

CUG 2016 Proceedings 1 of 7

Directive-based Programming for Highly-Scalable Nodes

Douglas Miles, Michael Wolfe
PGI / NVIDIA

ABSTRACT: High-end supercomputers have increased in performance from about 5

TFLOPS to 34 PFLOPS in the past 15 years, a factor of about 7,000. Increased node

count accounts for a factor of 20 to 30, and clock rate increases for another factor of 5.

Most of the increase, a factor of 50 to 100, is due to increases in single-node

performance. We expect this trend to continue with single-node performance increasing

faster than node count, and with that performance increase driven by increased

parallelism. Building scalable applications for such targets means exploiting as much

intra-node parallelism as possible. We discuss coming supercomputer node designs and

how to abstract the differences to enable design of portable scalable applications in

OpenACC and OpenMP.

KEYWORDS: Compiler, Accelerator, Multicore, GPGPU, Parallelization, Vectorization

1. Introduction

High-end supercomputers have increased in

performance from maximum of about 5 TFlops to 34

PFlops in the past 15 years, according to the Top 500

Supercomputer list [TOP15]. This increase is about a

factor of 7,000, and has been driven by 3 factors. Node

counts have increased from a range of 500 to 10,000 in

the fastest computers 15 years ago, to maximums of over

80,000 today. Another factor is faster processor clocks,

from about 400MHz to just under 3GHz today. Together

these account for an average factor on the order of about

100X. Another hard-to-measure factor is improvements in

microarchitecture, such as deeper pipelines and multiple-

instruction issue. The rest of the performance

improvement is due to increased parallelism on a node,

through SIMD instructions, multicore processors,

multiple processor sockets and/or accelerator sockets.

Given recent announcements indicating the likely

decrease in typical processor clock rates [HO16], the

push to Exascale computing will be driven by a further

increase in on-node parallelism. This is evidenced by the

CORAL system designs, which have node counts

commensurate with or smaller than current systems while

delivering about a 10X performance increase.

The number and type of processors of a node,

together with the core count of each processor and SIMD

capability of each core, comprise the parallelism profile

of that machine. Future machines will have widely

different parallelism profiles. To take advantage of these

highly parallel nodes without tuning to any single

machine requires writing applications so as to expose as

much parallelism as possible, without expressing it in a

way that over-specifies how it is exploited on different

systems.

This requires a mechanism to express parallel

programs, as well as compilers or libraries that can map

the available software parallelism onto each target system,

and profiling and analysis tools to predict and measure the

effectiveness of the parallelism in a given application for

each target machine. We look at the common directive-

oriented programming models for on-node parallel

programming, OpenMP [OMP15] and OpenACC

[OACC15]. We provide specific descriptions of how we

expect to implement certain constructs in these models in

PGI compilers targeting GPUs, multi-core CPUs and

Xeon Phi, including options we have explored or are

exploring. We describe which constructs are necessary

and recommended, and those that should be avoided when

designing applications for scalable nodes. We also discuss

aspects of these new architectures that are not effectively

managed by current approaches, and which need further

development in the programming models.

CUG 2016 Proceedings 2 of 7

2. Node Architecture Features

To motivate this work, we discuss three specific node

architectures that represent common current systems and

those we expect in the near future. We discuss the

hardware features that relate to compute parallelism as

well as data management.

2.1 Multi-core CPU Nodes

The first is a CPU node, with one to four multicore

CPU sockets, each socket with a memory controller and a

subset of the shared memory, and all sockets and cores

cooperating with hardware cache coherence. Typical

CPUs used in HPC systems today include Intel Xeon and

IBM OpenPOWER. We expect ARMv8 CPUs to be used

in HPC systems in the near future.

Parallelism across cores is exploited by creating

threads in the operating system (POSIX threads), and

scheduling one or more threads per core. This allows the

same parallelism mechanism to exploit cores both within

and across sockets. Synchronization and communication

between threads is implemented in the shared memory,

using locks (or transactional memory) to protect small

critical sections that update shared data structures. This

requires no additional processor state or operating system

support for each thread, but unfortunately provides no

optimized hardware for synchronization. In many current

designs, the cores also support 2-8 hardware threads per

core, either using simultaneous or temporal

multithreading. Often, each core will have a private

level-1 and level-2 cache; sometimes, small groups of 2-4

cores share a level-2 cache. Sometimes there is a large

level-3 cache as well.

The cores on all CPUs mentioned above have SIMD

instructions to perform 2 to 16 operations on SIMD

register data in a single instruction. SIMD instructions

are an inexpensive mechanism to improve compute

throughput at minimal hardware cost. An Intel Broadwell

processor with 22 cores and AVX3 instructions has 88

FP64 hardware compute lanes.

Delivering high performance on a multi-core CPU

node means scheduling at least one thread per core, and

perhaps more than that to populate the hardware threads

as well. It requires generation of SIMD instructions

wherever possible. To minimize cache coherence traffic,

threads assigned to different cores and especially different

sockets must be scheduled to work on data that does not

live in shared cache lines. That means scheduling high-

stride loop iterations to different cores, low-stride loop

iterations to threads on the same core, and stride-1 loops

to SIMD instructions.

2.2 GPU-Accelerated Nodes

A GPU-accelerated node typically has one or a small

number of multi-core CPU host processors, and one to

eight GPU accelerators. The most commonly used GPU

in HPC systems today is the NVIDIA Tesla. Parallelism

on a GPU is exploited by launching a kernel, a self-

contained sub-program and associated data with multiple

levels of parallelism specified in the kernel itself. Current

GPUs typically support three levels of parallelism: i)

some number of compute engines (NVIDIA Streaming

Multiprocessors), ii) within each compute engine are a

large number of compute cores (NVIDIA CUDA cores)

groups of which execute in lock-step, similar to SIMD

mode but with greater flexibility, iii) a high degree of

hardware-supported multithreading which allows the

compute cores to be heavily oversubscribed as a means to

tolerate main memory latency.

GPU hardware implements extremely fast thread

creation and shutdown, and fast synchronization between

compute cores in the same compute engine. GPU support

for synchronization between threads in different compute

engines is limited. When a GPU kernel is launched, the

host CPU may continue executing, or may wait for the

kernel to complete. Current GPUs have a physically and

logically separate, relatively small, high bandwidth

(HBW) memory. To compute on the GPU, data is moved

from the large system memory to HBW memory. Data

movement is pure overhead, so must be optimized to

minimize its volume and frequency. GPUs run at a much

slower clock rate than the fastest CPUs, and have smaller

hardware caches. However, with more compute resources

and hardware-assisted parallelism support, GPUs can

often achieve performance improvements measured in

factors over CPUs on highly data parallel applications.

An NVIDIA Pascal P100 GPU [NV16] has 56

compute engines, each with 32 FP64 floating-point units

for 1792 FP64 hardware compute lanes. With deep

multithreading, a running program can exploit many

thousands of simultaneously active parallel operations.

Achieving high performance on a GPU node requires

managing data traffic between system and HBW memory

carefully, moving all data parallel operations to the GPU,

and managing asynchronous CPU/GPU computation. On

the GPU itself, high-stride loop iterations can be

scheduled across the compute engines and stride-1 loops

scheduled to the lock-step compute cores to maximize

HBW memory bandwidth. In particular, it is possible to

map stride-1 inner loops designed for SIMD-capable

CPUs with reasonable efficiency on GPUs. This is

important for purposes of creating and supporting

programming models that enable performance portability.

CUG 2016 Proceedings 3 of 7

2.3 Many Integrated Core (MIC) Nodes

Our third node is exemplified by the Intel Knights

Landing (KNL) Xeon Phi MIC processor [SG16], which

we consider only as a self-hosted processor (not a co-

processor). A KNL processor is in many ways very like a

CPU node, but there are many more cores (72), each with

support for 4 hardware threads and two 512-bit SIMD

units. This gives a KNL processor 1172 hardware FP64

compute lanes. The cores use an on-chip network for

distributed cache coherence. To limit or control on-chip

network traffic, the application may choose to divide the

72 cores into 4 quadrants so coherence messages only

have to traverse the cores in a single quadrant. The KNL

shares certain parallelism profile features with a GPU:

massive parallelism, caches which are much smaller than

on a CPU, and a relatively small attached HBW memory.

As on a GPU, moving data between the system memory

and HBW memory is pure overhead that must be

minimized.

Extracting high performance from a KNL node will

require much more parallel work than on a CPU node,

and will likely require more programmer effort. There are

more cores, so more threads must be created just to

populate them. The SIMD instructions are twice as long,

and there are two SIMD units per core. The caches are

smaller, meaning there will be more cache misses and

hardware multithreading will be even more important

than on a CPU. This further shrinks the cache available

per thread, so scheduling threads that share data to the

same core will be even more important. As on a GPU,

minimizing data movement between the system and HBW

memory will be important. While the KNL can operate

out of system memory directly, we expect that

maximizing performance will require heavy use of the

HBW memory.

2.4 Common Themes

Common themes across all of these no node types are

multiple cores or compute engines, SIMD or SIMD-like

execution, and multithreading support. The size of each

hardware parallelism dimension varies greatly across the

different processor and node types, and must be

accommodated by the programmer, a compiler and

programming model, or some combination of these.

3. Dynamic Scalability

A key goal for any modern parallel programming

model is to enable writing of programs that perform well

on nodes with only a few CPU cores, on fat nodes with

multi-socket multicore processors, on KNL MIC

processors, or on CPU+GPU processors. The FP64

compute lane counts for these nodes varies from under

100 to over 1700. Multi-GPU nodes can have even much

larger numbers of lanes. Mapping a parallel loop

efficiently onto the compute lanes of a multicore CPU or

KNL requires spreading the iterations across threads, one

per core or one per hardware thread, and further across

the SIMD lanes in each core or hardware thread. For a

GPU, the parallel loop iterations must be spread across

the compute engines, and the compute cores within the

engines, with enough slack parallelism to fill as many

multithread slots as possible in order to tolerate memory

latency.

For highest performance, a program should exploit

all available hardware parallelism. Essentially, the goal is

to fill all the compute lanes. Given that different node

architectures have significantly different parallelism

profiles, either the programmer or a compiler must map

program parallelism to hardware parallelism. Program

parallelism can either be implicit and descriptive,

allowing mappings to a variety of types of hardware, or it

can be explicit and prescriptive with the programmer

directing exactly how it should be mapped to a given

target.

When a program is written with parallelism that can

be exploited across multiple hardware dimensions, we say

it has dynamic scalability. A parallel loop with adjacent

memory references may be best mapped across SIMD

lanes. A high stride parallel loop may be best mapped

across CPU cores, to minimize cache false sharing. A

parallel loop that shares data across iterations may be best

mapped across the hardware threads of a single core, to

maximize cache utilization. If a program exposes more

parallelism than the hardware can exploit, it can be dialed

back or serialized to ensure efficient execution on targets

that don’t efficiently support over-subscription. Highly

parallel programs can generally be scaled down for

efficient execution on a modestly parallel or serial

hardware target. It is difficult or impossible to scale a

modestly parallel program up to run efficiently on a

massively parallel hardware target.

4. Descriptive Parallelism

Implicit in the discussion of dynamic scalability is

the ability to remap program parallelism to different

hardware parallelism dimensions depending on the target.

Here, we discuss how this is done with current and

proposed languages: OpenMP, OpenACC, Fortran 2008

and the parallel execution policies being considered for

C++17.

In OpenMP, mapping a parallel loop across threads is

done with a parallel do directive (assuming Fortran).

Mapping a single loop across both threads and SIMD

lanes on a multicore is done with a parallel do simd

directive. For a GPU, mapping a parallel loop across the

CUG 2016 Proceedings 4 of 7

compute engines is done with a teams distribute

directive, because the compute engines can’t efficiently

synchronize as required by parallel threads (and on some

targets can’t synchronize at all). Mapping a parallel loop

across the compute engines and the compute cores inside

the engine could be done with a teams distribute

parallel do directive, though this may depend on the

compiler being used. It is obviously undesirable to write

directives in different ways for different targets, or to use

ifdef preprocessor selection for each parallel directive

above each parallel loop.

One option is for the user community to decide on

the preferred way to write a parallel loop (teams

distribute parallel do simd, perhaps) and to push the

implementations to agree on how to map the parallelism

for each target. This starts to fall apart if there are nested

parallel loops that cannot be collapsed. For a GPU target,

the programmer may want an outer loop mapped across

teams (teams distribute) and the inner loop(s) spread

across the compute cores within a compute engine

(parallel do). For a multicore or manycore target, the

programmer may want the outer loop mapped across

cores or threads (parallel do) and the inner loop mapped

across the SIMD lanes (simd). Such a structure can’t be

expressed without preprocessing, and requires the

programmer to select the mapping for each target.

OpenACC uses a more descriptive approach. The

specification of a parallel loop is separated from the

selection of the parallelism mapping. The user may select

whether to map a loop to gang, worker or vector

parallelism dimensions, or may leave this to the compiler.

This allows a single program, without preprocessing, to

exploit the different parallelism profiles of a multicore,

manycore, or GPU processor.

Fortran 2008 [FTN10] added the do concurrent

construct. The standard declares that the execution of the

iterations “may occur in any order,” including in parallel,

and that “the loop iterations have no interdependencies.”

It does not specify how the loop must be executed.

Rather, it gives properties of the loop that must be true,

allowing the implementation to parallelize or otherwise

optimize the loop execution. The compiler may vectorize

the loop, or software pipeline it, or run it in parallel using

multiple hardware cores, or using hardware threads within

a core, or any combination of these that is appropriate for

the target. The do concurrent construct provides the

dynamic scalability needed for effectively targeting

multiple architectures. Fortran 2015 [FTN15] also adds

support for private and shared data annotations on do

concurrent, but notably does not add support for

reductions.

C++17 [CPP15] adds extensions for parallelism,

expressed as execution policies on common C++

algorithms. There are about 75 of these algorithms,

including sort, finding the maximum element, and so on.

For this discussion, the key algorithm is for_each, which

functions much like a loop, invoking a function or lambda

on each value of an index range. Invoking the for_each

algorithm with a par or par_vec execution policy will tell

the implementation that parallel execution is legal. In

particular, specifying the par_vec policy allows any

execution ordering, much like the Fortran do concurrent,

including interleaving on a single thread, as with software

pipelining. As with do concurrent, the par_vec policy

seems to provide the dynamic scalability needed to

effectively target multiple parallelism profiles effectively.

As hardware parallelism and complexity increases,

including multiple dimensions of parallelism, more

parallelism must be exposed and exploited in software.

The software to hardware mapping problem becomes

increasingly challenging. Creating efficient mappings

requires knowledge of the characteristics of the program

as well as the target hardware. For the languages we are

considering in this discussion, a compiler processes a

program for execution on a specific hardware target. This

is a key advantage of compilers and perhaps the strongest

argument for pushing the mapping problem as much as

possible into a compiler. Another argument is that while

programmers can often manually create mappings that are

more efficient than a compiler, compilers are tireless. A

compiler that delivers mappings with reasonable

efficiency on a consistent basis provides a huge boost to

programmer productivity.

This is exemplified by the inner workings of

vectorizing compilers, which have been common for more

than four decades [Co73, LC91]. A vectorizing compiler

determines whether to generate vector or SIMD

instructions for a given loop by analyzing both legality

and profitability. Most compiler literature on this topic

focuses on the legality analysis, such as flow graph and

data dependence analysis.

However, in some cases SIMD code is slower than

the corresponding sequential code. For instance, if the

code requires gather or scatter operations but the

instruction set has no SIMD gather instruction, simulating

the gather operation may be slower than just executing the

loop sequentially. Compilers use both compile-time

heuristics and dynamic runtime checks to drive alternate

code paths and optimize the chances that an optimal code

sequence is executed. This profitability analysis for

vectorizing compilers is carefully tuned for the target

architecture. This technology has been successful enough

that it’s now relatively uncommon for HPC programmers

to manually vectorize loops using SIMD intrinsics.

The same characteristics and opportunities hold true

for generating parallel code in general, but the mapping

problem is more complex. Not only must the programmer

or the compiler decide if parallel code is legal, but also

CUG 2016 Proceedings 5 of 7

whether it is profitable and how to map it efficiently onto

the target hardware parallelism.

5. Bottlenecks to Scaling

To support performance portability, we must promote

a programming style that enables applications to scale and

perform well across all HPC target architectures. This

means training users to write programs that will run well,

and training compilers (and compiler implementers) how

to compile these programs for high performance.

Successful applications tend to live for many years and

are used across many hardware targets and generations of

HPC systems. As a consequence, programmers should

focus on scalable parallel constructs which can be flexibly

exploited on different targets and allow expression of

enough parallelism to fill the many compute lanes that

current and future processors will have.

Specifically, hindrances to scalable parallelism or any

bottlenecks in the middle of a parallel construct should be

avoided. Synchronization features were intentionally

minimized in the design of OpenACC, and are limited to

reductions and atomics. These are so commonly used in

important applications as to be unavoidable, and modern

hardware often adds features to maximize their efficiency.

OpenMP has a rich set of synchronization features,

many of which were designed for systems with very

modest parallelism in the form of a few SMP processors.

These include OpenMP single, master, critical, ordered

and barrier constructs, and use of unstructured locks in

general. These OpenMP features should be avoided at all

costs in the design and implementation of scalable

programs.

The OpenMP sections and tasks constructs can

generate parallelism, but it is hard to create and exploit

scalable parallelism with these constructs alone. For

sections the source code itself literally does not scale, and

OpenMP tasks have an implicit bottleneck in the task

queue that limits scalability. These constructs should be

used carefully, and only where the code in the section or

in the task itself exploits scalable parallelism.

Encoding parallelism limits into your code will

inhibit scalability as well. OpenMP clauses like

num_threads, num_teams, and safelen should be

avoided. Any values used may be optimal for some target

and very wrong for others. If your current program needs

these features, you should either explore a more scalable

algorithm, or look for another dimension of parallelism in

your application. The same holds true for use of the

OpenACC clauses num_gangs, num_workers and

vector_length.

6. Data Management

There are two aspects of data management in HPC:

data structure design and access patterns, and the exposed

memory hierarchy or memory pools in current and

upcoming systems. We explore each briefly here in

relation to programming models and compilers.

6.1 Data Structure Design

The key point for data structure design is that strides

matter. All current machines use hardware data caches

with a cache line size typically around 64 bytes. This

means when the processor loads a word, the surrounding

8 words are loaded into the cache. If those other 7 words

are not used before that cache line is evicted, the memory

bandwidth used to load the cache line was mostly wasted.

When designing a data structure, it should take into

account how the data is being accessed. Arrays of

structures are great for keeping logically-related data

together, but if the data members are not accessed

together, the logical relation should be questioned.

Multidimensional arrays should be declared so that inner

loops run across the low-stride dimension.

SIMD load and store instructions sometimes require

data to be contiguous in memory. Some processors have

SIMD gather and scatter instructions, but contiguous

loads and stores are faster. GPUs may not have SIMD

instructions, but the compute cores executing in lock-step

will all issue memory instructions simultaneously. These

operations will be fastest when the addresses are all

contiguous in memory, taking best advantage of memory

bandwidth and cache behavior. In that sense, the GPU

lock-step compute cores can be treated very like SIMD

lanes when designing algorithms and data structure access

patterns.

6.2 Exposed Memory Hierarchy

The key characteristics for each level of a memory

hierarchy are capacity, latency and bandwidth. Current

systems with GPU-accelerated nodes have a large system

memory attached to the CPU processor(s) and a smaller,

high bandwidth (HBW) memory attached to each GPU.

The upcoming KNL nodes have both a large system

memory and a much smaller HBW memory attached to

the processor. Both of these designs are much like a

memory hierarchy, where the system memory has more

capacity but the HBW memory has higher bandwidth.

However, they are different from current cache or virtual

memory hierarchies because an application can or in some

cases must control placement or movement of data in the

hierarchy. This is a challenge for programmers and

compilers, since placement and movement necessarily

must take into account the size of the smaller (HBW)

CUG 2016 Proceedings 6 of 7

memory, and that size may differ across systems and

generations of hardware.

Two approaches towards memory placement and

movement have been developed. The first is to create

new allocation routines (in C or C++) or attributes

(Fortran) to allocate memory in a given memory. For a

GPU, examples are cudaMalloc for CUDA C [NV15]

and the device attribute in CUDA Fortran [PGI11]. For a

KNL node, examples are hbw_malloc (built on the more

general memkind heap manager) and the attributes

fastmem directive for Intel Fortran [SO15]. These

approaches require programmers to modify programs for

each target. If the program data structures do not fit in the

HBW memory, the programmer is responsible for

swapping blocks of data between HBW and system

memory. If the next generation node has a larger (or

smaller) HBW memory, the swapping tradeoffs may

change.

A second approach is to enhance parallel

programming directives with data management clauses.

This is the approach taken by OpenACC, and which was

later adopted in OpenMP 4+. The data clauses describe

whether and how data objects should be moved to the

HBW memory for use by the highly parallel compute

engine (GPU or KNL). For earlier GPUs, explicit data

movement by either the programmer or the compiler

runtime support libraries was required for correct

execution, since the GPU could not directly access the

whole of system memory. The NVIDIA Pascal GPU with

updated operating system and driver support will be able

to move data automatically between system and HBW

memory, much like virtual memory paging support.

In both OpenACC and OpenMP, if the parallel

compute device can access system memory directly the

data clauses can be ignored. In this case the hardware or

system software support manages system memory access.

A compiler implementation for a KNL or Pascal GPU

may then use the data clauses as hints to the runtime to

prefetch data to the HBW, while ignoring those directives

entirely on a multicore node. In all of these cases, the

data clauses become potential optimizations rather than

requirements for correct program execution. This allows

the programmer to focus on parallelism first, and then

tune the data management as a second step.

7. OpenACC and OpenMP gaps

There are several notable gaps in both OpenACC and

OpenMP with respect to future HPC nodes, which we list

here briefly.

For accelerated compute nodes, OpenMP currently

has a structure for distinguishing which parallel regions

should be compiled for the multicore host (normal

OpenMP omp parallel region) and which should be

compiled for the accelerator (omp target). OpenACC

has no such structure. OpenACC syntax is much simpler

as a result, but there is currently no way for the

programmer to direct where a given region should

execute.

When a compute node has multiple accelerators, both

OpenMP and OpenACC have inconvenient and difficult

methods for sharing data and work across devices.

OpenACC has an API routine to set the current device.

OpenMP has a device clause, which takes an integer

device number. We have experimented with both

methods and find both of them hard to use. With current

GPUs, where data placement is necessary for correct

execution, having to continually select on which device to

run, or to carry or compute an extra variable for the

device ID, is very error prone. The situation may improve

with devices that share the same virtual memory as the

CPU, but false sharing on virtual memory pages may

generate excessive memory traffic between devices.

On accelerated compute nodes, the multicore CPU

itself may be considered and targeted as a compute

device. A node with a single GPU could be treated as

having two compute devices: the GPU and the multicore

CPU. Neither OpenMP nor OpenACC include a good

method to spread data and work across heterogeneous

devices like this.

Threadprivate data is an OpenMP feature that

allows parallel execution across procedures that access

global data, such as Fortran common and module

variables or C/C++ extern variables. OpenACC has no

such concept. OpenMP requires that global

threadprivate data be created for each thread. With

highly parallel compute nodes, the number of threads and

the overhead of threadprivate data will increase.

8. Conclusions

Achieving high performance requires a collaboration

of effort between the programmer, the language designer,

and the language implementer. Current and future highly

parallel compute nodes require a much higher degree of

parallelism in applications. The application writer must

expose as much parallelism as possible, and drive toward

more parallel and scalable algorithms. Application

parallelism should be expressed descriptively, so that it

can be effectively mapped onto different hardware

parallelism profiles. The compiler and runtime must be

tuned to exploit parallelism efficiently. It is far easier for

a compiler and runtime to scale parallelism down to a

level appropriate for the target, than for an application

writer to modernize a program with more parallelism

when a new machine is targeted.

CUG 2016 Proceedings 7 of 7

SIMD parallelism has been and will continue to be

important as distinguished from multicore parallelism.

Effective SIMD parallelism requires contiguous (stride-1)

memory references and that the parallel compute lanes

mostly take the same branches (convergent execution).

Current and future processors depend on a high degree of

SIMD parallelism for performance, and data structures

and algorithms should be designed to take advantage of

this.

Many modern processor nodes include a high

bandwidth memory attached to the highly parallel

compute device. This adds a new dimension to data

management, allocating data in or moving data to and

from the HBW memory. With appropriate programming

model support, use of this performance-critical resource

can be considered as an optimization rather than as a

requirement for correct program execution.

About the Authors

Doug Miles is director of PGI compilers & tools at

NVIDIA; prior to joining PGI and later NVIDIA, he was

an applications engineer at Cray Research Superservers

and Floating Point Systems. He can be reached by e-mail

at douglas.miles@pgroup.com.

Michael Wolfe joined PGI as a compiler engineer in

1996; he has worked on optimizing and parallel compilers

for over 40 years. He has published one textbook, High

Performance Compilers for Parallel Computing, and a

number of technical papers. He can be reached by e-mail

at michael.wolfe@pgroup.com.

References

[BA15] C. Bertolli et al, Integrating GPU Support for

OpenMP Offloading Directives into Clang, LLVM-

HPC2015, Austin, TX, November 2015.

[CO73] W. Cohagan, Vector Optimization for the ASC,

Seventh Annual Princeton Conf. on Information Sciences

and Systems, Princeton, NJ, March 1973.

[CPP15] ISO/IEC, Programming Languages–Technical

Specification for C++ Extensions for Parallelism, TS

19570, July 2015.

[FTN10] ISO/IEC JTC 1/SC 22/WG 5, Information

technology–Programming languages–Fortran, 2010.

[FTN16] ISO/J3 WG5, F2015 Working Document,

January 2016.

[HO16] W. Holt, Moore’s Law: A Path Forward, Plenary

presentation, ISSCC 2016, February 2016.

[LC91] D. Levine, D. Callahan, J. Dongarra, A

Comparative Study of Automatic Vectorizing Compilers,

Parallel Computing, 17:10-11, pp. 1223-1244, December

1991.

[NV15] NVIDIA Corp., CUDA C Programming Guide,

September 2015.

[NV16] NVIDIA Corp., NVIDIA Tesla P100, 2016.

[OACC15] OpenACC Architecture Review Board,

OpenACC Application Programming Interface Version

2.5, www.openacc.org, October 2015.

[OMP15] OpenMP Architecture Review Board, OpenMP

Application Programming Interface Version 4.5,

www.openmp.org, November 2015.

[PGI11] The Portland Group, CUDA Fortran

Programming Guide and Reference, March 2011.

[SG16] A. Sodani et al, Knights Landing: Second-

Generation Intel Xeon Phi Product, IEEE Micro, 16:2, pp.

34-46, March, 2016.

[SO15] A. Sodani, Knights Landing (KNL): 2
nd

Generation Intel Xeon Phi Processor, presentation at Hot

Chips 2015, Cupertino, California, August 2015.

[TOP15] TOP 500 Supercomputer list, www.top500.org,

accessed December, 2015.

mailto:douglas.miles@pgroup.com
file:///C:/Users/dmiles/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/AppData/AppData/AppData/AppData/Local/Temp/michael.wolfe@pgroup.com
http://www.openacc.org/
http://www.openmp.org/
http://www.top500.org/

