Early experiences configuring a Cray CS Storm for Mission Critical Workloads

CUG2016
Mark Klein and Marco Induni, CSCS
May 11, 2016
Mission Critical

- **MeteoSwiss**
 - Weather Forecasting
 - 8 short-range forecasts per day
 - 2 long-range ensembles per day
 - Severe Weather Warnings
 - Air Traffic Safety
 - Disaster Modeling
 - Uses the short-range forecast model/data
 - Radiation/Chemical dispersion events
Mission Critical (cont)

- Short time between runs
 - Currently at most 1h 45m buffer
 - Not much time for scheduled maintenance
 - Can remove at most one per type of node for service actions
 - Theoretically, could lose a few GPUs per compute nodes
 - In practice, if GPUs are misbehaving, it’s better to remove node and replace them ASAP
 - Most of the time a failed GPU takes out the node anyway.
Mission Critical (cont)

- Two Identical Systems
 - Data synchronization maintained by MeteoSwiss
 - In case of too many problems
 - Failover!
 - Can also be staged in case of maintenance
 - Upgrade one machine, shift production, upgrade the other
 - This limits the ability to failover, so still need to be quick
 - ACE makes it easy to roll back to old image if upgrade needs to be aborted for failover purposes
Moving from XE6 to CS

- Reduction in nodes
 - 72 nodes in XE6 System
 - 12 nodes in CS Storm

- Increased Compute Node density
 - Larger RAM
 - 32G -> 256G
 - Faster CPUs
 - Opteron 6172 -> Haswell
 - Addition of GPUs
 - Very dense GPU configuration: 16 cuda devices per node (192 total)

- Increased Computational Capability
 - Increased Forecast Resolution
 - Decreased maintenance windows
System Design

- Two Independent Identical Systems
 - Each Containing:
 - Two Management Nodes:
 - These are treated as appliances so hardware is really not that important, but:
 - Two Ivy Bridge E5-2680 v2
 - 64GB DDR3
 - Shared XFS HA Filesystem using NetApp 2724
 - Two ConnectX-3 HCAs
System Design (cont)

- Two Independent Identical Systems
 - Each Containing:
 - Three Login Nodes
 - Two Haswell E5-2690 v3
 - 128GB DDR4
 - Two FDR Infiniband Cards
System Design (cont)

- Two Independent Identical Systems
 - Each Containing:
 - Five Post-Processing Nodes
 - Two Haswell E5-2690 v3
 - 128GB DDR4
 - Two FDR Infiniband Cards
System Design (cont)

- Two Independent Identical Systems
 - Each Containing:
 - Twelve Compute Nodes
 - Two Haswell E5-2690 v3
 - 256GB DDR4
 - Eight K80 GPUs
 - 16 total CUDA devices
 - Two FDR ConnectIB Cards
 - Three total ports
 - One card attached to each PCI Root
 - Diskless
The storage system is based on CLFS

- Very small ~72TB operational scratch
 - 1 OSS
 - 1 MDS
- Which means the storage has its own management system
 - Bright Cluster Manager
 - In a separate rack, we needed room for an CSCS ethernet switch
- Can see why it was done this way
 - CLFS is same release that shipped on the big Cray product lines
 - However, would be nice to maybe combine the Lustre deployment with ACE
Early Experiences
Early Experiences

- CS-Storm is a very new machine to us
 - Previously running on Cray XE6
 - xtopview vs ACE
 - Live changes to images are very limited
 - CPUs vs GPUs
 - GPU Affinity, GPUDirect RDMA
 - Performance fluctuations due to thermal on GPUs
 - Much different support model
 - Free to modify the OS of the cluster
 - No Compatibility Matrix, some trial and error required
Early Modifications to the System

- System shipped with
 - Compute nodes set up managed by Ace
 - Login/Post-Procs set up managed by Nothing
 - Why?
 - 8 additional installations to maintain (per system)
 - Not sustainable

- Cray recreated these for us as Ace images
 - Treated as unique clusters
 - Required some custom boot scripts to bring up interfaces and daemons correctly
GPU Affinity for Slurm

- Benefit of Haswell Based CS-Storm
 - ConnectIB FDR cards now exist on both PCI Roots
 - Avoids the QPI link allowing all GPUs to be able to use GPUDirect RDMA
 - MVAPICH is good at making decisions in a bubble, but this is a shared system
 - Multiple Jobs are running on each node at a given time
 - Multiple GPUs are going to be assigned to a given job on a node
 - Slurm GPUs are handled as a GRES
 - Slurm CPU assignments are handled by taskselect/affinity
 - How to make this all play nicely?
GPU Affinity for Slurm

- Custom implementation
 - When machine shipped, 14.11 was latest available
 - Found Presentation from Bull at GTC
 - Early access to Bull’s custom Slurm code
 - Hardcoded for specific test system
 - Did not use GRES: no GPU usage tracking/blocking
 - Found that all changes needed took place in slurmstepd
 - Took ideas and implemented as TaskProlog
 - 15.08 adds native affinity (--accel-bind), but we still use the Custom implementation
 - Some edge cases were failing on 15.08 method
 - When heavily loaded, GPU availability may not match CPU availability
 - Slurm’s best-effort on GRES assignment doesn’t always play nicely with the accel-bind.
 - Rather allow non-optimal GPU assignment than tasks failing for not enough GPUs
 - Currently slurm does not set MVAPICH ENV variables
 - TaskProlog remains flexible
 - Easy to fix edge cases that come up
 - CCE 8.4 OpenACC Regression:
 - Eventually would like to rewrite this into something a little more standard but it currently is working very well for the needs of MeteoSwiss
GPU Affinity for Slurm

- A little about our implementation
 - Two modes of operation:
 - G2G=1
 - Similar in design to the launch wrapper for xhpl
 - In this mode, each task sees a single GPU, and a single (optimal) network interface
 - Useful for codes that do not handle multiple GPU selections
 - G2G=2
 - In this mode, each task sees all the GPUs assigned to the job, and the task optimal network interface
 - Additional variables are exported to assist with the selection of GPU device
 - LOCAL_RANK, MV2_COMM_WORLD_LOCAL_RANK, etc.
 - The CUDA_VISIBLE_DEVICES are reordered in such a way for optimal selection by index
 - This mode is preferred if the application is able to handle GPU Selection
 - Additional Variables are currently set to work around a CCE 8.4 regression
 - In 8.4.0-8.4.5, OpenACC was ignoring device setting, placing all GPUs on Device 0
 - Can work around by exporting OMP_DEFAULT_DEVICE indexed to the GPU to run on
 - Fixed in 8.4.6
GPU Issues

- A very small number of thermal throttling has occurred
 - ~6 times over the life of the system so far
 - Have yet to trace it to a certain event
 - Ongoing investigation

- More frequently seen: GPU bandwidth degrades
 - Caught by regression testing
 - PCI links on nvidia-smi report full speed/width
 - The issue is usually one of the PLX chips
 - 2 GPUs slow is most likely the card
 - 4 GPUs slow is probably the cable between motherboard and riser
 - Rarely the riser needs replaced
Red Hat Kernel Bug

- System shipped with Red Hat 6.6
 - futex_wait() deadlock bug in kernels 2.6.32-504<=2.6.32-504.12.2
 - This was triggered by MeteoSwiss code
 - Very hard to diagnose
 - Attaching gdb or strace wakes process up and continues
 - Discovered mention of similar problem on a mailing list
 - Upgrading Kernel fixed problem confirming suspicions
ACE

- Things it does well
 - When it works, it is quite user friendly.
 - Able to figure out how to do most management tasks by looking in `/opt/ace`
 - Both the GUI and Command Line work well most of the time
 - Basic system monitoring works well
 - CPU Temperatures, Loads, Uptime
 - Ability to have multiple revisions of an image is useful
 - If all needed kernel modules are in the image, seems fairly intelligent in building initrd
ACE

Some lacking functionality

- The Documentation was pretty much useless
 - Many tasks were left to us to figure out
 - Updating Kernel took a lot of trial and error
 - Needed to boot: gnbd, OFED, and Lustre
 - Documentation has gotten better
- Weirdness with Image Management
 - By default, even a small change requires a reboot
 - Overcome by moving files to either ACEFS or the /global NFS mounts
 - Limit to 10 revisions
 - Not guaranteed to be consecutive revision numbers
 - Marco Induni wrote a nice acerev alias to sort by checkin date
 - Updating Kernel will take two revisions, one for Kernel update and one for nvidia/gpfs/etc updates
 - Export/Import images
 - Boot only one system the first boot after an import, or the image corrupts
ACE

- When it breaks, it breaks hard
 - Daily backups for the acedb are incredibly useful
 - We’ve seen AceDB corruption twice now
 - XFS Failover questionable
 - We’ve seen XFS corruption twice now that seems to be related to failover events
 - Still under investigation
System Monitoring

- ACE includes a custom Ganglia
 - In theory possible to add custom monitors
 - In practice likely caused one of the corrupted acedb events
 - Safer to just install real gmond on the nodes
 - Works very well for our small cluster, your mileage may vary
 - To minimize jitter, configured in unicast: Nodes->Management<->CSCS Central Services DB
 - Very useful monitors available for GPUs
 - Power, Clocks, Temperature, ECC Errors
 - Trace throttle events quickly at a glance
 - Yes, there really is a 35 degree gradient
Support on the System

- Long term support is an open question
 - No place to go to check latest ACE versions
 - We had a bug that was crashing aced reproducibly
 - Given fix immediately, but the build date was over a year old
 - Recently told ACE is being completely replaced
 - Timeline unknown
 - Unsure what this means for the currently install
 - CLFS is end of life
 - Tried updating clients to a later release, caused MDS to die
 - Rolled back to older release, now running Cray C3.
 - Stable, but still getting some large performance fluctuations on certain codes
 - Investigation ongoing
Conclusion

- Had to make a number of modifications to the system to get to this point
 - Documentation is better but still needs a little work
 - I understand this is a difficult problem because each CS is unique
- Overall happy with the hardware
 - So far production has been going well with limited problems
- Overall ok with the software
 - Learning the new management system has been easy
 - A few open issues, but nothing show stopping
- Support has gotten better
 - Still a number of unanswered questions about the long term plans of the product line
 - CLFS EOLed
 - Currently stuck on Centos 6.4
 - Informed there is at least a 6.6 available
 - Recently learned ACE also going away
 - Not sure when replacement will be available or what this means for our system
 - Mission Critical means that we can't really take these systems down for extended lengths of time
Thank you for your attention.