slightly modified to make it
generate a Slurm job submission file with the corresponding Shifter extension
#SBATCH --image and to prepend shifter to the original binary executing the
job contents. ARC-CE has its own information system and is responsible for
exposing the resource to the WLCG community. This enables submission from
the grid as well as a common interface for any WLCG user with our Cray system.

The generated Slurm job file by ARC is standard for any job generated, ex-
cept for the Shifter extensions #SBATCH --image,#SBATCH --imagevolume and
the shifter binary before to the original job execution command:

4 Vertical scaling

It was necessary to understand the requirements and advantages of deploying
multiple CUDA processes over a single GPU device. The selected path for this
use case is to use MPS [3], Native Slurm and ultimately Shifter.

6

https://cernvm.cern.ch/portal/filesystem


Figure 1: Enabling WLCG jobs on a Cray with Shifter

Figure 2: Stripped down code of a generated Slurm job with Shifter enhance-
ments

The performance plots provided towards the end of this section give a clear
idea of the measured overhead and gains of this type of setup.

4.1 Sharing a GPU across Multiple Processes using MPS

The Nvidia Multi-Process Service (MPS) is a client-server based implementa-
tion of the CUDA API that enables multiple processes to utilize shared GPU
devices in a concurrent manner using Hyper-Q [3]. Usually, a process creates

7



its own CUDA context to interact with the GPU. As different CUDA contexts
are scheduled to the GPU in a time-sliced manner, work arriving from different
processes cannot overlap generally resulting in the GPU being underutilized.
The approach used by the MPS is to hold and to manage a single CUDA con-
text through the MPS server. When multiple processes are started and connect
to the server, i.e., the processes become the MPS clients, they interact with the
GPU only via the MPS server. The MPS server takes care of funneling the work
from all processes through the server’s CUDA context, allowing workloads from
different processes to overlap during their execution.

A diagram of multiple processes accessing a single GPU device directly, i.e.,
without an MPS instance, is shown in Figure 3. Figure 4 depicts the MPS server
managing one CUDA context across several processes.

Figure 3: Workloads from different processes attached to their own CUDA
contexts are scheduled to a single GPU device in a time-sliced manner.

4.2 Sharing nodes with different workflows

With native Slurm it is possible to share nodes with different workloads. In
the context of HEP applications, ATLAS, CMS and LHCb jobs that require a
reduced number of cores can be executed on the same node. This is common
practice in the WLCG community, where cluster nodes are shared among the
different experiments supported by each site, but relatively uncommon on Cray
systems. The factor limiting the number of jobs that can be run in parallel
on a node, other than memory and CPU, is Slurm’s Generic Resource (GRES)
Scheduling craynetwork parameter, which by default is set to 4. This is over-
ridden and raised it up to 32, to better accommodate the size of the jobs arriving
at the site (either 1-core jobs, or 8-core jobs). Then, Shifter requires a loop de-
vice available on the compute node for each job and so, the number of available
loop devices is incremented to match the value of craynetwork.

8



Figure 4: Client-server approach with a single CUDA context held and man-
aged by the MPS server.

In this environment, using native SLURM and Shifter, it is trivial to share
a node with different workflows and can run HEP jobs, as well as a number
of other scientific applications on the same node and each will run within the
boundaries of their own Shifter image.

To limit the impact of sharing resources within the same node with differ-
ent scientific workloads, nodes that can be shared are separated on a specific
partition and must be manually requested by users, or by ARC-CE in the case
of WLCG. However, this dedicated partition overlaps with others and therefore
users are not prevented from allocating nodes in exclusive mode up to the whole
machine, if needed.

Running WLCG HEP jobs on our Cray systems with Shifter results on com-
parable performance, measured in job efficiency, as those on dedicated RHEL-
compatible clusters.The following chart, extracted from ATLAS official dash-
board, shows equivalent efficiency of two facilities as configured in the ATLAS
environment for CSCS: CSCS-LCG2-HPC_MCORE (Cray TDS with Shifter) and
CSCS-LCG2_MCORE (dedicated RHEL-compatible cluster).

5 Conclusions and Future Opportunities

In this paper, we demonstarted how Cray XC30 platform with GPU technologies
can become more verstaile for applications and workflows that have so far been

9

http://dashb-atlas-job.cern.ch/dashboard/request.py/dailysummary
http://dashb-atlas-job.cern.ch/dashboard/request.py/dailysummary


Figure 5: Comparable efficiency of jobs at CSCS facilities for ATLAS.

ruled out for the lightweight operating envirnment, which is is essential for
high-end toghtly integrated systems. Furthermore, security concerns related to
conatiner technologies are eliviated by Shifter. Two motivating examples, one
with a GPU application and another with complex workflow has been presented
in the paper. These examples show that not only minimal changes are required
by users but also there is virtually no performance impact.

Our prelimary efforts yielded promising results and we are in process of
exploring other opprtunities. These include but are not limited to:

• Tailored CUDA version: There are instances where for performance and
functionality reasons multiple containers, i.e., CUDA processes, require
different CUDA runtime versions. Possible use cases may target applica-
tions that require specific software stacks in order for the produced results
to be certified, or even a case where a CUDA Toolkit upgrade would in-
troduce a bug or regression in the application code. Conatiners offer an
opprtunity for multiple versions to co-exist within a single Crau XC sys-
tem.

• Extension to support GPU-to-GPU communication (GPUDirect): work
in currently underway to allow GPUDirect inside multiple containers de-
ployed over several compute nodes of the Cray XC30.

In short, with Shifter and Docker or container technologies users can pack-
age applications that require specific versions of software, and simply run them
without further modifications. For instance, Python or Ruby applications can
be tested on a local environment and then executed on a given Cray super-
computer without recompilation. This effectively broadens the type and kind

10



of application that can be run on Cray supercomputers and eases the access of
these facilities to scientists. Scenarios in which users run their own services to
support their own applications, all within their job allocations are also possi-
ble. This expands even further the possibilities that container solutions bring
to Cray supercomputers and HPC facilities in general.

6 Acknowledgments

The authors would like to acknowledge contributions of the Shifter development
team at NERSC and engineering team of the Nvidia CUDA division for their
input and support.

References

[1] Shane Cook. CUDA programming: a developer’s guide to parallel computing
with GPUs. Newnes, 2012.

[2] Douglas M Jacobsen and Richard Shane Canon. Contain This, Unleashing
Docker for HPC. In Cray Users Group Conference (CUG’15), 2015.

[3] Nvidia Corporation. Multi-Process Service vR352. http://docs.

nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf.
Accessed: 2016-02-11.

11

http://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
http://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf

	Introduction
	Motivation
	CUDA
	Complex workflows on Cray
	Security aspects

	Implementation
	Design considerations
	CUDA
	Complex workflows on Cray

	Vertical scaling
	Sharing a GPU across Multiple Processes using MPS
	Sharing nodes with different workflows

	Conclusions and Future Opportunities
	Acknowledgments

