
Balancing Particle and Mesh Computation
in a Particle-In-Cell Code∗

P. H. Worley
Oak Ridge National Laboratory

Oak Ridge, Tennessee, USA
Email: worleyph@ornl.gov

E. F. D’Azevedo
Oak Ridge National Laboratory

Oak Ridge, Tennessee, USA
Email: dazevedoef@ornl.gov

R. Hager
Princeton Plasma Physics Laboratory

Princeton, New Jersey, USA
Email: rhager@pppl.gov

S-H. Ku
Princeton Plasma Physics Laboratory

Princeton, New Jersey, USA
Email: sku@pppl.gov

E. S. Yoon
Rensselaer Polytechnic Institute

Troy, New York, USA
Email: yoone@rpi.edu

C-S. Chang
Princeton Plasma Physics Laboratory

Princeton, New Jersey, USA
Email: cschang@pppl.gov

Abstract—The XGC1 plasma microturbulence particle-in-
cell simulation code has both particle-based and mesh-based
computational kernels that dominate performance. Both of
these are subject to load imbalances that can degrade perfor-
mance and that evolve during a simulation. Each separately
can be addressed adequately, but optimizing just for one can
introduce significant load imbalances in the other, degrading
overall performance. A technique has been developed based
on Golden Section Search that minimizes wallclock time given
prior information on wallclock time, and on current particle
distribution and mesh cost per cell, and also adapts to evolution
in load imbalance in both particle and mesh work. In problems
of interest this doubled the performance on full system runs
on the XK7 at the Oak Ridge Leadership Computing Facility
compared to load balancing only one of the kernels.

Keywords-particle-in-cell; load balancing; optimization

I. INTRODUCTION

The target code, XGC1, has been developed to model edge
plasma (and its effect on the core plasma) in tokamak fusion
reactors. XGC1 has many runtime options, but in one impor-
tant configuration the primary computational kernels are the
electron push, determining where electrons move during a
timestep, and the nonlinear Fokker-Planck collision operator,
calculating the effect of collisions between particles using
the particle distribution functions in each mesh cell. For
some production-like scenarios for this problem configu-
ration the computational complexities of the electron push
and the collision operator are comparable, but the optimal

∗ This manuscript has been authored by UT-Battelle, LLC under Contract
No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United
States Government retains and the publisher, by accepting the article for
publication, acknowledges that the United States Government retains a non-
exclusive, paid-up, irrevocable, world-wide license to publish or reproduce
the published form of this manuscript, or allow others to do so, for United
States Government purposes. The Department of Energy will provide
public access to these results of federally sponsored research in accordance
with the DOE Public Access Plan(http://energy.gov/downloads/doe-public-
access-plan).

load balancing strategies are different, and optimizing just
for one introduces significant load imbalances in the other,
degrading performance. Both electron push and collision
operator load imbalance evolve with the simulation, and the
load balance for each may need to be adjusted to maintain
good performance.

Load balancing the electron push has been dealt with
effectively for a number of years, but the recent development
and inclusion of the nonlinear collision operator forced us
to revisit our approach. This included first determining the
nature of the collision operator load imbalance, and then
determining how to load balance using incommensurate
metrics. Finally, the mechanism for determining when to
update the electron push load imbalance did not generalize
to the new combined algorithm, and a new approach was
developed. The MPI communication algorithms used to
implement the new algorithm also required careful attention.

The resulting algorithm has proven to be very effective at
improving performance for production scenarios of XGC1
running on nearly the full Titan system, the Cray XK7 at the
Oak Ridge Leadership Computing Facility (OLCF) system,
as well as on Cray and IBM systems at the National Energy
Research Scientific Computing Center and the Argonne
Leadership Computing Facility, respectively.

II. XGC1

XGC1 is a full-F 5D gyrokinetic PIC/finite element code
that models the whole volume plasma dynamics in an ex-
perimentally realistic tokamak magnetic confinement fusion
device geometry, with a special strength in modeling the
edge plasma in tokamak fusion reactors at a first-principles
level.

XGC1 solves the gyrokinetic Vlasov equations[1], [2], [3]
with particles and electric field data on a spatial computa-
tional mesh. For the purposes of this paper, each timestep of
an XGC1 execution includes the stages described in Table I.



1) For each step of a Runge-Kutta algorithm:
a) Collect particle charge density on underlying mesh.
b) Solve gyrokinetic Poisson equation on mesh.
c) Compute electric field and any derivatives needed in particle

equations of motion.
d) Calculate and output diagnostic quantities.
e) Update particle positions and velocities.

i) For electrons, subcycle (typically at least 60 times) with
a fixed electric field (electron push).

ii) For ions, advance one step (ion push).
f) Move particles between processes, as required by updated

positions (particle shift).
2) Based on a runtime parameter N , every N th timestep:

a) Calculate particle collisions and apply this and other source
terms to adjust fields.

Table I
XGC1 TIMESTEP LOOP

(It can also be run with some options disabled and other
options not mentioned enabled.)

Parallelization of XGC1 is based on decompositions of
both the spatial computational mesh and the particle data
across processes, and MPI is used to communicate be-
tween processes. The particle decomposition is based on
the location in the spatial domain, and so is defined by the
spatial domain decomposition, described in the next section.
OpenMP is used to parallelize loops over particles and loops
over mesh vertices or triangles. CUDA Fortran is also used
to accelerate the electron particle position update on systems
with Graphical Processing Units (GPU).

III. XGC1 COMPUTATIONAL MESH AND
DECOMPOSITION

The XGC1 computational mesh for a toroidal domain
consists of uniformly spaced poloidal planes (toroidal cross-
sections) and an unstructured triangular tesselation within
each poloidal plane, where each poloidal plane tesselation
is identical. See Figures 1 and 2 for cartoons of the
complete physical domain, a single poloidal plane, and the
computational mesh for the poloidal plane.

As described in [4], mesh vertices in a poloidal plane
are ordered first by flux surface, starting from the inner
surface. Within each flux surface vertices are ordered by
poloidal angle. This results in an approximate spiral space-
filling curve ordering that preserves locality of the associated
triangles and is roughly monotonic in the radial direction.

The full computational mesh is partitioned over a virtual
two-dimensional processor array, with a “column” subset of
processes sharing responsibility for a poloidal plane, and a
“row” subset of processes sharing responsibility for one ele-
ment of a one-dimensional partition of the mesh vertex index
space. Load imbalances are controlled by adjusting the one-
dimensional partition of the vertex indices, resulting in par-
ticle and vertex-related data being moved between processes
in the same “column” for each adjustment. While some load

Figure 1. Cutaway view of simulated plasma flow in a tokamak fusion
reactor.

Figure 2. Geometry of poloidal plane for a tokamak fusion reactor and
an example XGC1 computational mesh (coarsened for viewing).



imbalances occur in the toroidal direction (between poloidal
planes), these develop and dissipate very quickly and are
difficult to address effectively. Fortunately, addressing load
imbalances in the radial and poloidal directions has been
sufficient to enable good performance scalability.

IV. TARGET SYSTEMS

Results here were collected on the following systems (but
primarily the Cray XK7).

• Titan: Cray XK7 sited at the Oak Ridge Leadership
Computing Facility (OLCF), consisting of a Gemini
interconnect and 18,688 computational nodes. Each
node contains

– one 2.2GHz 16-core AMD Opteron 6274 processor
(with 8 floating point units, 1 per every two cores),

– one NVIDIA K20 Kepler GPU with 6 GB memory,
– 32 GB (non-GPU) memory.

• Edison: Cray XC30 sited at the National Energy Re-
search Scientific Computing Center (NERSC), consist-
ing of an Aries interconnect and 5,576 computational
nodes. Each node contains

– two 2.4GHz 12-core Intel Xeon ”Ivy Bridge” pro-
cessors,

– each of the 24 cores supporting 2-way hyperthread-
ing,

– 64 GB memory.
• Mira: IBM BG/Q sited at the Argonne Leadership

Computing Facility (ALCF), consisting of a five-
dimensional proprietary network and 49,152 computa-
tional nodes. Each node contains

– one 1.6GHz 16-core IBM PowerPC A2 processor,
– each of the 16 cores supporting 4 hardware threads,
– 16 GB memory.

• Jaguarpf: Cray XT5 that was sited at the Oak Ridge
Leadership Computing Facility (OLCF) before being
de-commissioned. It consisted of a Seastar2+ inter-
connect and 18,688 computational nodes. Each node
contained

– two 2.6GHz 6-core AMD Opteron 2435 (Istanbul)
processors per node,

– 16 GB memory.

V. PRIOR PERFORMANCE AND CURRENT ISSUES

The simulation capabilities, and computational complex-
ity, of XGC1 have increased over the years.

A. Pre-2012

XGC1, equipped with electrostatic turbulence capability
to begin with, was further developed during the 2005-2012
Department of Energy (DOE) project “Center for Plasma
Edge Simulation” (CPES), resulting in a code with the
following characteristics and capabilities.

• Lagrangian particle-in-cell code in 5D gyrokinetic
phase space (3D configuration + 2D velocity)

• Solved gyrokinetic Vlasov equation with particle-
momentum-energy conserving linear and nonlinear
Coulomb collisions

• Used realistic geometry and boundary condition
– World’s only kinetic code to include magnetic

separatrix and material wall
In this earlier work excellent performance scalability was

achieved for both (a) weak scaling in particle count and
strong scaling in mesh size and (b) strong scaling in both
particle count and mesh size, out to the full system size
of a series of Cray XT systems at the OLCF. This was
made possible by utilizing a number of sophisticated com-
putational methods and tools, including PETSc, geometric
hashing, Hilbert space filling curve, hybrid MPI-OpenMP
parallelization, bicubic spline, etc. New IO and workflow
technologies were also developed to support production runs,
in particular the ADIOS adaptable IO system [5], DataS-
paces data-staging substrate, and the eSiMon dashboard (all
included in the End-to-end Framework for Fusion Integrated
Simulation (EFFIS)).

An example of this is shown in Figure 3, which describes
weak scaling (in particle count) for two different computa-
tional meshes, one for the DIII-D [6] device and one for the
ITER [7] device. For the ITER device mesh, weak scaling
with two different particle counts per compute node was
examined.

B. Introduction of Drift Kinetic Electrons (2012-2013)

In 2012, support for drift kinetic electrons was added to
XGC1. When enabled, this changes the performance char-
acteristics of XGC1 simulations significantly. The electron
mass is much smaller than the ion mass, and the timestep
for each electron push (calculating new particle positions)
needs to be smaller. XGC1 uses an electron sub-cycling
method and approximately 60 electron pushes per ion push.
The actual cost of the electron push is even larger than
this implies, reaching more than 90% of the computation
time in CPU-only runs (and an even higher percentage of
floating point operations (flops)). For example, the data in
Table II are from 10 timestep runs using a production DIII-
D device mesh on 32 nodes of the Cray XK7, without and
with drift kinetic electrons. Each compute node started with
3.2 millions ions and, when using drift kinetic electrons, 3.2
million electrons. This is a representative particle workload
per Cray XK7 compute node, and thus the ion/electron flop
ratio described here is representative of production runs
using more nodes and more total particles. (These runs do,
however, underemphasize the communication overhead and
overemphasize the mesh-based computation that would be
found in production runs.)

For a similar configuration but on 16384 compute nodes
(3.2 millions electrons and 3.2 millions ions per compute



Figure 3. 2010 Weak Particle Scaling Performance of XGC1 performance
on Cray XT5.

Seconds Flop Count
(max. over processes) (total over processes)
without with without with

elec. elec. elec. elec.
timestep loop 54 1246 8.1× 1012 3.9× 1014

ion push 13 13 4.0× 1012 4.0× 1012

electron push 1142 3.8× 1014

Table II
WALLCLOCK TIME AND TOTAL FLOATING POINT OPERATION COUNTS

WITHOUT AND WITH DRIFT KINETIC ELECTRONS FOR 10 TIMESTEPS OF
XGC1 ON 32 NODES OF A CRAY XK7 WHEN USING 3.2 MILLION

ELECTRONS AND 3.2 MILLION IONS PER NODE AND USING A
PRODUCTION DIII-D DEVICE MESH.

node using a production mesh for the DIII-D device), the
timestep loop total flop count for 10 timesteps was 2.01 ×
1017 while the electron push total flop count for 10 timesteps
was 1.97 × 1017. So 98% of the floating point operations
were in the electron push stage, similar to the results on 32
nodes.

This drift-electron push operation was an obvious target
for acceleration using the GPUs available on the Cray
XK7 architecture. This was implemented using PGI CUDA
Fortran, and achieved approximately 4X speed-up. This
did, however, require further optimizations to the associated
communication algorithms to preserve good scalability for

Figure 4. Comparison of performance of electron push routine (PUSHE)
as a function of threads per MPI process for CPU-only, GPU-only, and
hybrid CPU/GPU implementation

the whole code.
Figure 4 describes the performance of the electron push

(PUSHE) for a CPU-only implementation, a GPU-only
implementation, and an implementation that used both (74%
of the particles pushed on the GPU and 26% on the CPU).
The data are from XGC1 running on 16 nodes of a Cray
XK7 and performance is reported as the maximum time
spent in the electron push across all processes. (Existing MPI
barrier calls within XGC1 indicate that this is an accurate
metric for PUSHE performance.) The CPU implementation
uses OpenMP to parallelize the electron push. For the
GPU implementation, multiple MPI processes on a node
can assign work to the GPU. The data also indicates the
relative insensitivity to the choice of number of OpenMP
threads per MPI process as long as the total number of
computational threads is constant. This is important, as it
allows the OpenMP thread count to be set so as to optimize
other aspects of XGC1 performance.

The impact of the port to the GPU on whole code
performance is described in Figure 5. Note the importance
of also optimizing the MPI communication algorithms after
the introduction of drift kinetic electrons. Performance of
this version of the code also scaled well on other platforms.
For example, Figure 6 describes the results of a strong
scaling study. The x-axis here is compute node count, even
though the compute nodes are different enough to make
direct comparison between platforms problematic.

Note that, for these science cases, equidistributing the
electrons between the processor rows (minimizing the maxi-
mum count) adequately addressed electron push-related load
imbalances.

C. Introduction of New Collision Operator (2014-2015)

In 2014, support for the nonlinear Fokker-Planck colli-
sion operator was added to XGC1 [8], [9]. When enabled,
this (once again) changes the performance characteristics
of XGC1 simulations, potentially significantly. Unlike the



Figure 5. Evolution of XGC1 performance on Cray XK7 from Jan. 2013 to
July 2013 as MPI communication algorithms were optimized and electron
push operator was ported to GPU. Performance is for weak scaling in
particles (3.2 million ions and 3.2 million electrons per compute node) and
strong scaling in mesh (for DIII-D device), for 16 MPI processes per node
and for 1 MPI process and 16 OpenMP threads per node.

Figure 6. Strong scaling study for XGC1 on Cray XC30, Cray XK7, and
IBM BG/Q using representative production size problem.

electron push, the cost of this collision operator scales
with the mesh size, not the particle count. It is also a
function of how often it is called (every XGC1 timestep,
every third timestep, ...) and whether axisymmetry (between
the mesh planes) is assumed. The choice of frequency and
whether to exploit symmetry is determined by the physics
question being addressed, and there are simulations that
require computing the collision operator every timestep and
without symmetry.

For example, Table III lists the total floating point oper-
ation count for 5 timesteps of a representative science con-
figuration (DIII-D device mesh using 32 planes, 26 billion
total ions, and 26 billion total electrons run on 8192 compute
nodes of a Cray XK7) when computing collisions every
XGC1 timestep and not exploiting axisymmetry. In this
example the collision operator is more expensive, in terms of
floating point operations, than the electron push. However,
collision floating point operations would be divided by 32
in this example if assuming axisymmetry, or by 3 if, for
example, computing every third timestep.

Floating Point
Operation Count

timestep loop 14.9× 1015

electron push 5.4× 1015

nonlinear collision operator 7.5× 1015

Table III
TOTAL FLOATING POINT OPERATION COUNTS FOR 5 TIMESTEPS OF A

REPRESENTATIVE XGC1 PRODUCTION RUN USING DRIFT KINETIC
ELECTRONS, NONLINEAR COLLISION OPERATOR, 26 BILLION

ELECTRONS, 26 BILLION IONS, AND A DIII-D DEVICE MESH, ON 8192
NODES OF A CRAY XK7.

The collision operator is local to each mesh cell. Disre-
garding load imbalance, performance then scales with the
number of processes for a fixed size mesh. Nested OpenMP
parallelism is implemented in the collision operator for
performance portability and to expose additional parallelism.
OpenMP at the outermost loop is usually a little more
efficient, but requires more memory, and so a mixed strategy
works best on the IBM BG/Q. On the Cray XC30 both
inner and outer are equally efficient. Given the computa-
tional intensity, the nonlinear collision operator is a prime
candidate for acceleration on the GPU. This is currently
being investigated using OpenACC.

VI. LOAD IMBALANCES

As ions and electrons are pushed, load imbalances will
appear for any fixed mesh decomposition. The particle
velocity is such that load balancing in the toroidal direction
is impractical, but also of little consequence in current sim-
ulations. The movement of particles in the radial or poloidal
directions is much slower, and updating the one-dimensional
decomposition of the space-filling-curve ordering of the
mesh vertices has proven very effective for load balancing
particle counts, and thus both particle-related computational
costs and memory requirements.

While the cost of computing the nonlinear collision oper-
ator is local to a mesh cell, it is not uniform across the mesh.
One aspect of the cost is the number of iterations required
for convergence of a Picard iteration, and the number of
iterations is dependent on the temperature of the plasma in
the cell. Because the temperature distribution evolves with
the simulation, the corresponding cost also varies. However,
temperature will generally be higher in some parts of the
domain than in others throughout the simulation, and does
not typically change its distribution very quickly. See, for
example, Figure 7 for snapshot of Picard iteration count as a
function of location during a simulation. The data are from a
run assuming axisymmetry, but the results are representative
of non-axisymmetric cases as well.

Like the particle distribution load imbalance, the collision
cost load imbalance can be treated very effectively by up-
dating the one-dimensional decomposition of the mesh. The
collision cost (wallclock time to compute) can be measured
per mesh cell for each poloidal plane, the maximum across



Figure 7. Picard iterations required for convergence in nonlinear collision
operator as a function of location in poloidal plane for an example problem
and simulation time for a production DIII-D device mesh.

the planes computed, and the one-dimensional decomposi-
tion adjusted to approximately equidistribute this metric of
the cost across processes.

The same mesh decomposition is used for both the particle
pushing and for the nonlinear collision operator calculation,
and what is optimal for one is not optimal for the other.
This would be true even if collision cost was uniform
across the mesh. For example, see Figure 8. Here the
initial particle distribution is load balanced, and we plot the
number of mesh vertices assigned to each process. As this
is identical for processes assigned the same element of the
mesh decomposition but in different poloidal planes (having
the same interplane id in the virtual processor array), it is
more convenient to plot the sum of these vertices by the
interplane id.

Figure 9 is a similar analysis, but now looking at the
number of Picard iterations required per process and per
the subset of processes with the same interplane id, using
the same axisymmetric example. Note that when assuming
axisymmetry the Picard iteration is calculated only for one
poloidal plane, and the vertices in a given element of the
partition are further decomposed across the processes with
the same interplane id (and thus there is no redundant
calculation). As these figures demonstrate, this part of the
collision cost is neither uniform over the mesh nor similar to
the particle count distribution, and load balancing particles
only introduces yet a different load imbalance.

VII. HYBRID LOAD BALANCING

When neither particle push nor the nonlinear collision
operator dominate the computational cost (as measured in
wallclock time), a compromise mesh decomposition must
be determined, and updated as both collision and particle
cost evolve, otherwise performance will be lost. The type of
analyses described in the previous section did not provide
sufficient insight for us to develop a physics-based hybrid
load balancing scheme.

Figure 8. Number of vertices assigned to each process, and then to each
subset of processes with the same interplane id, when load balancing the
particle distribution for an example problem and simulation time for a
production DIII-D device mesh.

The next approach considered was equidistibuting some
weighted measure of particle-related and collision compu-
tation cost. We were also unsuccessful with this. It did
not make sense to try to combine particle count per mesh
cell and collision wallclock time per mesh cell. And, while
the particle count load imbalance is an excellent predictor
of particle computation cost load imbalance, predicting the
actual particle computation wallclock time from the particle
distribution is not simple (and we were not successful in
doing so accurately enough for use in such an optimization
strategy.). There are many loops over particles throughout
the code, with synchronization points in between, and the
particle load imbalance also affects the MPI communication
overhead in the code.

The next approach was to equidistribute the nonlinear
collision wallclock time, but subject to an upper bound on
the particle load imbalance. This was a simple generalization
of the existing one-dimensional optimization algorithm, and
it worked. However, there is no guarantee that any particular
upper bound on the particle load imbalance will improve
performance significantly over just load balancing particles
or load balancing collision wallclock time. This approach
did however provide a single variable to use in yet another



Figure 9. Number of Picard iterations calculated by each process, and
then by each subset of processes with the same interplane id, when load
balancing the particle distribution for an example problem and simulation
time for a production DIII-D device mesh.

optimization algorithm.
Our almost final approach was to use a Golden Section

Search algorithm [10] to adjust the upper bound on the
particle load imbalance. The metric to be optimized was
the observed wallclock time for the entire code between
collision timesteps. So, if nonlinear collisions are computed
every third timestep, for example, then the optimization takes
into account the cost of the particle-related computation for
the intermediary timesteps as well. Note that this means
that the Golden Section Search algorithm proceeds with
the XGC1 simulation, saving wallclock time data associated
with previous particle load imbalance constraints (saving
history for the three previous values), and we do not optimize
exactly for any given timestep. It is not possible to optimize
the performance based on the information for a given
timestep because the impact of changing the particle load
imbalance bound can only be determined empirically, and
it would be a significant waste of resources to recompute
an existing timestep. Rather, the Golden Section Search
algorithm is used to estimate improvements to the constraint
for future timesteps.

The algorithm as currently implemented differs from the
above description in the following ways.

• The constraint on the particle load imbalance is actually
a constraint on a relative increase in the minimum
particle load imbalance possible. So the first step is
to calculate the particle-only load balanced mesh de-
composition, determine the maximum load imbalance
for this (a perfect load balance is almost never possible
by partitioning the mesh vertex ordering), and multiply
this by α, where α is the variable manipulated by the
Golden Section Search. Note that this implies that a
lower bound on α is 1.

• As both particle and collision cost distributions change
over time, the wallclock time measured for a previous
value of α, call it αi, will not be accurate in the
future, leading to nonoptimal solutions from the Golden
Section Search. If the wallclock time for this αi has
been used 3 times without being recalculated, then the
next iteration of the Golden Section Search reuses this
value, so as to update the associated wallclock time.
Note that this also enables the optimization process
to recover from a performance perturbation that would
otherwise skew the α selection process.

• Similarly, to avoid finding a minimum from which the
Golden Section can not escape even when the distribu-
tions evolve, the implemented algorithm looks outside
of the bounding interval once the interval becomes too
small.

The current inputs to the algorithm are

1) lower bound on α. (Default is 1.0.)
2) upper bound on α. (Default is 2.0.)
3) initial value for α. (Default is the user specified

particle load imbalance constraint, which default is
1.1)

4) frequency of Golden Section Search updates, in terms
of number of nonlinear collision timesteps. (Default is
0, so disabled.)

Note that there is still a user-specifed upper bound on
the particle load imbalance, if only to prevent memory
issues. (This bound is relative to the maximum particle load
imbalance after the last rebalance.) If this bound is exceeded,
then the hybrid load balancing algorithm is invoked, using
the existing constraint value (α). That is, the Golden Section
Search algorithm is only invoked to update the constraint at
the user indicated timesteps, not whenever the load balancing
algorithm is executed.

These input parameters, and the somewhat awkward re-
lationship to the “other” upper bound on particle load im-
balance, are topics for future improvements. However, rea-
sonable settings for these parameters have been determined
through experimentation. At worst, nonoptimal settings of
the parameters will either slow the convergence (because
the interval is unnecessarily large or the frequency is too
low) or miss the optimum by the interval not containing
the optimum, neither of which will affect the validity of the



simulation. Too frequent invocations of the Golden Section
Search algorithm also do not improve the solution, and there
is some overhead to the redistribution of particles and mesh
information after repartitioning.

Figure 10 contains three plots, the first comparing the
distribution of mesh vertices for an example problem for
a uniform decompostion, for a particle-only load balance,
and for the hybrid particle count and collision cost load
balance. As before, this is summed across the processes
with the same interplane id. The second compares the
particle distribution of the particle-only and hybrid load
balanced decompositions. The third compares the collision
wallclock time distribution for the particle-only and hybird
load balanced decompositions. The second plot indicates
how much particle count load imbalance is being introduced
by the hybrid load balancing scheme, and the third indicates
how much collision cost load imbalance exists if only load
balancing particles. The hybrid load balancing data were
collected after three Golden Section Search adjustments
where the adjustments occured every other timestep that
nonlinear collisions were calculated. Other experiment de-
tails are listed in the figure legends.

The previous examples confirm that the hybrid load
balancing is doing something that appears reasonable. The
next example documents the performance advantage of the
new load balancing scheme. A production XGC1 run on the
Cray XK7 at the OLCF (Titan) was simulating the plasma
on an ITER device computational mesh (approximately 1
million vertices per plane, and 32 planes) with 131 billion
electrons and 131 billion ions total. It was run using 16384
compute nodes, with 16384 processes, 16 OpenMP threads
per process, and the GPU to accelerate the electron push
(75% of the particles on the GPU and 25% on the CPU).
To accurately simulate the transient at start-up, the non-
axisymmetric version of the nonlinear collision operator was
computed every XCG1 timestep. Hybrid load balancing was
invoked every other timestep. Based on tuning results on the
XC30 system at NERSC (Edison), the simulation began with
using all 16 OpenMP threads for the inner loops in the nested
OpenMP. Delays in getting the job started (tracking down
a bad compute node) precluded tuning this on Titan before
the simulation started. However, it was noticed during the
run that the performance of the collision operator was poor.
The job was stopped after 77 timesteps, and then restarted
from the most recent checkpoint (after timestep 75). For the
restart, 8 OpenMP threads were assigned to the outer loop
(leaving 2 inner threads per outer thread for the inner loops).
This improved performance significantly. (Note however that
the reason that the original configuration was so very slow
was that the jobs scripts mistakenly did not include the
setting

export OMP_MAX_ACTIVE_LEVELS=2

and thus no threading was enabled in the collision operator

Figure 10. Comparison of impact of particle-only and hybrid particle count
and collision cost load balancing on load balance for mesh vetex, particle
count, and collision wallclock time distributions, respectively. Counts and
time are summed across the planes for the same interplane id. Experiment
particulars described in figure legends and in text.

during the first run except what was exploited in the thread-
aware math library routines. Only 8 threads were active
during the second run. Later runs changed the number of
outer threads to 16.)

This unusual situation provided a way to demonstrate
the impact of the hybrid load balancing scheme. The first
step of a start-up run uses particle-only load balancing. The
first step of the restart run uses the mesh decomposition
captured in the checkpoint. Since the cost of the collision



Figure 11. Wallclock time per XGC1 timestep as a function of the timestep
for two runs of the ITER device science case. The two runs differ by
the amount and type of thread-level parallelism exploited in the nonlinear
collision operator. The second run is a restart of the first at timestep 75.

Figure 12. Fraction of total wallclock time spent in the nonlinear collision
operator as a function of the XGC1 timestep for the two runs of the ITER
device science case.

operator changed dramatically between the two runs, the
hybrid load balancing scheme was presented with significant
load imbalances at the beginning of both runs. (The Golden
Section Search history is not checkpointed, which was an
advantage in this case as the data from the first run was not
representative of the second run.)

Figure 11 describes the performance of these runs in terms
of seconds per XGC1 timestep as a function of timestep.
It can be seen immediately the impact of the hybrid load
balancing (and the impact of changing the number of outer
OpenMP threads in the collision operator from 1 to 8).
Performance was not particularly sensitive to the Golden
Section Search parameter after the first step, but the overhead
of load balancing every other step was also not significant
in these experiments.

Figure 12 contains a plot of the fraction of the total
cost represented by the collision operator. Note that load
balancing decreases this somewhat. For ease of comparison,
the second run is plotted with its first timestep labelled as
timestep 1. Figure 13 is a plot of the particle load imblance

Figure 13. Evolution of the Golden Section Search optimization parameter
(constraint on maximum electron particle load imbalance) as a function of
the XGC1 timestep for the two runs of the ITER device science case.

Figure 14. Evolution of the electron particle load imbalance and of the
nonlinear collision operator wallclock time load imbalance as a function of
the XGC1 timestep for the two runs of the ITER device science case.



constraint used by the Golden Section Search. Note that the
first three values are the same for the two runs, as these
are purely a function of the user input describing the search
domain and the initial parameter. After that they diverge.
Despite the very different values for later iterations of the
Golden Section Search, most of the benefit in these runs was
from the constrained optimization using a fairly tight particle
load imbalance constraint (as can be seen in Figure 11).
Figure 14 contains two plots, one documenting the evolution
of the collision wallclock time load imbalance (ratio of the
maximum over processes to the average) and the evolution
of the electron particle count load imbalance. Note that the
Golden Section Search parameter is closely related to the
electron particle count load imbalance, but is not identical.

In summary, for this experiment, the hybrid load balancing
was very effective, doubling performance in both runs, and
was able to adapt to the extreme change in performance
characteristics when transitioning between the two. When
the particle push cost or the collision operator cost dominates
the other, the Golden Section Search will not do much, once
it determines which of the two is dominant. However, it
also will do no harm, as long as the overhead of tweaking
the mesh partition is not significant (which is true in these
examples).

VIII. CONCLUSION

New science capabilities are continuing to increase cost
and change performance characteristics of the XGC1 code,
and these characteristics are very sensitive to the choice
of the many options. In particular, the recent addition of
the nonlinear Fokker-Planck collision operator required re-
engineering the load balance scheme to address both mesh-
based and particle-based load imbalances simultaneously,
to respond to evolutionary changes, and to deal robustly
with performance outliers (whether due to simulation or
to externally caused performance variability). The current
algorithm has more than doubled performance for example
production runs. Future work will investigate automatic
determination of appropriate load balancing frequency, and
elimination of the need to set upper and/or lower bounds.

ACKNOWLEDGEMENTS

Support for this work was provided through the Scientific
Discovery through Advanced Computing (SciDAC) program
funded by U.S. Department of Energy, Office of Science,
Advanced Scientific Computing Research and Fusion En-
ergy Sciences, under Contract No. DE-AC05-00OR22725
with UT-Battelle, LLC, No. DE-AC02-09CH11466 with
Princeton University, and DE–SC0008449 with Rensselaer
Polytechnic Institute.

Awards of computer time was provided by the Innovative
and Novel Computational Impact on Theory and Experiment
(INCITE) program. This research used resources of the

Oak Ridge Leadership Computing Facility (OLCF), Ar-
gonne Leadership Computing Facility (ALCF), and National
Energy Research Scientific Computing Center (NERSC),
which are U.S. DOE Office of Science User Facilities sup-
ported under contracts DE-AC05-00OR22725, DE-AC02-
06CH11357, and DE-AC02-05CH11231, respectively.

REFERENCES

[1] W. W. Lee, “Gyrokinetic approach in particle simulation,”
Phys. Fluids, vol. 26, no. 1, pp. 556–562, 1983.

[2] ——, “Gyrokinetic particle simulation model,” J. Comput.
Phys., vol. 72, no. 1, pp. 243–269, 1987.

[3] T. S. Hahm, “Nonlinear gyrokinetic equations for tokamak
microturbulence,” Phys. Fluids, vol. 31, pp. 2670–2673, 1988.

[4] M. Adams, S. Ku, E. D’Azevedo, J. Cummings, and
C.-S. Chang, “Scaling to 150k cores: recent algorithm and
performance engineering developments enabling XGC1 to
run at scale,” Journal of Physics: Conference Series, vol.
180, no. 1, p. 012036, July 2009. [Online]. Available:
http://stacks.iop.org/1742-6596/180/i=1/a=012036

[5] Q. Liu, J. Logan, Y. Tian, H. Abbasi, N. Podhorszki, J. Y.
Choi, S. Klasky, R. Tchoua, J. Lofstead, R. Oldfield et al.,
“Hello ADIOS: the challenges and lessons of developing lead-
ership class I/O frameworks,” Concurrency and Computation:
Practice and Experience, vol. 26, no. 7, pp. 1453–1473, 2014.

[6] “DIII-D.” [Online]. Available:
https://fusion.gat.com/global/DIII-D

[7] “The ITER Tokamak.” [Online]. Available:
https://www.iter.org/mach

[8] E. S. Yoon and C. S. Chang, “A Fokker-Planck-Landau
collision equation solver on two-dimensional velocity grid
and its application to particle-in-cell simulation,” Physics of
Plasmas (1994-present), vol. 21, no. 3, p. 032503, 2014.

[9] R. Hager, E. Yoon, S. Ku, E. D’Azevedo, P. Worley, and
C. Chang, “A fully non-linear multi-species Fokker-Planck-
Landau collision operator for simulation of fusion plasma,”
Journal of Computational Physics, vol. 315, no. 15, pp. 644–
660, 2016.

[10] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Nu-
merical Recipes: The Art of Scientific Computing. Cambridge
University Press, 1988.


