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ABSTRACT: High-end supercomputers have increased in performance from about 5 

TFLOPS to 34 PFLOPS in the past 15 years, a factor of about 7,000. Increased node 

count accounts for a factor of 20 to 30, and clock rate increases for another factor of 5. 

Most of the increase, a factor of 50 to 100, is due to increases in single-node 

performance. We expect this trend to continue with single-node performance increasing 

faster than node count, and with that performance increase driven by increased 

parallelism. Building scalable applications for such targets means exploiting as much 

intra-node parallelism as possible. We discuss coming supercomputer node designs and 

how to abstract the differences to enable design of portable scalable applications in 

OpenACC and OpenMP. 
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1. Introduction 

High-end supercomputers have increased in 

performance from maximum of about 5 TFlops to 34 

PFlops in the past 15 years, according to the Top 500 

Supercomputer list [TOP15]. This increase is about a 

factor of 7,000, and has been driven by 3 factors.  Node 

counts have increased from a range of 500 to 10,000 in 

the fastest computers 15 years ago, to maximums of over 

80,000 today. Another factor is faster processor clocks, 

from about 400MHz to just under 3GHz today. Together 

these account for an average factor on the order of about 

100X. Another hard-to-measure factor is improvements in 

microarchitecture, such as deeper pipelines and multiple-

instruction issue. The rest of the performance 

improvement is due to increased parallelism on a node, 

through SIMD instructions, multicore processors, 

multiple processor sockets and/or accelerator sockets. 

Given recent announcements indicating the likely 

decrease in typical processor clock rates [HO16], the 

push to Exascale computing will be driven by a further 

increase in on-node parallelism. This is evidenced by the 

CORAL system designs, which have node counts 

commensurate with or smaller than current systems while 

delivering about a 10X performance increase. 

The number and type of processors of a node, 

together with the core count of each processor and SIMD 

capability of each core, comprise the parallelism profile 

of that machine. Future machines will have widely 

different parallelism profiles. To take advantage of these 

highly parallel nodes without tuning to any single 

machine requires writing applications so as to expose as 

much parallelism as possible, without expressing it in a 

way that over-specifies how it is exploited on different 

systems.  

This requires a mechanism to express parallel 

programs, as well as compilers or libraries that can map 

the available software parallelism onto each target system, 

and profiling and analysis tools to predict and measure the 

effectiveness of the parallelism in a given application for 

each target machine. We look at the common directive-

oriented programming models for on-node parallel 

programming, OpenMP [OMP15] and OpenACC 

[OACC15]. We provide specific descriptions of how we 

expect to implement certain constructs in these models in 

PGI compilers targeting GPUs, multi-core CPUs and 

Xeon Phi, including options we have explored or are 

exploring.  We describe which constructs are necessary 

and recommended, and those that should be avoided when 

designing applications for scalable nodes. We also discuss 

aspects of these new architectures that are not effectively 

managed by current approaches, and which need further 

development in the programming models. 
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2. Node Architecture Features 

To motivate this work, we discuss three specific node 

architectures that represent common current systems and 

those we expect in the near future.  We discuss the 

hardware features that relate to compute parallelism as 

well as data management. 

2.1 Multi-core CPU Nodes 

The first is a CPU node, with one to four multicore 

CPU sockets, each socket with a memory controller and a 

subset of the shared memory, and all sockets and cores 

cooperating with hardware cache coherence.  Typical 

CPUs used in HPC systems today include Intel Xeon and 

IBM OpenPOWER.  We expect ARMv8 CPUs to be used 

in HPC systems in the near future.   

Parallelism across cores is exploited by creating 

threads in the operating system (POSIX threads), and 

scheduling one or more threads per core.  This allows the 

same parallelism mechanism to exploit cores both within 

and across sockets.  Synchronization and communication 

between threads is implemented in the shared memory, 

using locks (or transactional memory) to protect small 

critical sections that update shared data structures.  This 

requires no additional processor state or operating system 

support for each thread, but unfortunately provides no 

optimized hardware for synchronization.  In many current 

designs, the cores also support 2-8 hardware threads per 

core, either using simultaneous or temporal 

multithreading.  Often, each core will have a private 

level-1 and level-2 cache; sometimes, small groups of 2-4 

cores share a level-2 cache.  Sometimes there is a large 

level-3 cache as well. 

The cores on all CPUs mentioned above have SIMD 

instructions to perform 2 to 16 operations on SIMD 

register data in a single instruction.  SIMD instructions 

are an inexpensive mechanism to improve compute 

throughput at minimal hardware cost.  An Intel Broadwell 

processor with 22 cores and AVX3 instructions has 88 

FP64 hardware compute lanes. 

Delivering high performance on a multi-core CPU 

node means scheduling at least one thread per core, and 

perhaps more than that to populate the hardware threads 

as well.  It requires generation of SIMD instructions 

wherever possible.  To minimize cache coherence traffic, 

threads assigned to different cores and especially different 

sockets must be scheduled to work on data that does not 

live in shared cache lines.  That means scheduling high-

stride loop iterations to different cores, low-stride loop 

iterations to threads on the same core, and stride-1 loops 

to SIMD instructions.   

 

2.2 GPU-Accelerated Nodes 

A GPU-accelerated node typically has one or a small 

number of multi-core CPU host processors, and one to 

eight GPU accelerators.  The most commonly used GPU 

in HPC systems today is the NVIDIA Tesla.  Parallelism 

on a GPU is exploited by launching a kernel, a self-

contained sub-program and associated data with multiple 

levels of parallelism specified in the kernel itself.  Current 

GPUs typically support three levels of parallelism: i) 

some number of compute engines (NVIDIA Streaming 

Multiprocessors), ii) within each compute engine are a 

large number of compute cores (NVIDIA CUDA cores) 

groups of which execute in lock-step, similar to SIMD 

mode but with greater flexibility, iii) a high degree of 

hardware-supported multithreading which allows the 

compute cores to be heavily oversubscribed as a means to 

tolerate main memory latency.   

GPU hardware implements extremely fast thread 

creation and shutdown, and fast synchronization between 

compute cores in the same compute engine.  GPU support 

for synchronization between threads in different compute 

engines is limited.  When a GPU kernel is launched, the 

host CPU may continue executing, or may wait for the 

kernel to complete.  Current GPUs have a physically and 

logically separate, relatively small, high bandwidth 

(HBW) memory.  To compute on the GPU, data is moved 

from the large system memory to HBW memory.  Data 

movement is pure overhead, so must be optimized to 

minimize its volume and frequency.  GPUs run at a much 

slower clock rate than the fastest CPUs, and have smaller 

hardware caches.  However, with more compute resources 

and hardware-assisted parallelism support, GPUs can 

often achieve performance improvements measured in 

factors over CPUs on highly data parallel applications.   

An NVIDIA Pascal P100 GPU [NV16] has 56 

compute engines, each with 32 FP64 floating-point units 

for 1792 FP64 hardware compute lanes.  With deep 

multithreading, a running program can exploit many 

thousands of simultaneously active parallel operations. 

Achieving high performance on a GPU node requires 

managing data traffic between system and HBW memory 

carefully, moving all data parallel operations to the GPU, 

and managing asynchronous CPU/GPU computation.  On 

the GPU itself, high-stride loop iterations can be 

scheduled across the compute engines and stride-1 loops 

scheduled to the lock-step compute cores to maximize 

HBW memory bandwidth. In particular, it is possible to 

map stride-1 inner loops designed for SIMD-capable 

CPUs with reasonable efficiency on GPUs.  This is 

important for purposes of creating and supporting 

programming models that enable performance portability. 
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2.3 Many Integrated Core (MIC) Nodes 

Our third node is exemplified by the Intel Knights 

Landing (KNL) Xeon Phi MIC processor [SG16], which 

we consider only as a self-hosted processor (not a co-

processor).  A KNL processor is in many ways very like a 

CPU node, but there are many more cores (72), each with 

support for 4 hardware threads and two 512-bit SIMD 

units.  This gives a KNL processor 1172 hardware FP64 

compute lanes.  The cores use an on-chip network for 

distributed cache coherence.  To limit or control on-chip 

network traffic, the application may choose to divide the 

72 cores into 4 quadrants so coherence messages only 

have to traverse the cores in a single quadrant.  The KNL 

shares certain parallelism profile features with a GPU: 

massive parallelism, caches which are much smaller than 

on a CPU, and a relatively small attached HBW memory.  

As on a GPU, moving data between the system memory 

and HBW memory is pure overhead that must be 

minimized. 

Extracting high performance from a KNL node will 

require much more parallel work than on a CPU node, 

and will likely require more programmer effort.  There are 

more cores, so more threads must be created just to 

populate them.  The SIMD instructions are twice as long, 

and there are two SIMD units per core.  The caches are 

smaller, meaning there will be more cache misses and 

hardware multithreading will be even more important 

than on a CPU.  This further shrinks the cache available 

per thread, so scheduling threads that share data to the 

same core will be even more important.  As on a GPU, 

minimizing data movement between the system and HBW 

memory will be important.  While the KNL can operate 

out of system memory directly, we expect that 

maximizing performance will require heavy use of the 

HBW memory.  

 

2.4 Common Themes 

Common themes across all of these no node types are 

multiple cores or compute engines, SIMD or SIMD-like 

execution, and multithreading support.  The size of each 

hardware parallelism dimension varies greatly across the 

different processor and node types, and must be 

accommodated by the programmer, a compiler and 

programming model, or some combination of these. 

 

3. Dynamic Scalability 

A key goal for any modern parallel programming 

model is to enable writing of programs that perform well 

on nodes with only a few CPU cores, on fat nodes with 

multi-socket multicore processors, on KNL MIC 

processors, or on CPU+GPU processors.  The FP64 

compute lane counts for these nodes varies from under 

100 to over 1700. Multi-GPU nodes can have even much 

larger numbers of lanes.  Mapping a parallel loop 

efficiently onto the compute lanes of a multicore CPU or 

KNL requires spreading the iterations across threads, one 

per core or one per hardware thread, and further across 

the SIMD lanes in each core or hardware thread.  For a 

GPU, the parallel loop iterations must be spread across 

the compute engines, and the compute cores within the 

engines, with enough slack parallelism to fill as many 

multithread slots as possible in order to tolerate memory 

latency. 

For highest performance, a program should exploit 

all available hardware parallelism. Essentially, the goal is 

to fill all the compute lanes.  Given that different node 

architectures have significantly different parallelism 

profiles, either the programmer or a compiler must map 

program parallelism to hardware parallelism. Program 

parallelism can either be implicit and descriptive, 

allowing mappings to a variety of types of hardware, or it 

can be explicit and prescriptive with the programmer 

directing exactly how it should be mapped to a given 

target. 

When a program is written with parallelism that can 

be exploited across multiple hardware dimensions, we say 

it has dynamic scalability.  A parallel loop with adjacent 

memory references may be best mapped across SIMD 

lanes.  A high stride parallel loop may be best mapped 

across CPU cores, to minimize cache false sharing.  A 

parallel loop that shares data across iterations may be best 

mapped across the hardware threads of a single core, to 

maximize cache utilization.  If a program exposes more 

parallelism than the hardware can exploit, it can be dialed 

back or serialized to ensure efficient execution on targets 

that don’t efficiently support over-subscription.  Highly 

parallel programs can generally be scaled down for 

efficient execution on a modestly parallel or serial 

hardware target.  It is difficult or impossible to scale a 

modestly parallel program up to run efficiently on a 

massively parallel hardware target. 

4. Descriptive Parallelism 

Implicit in the discussion of dynamic scalability is 

the ability to remap program parallelism to different 

hardware parallelism dimensions depending on the target.  

Here, we discuss how this is done with current and 

proposed languages: OpenMP, OpenACC, Fortran 2008 

and the parallel execution policies being considered for 

C++17. 

In OpenMP, mapping a parallel loop across threads is 

done with a parallel do directive (assuming Fortran).  

Mapping a single loop across both threads and SIMD 

lanes on a multicore is done with a parallel do simd 

directive.  For a GPU, mapping a parallel loop across the 
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compute engines is done with a teams distribute 

directive, because the compute engines can’t efficiently 

synchronize as required by parallel threads (and on some 

targets can’t synchronize at all).  Mapping a parallel loop 

across the compute engines and the compute cores inside 

the engine could be done with a teams distribute 

parallel do directive, though this may depend on the 

compiler being used.   It is obviously undesirable to write 

directives in different ways for different targets, or to use 

ifdef preprocessor selection for each parallel directive 

above each parallel loop.   

One option is for the user community to decide on 

the preferred way to write a parallel loop (teams 

distribute parallel do simd, perhaps) and to push the 

implementations to agree on how to map the parallelism 

for each target.  This starts to fall apart if there are nested 

parallel loops that cannot be collapsed.  For a GPU target, 

the programmer may want an outer loop mapped across 

teams (teams distribute) and the inner loop(s) spread 

across the compute cores within a compute engine 

(parallel do).  For a multicore or manycore target, the 

programmer may want the outer loop mapped across 

cores or threads (parallel do) and the inner loop mapped 

across the SIMD lanes (simd).  Such a structure can’t be 

expressed without preprocessing, and requires the 

programmer to select the mapping for each target. 

OpenACC uses a more descriptive approach.  The 

specification of a parallel loop is separated from the 

selection of the parallelism mapping.  The user may select 

whether to map a loop to gang, worker or vector 

parallelism dimensions, or may leave this to the compiler.  

This allows a single program, without preprocessing, to 

exploit the different parallelism profiles of a multicore, 

manycore, or GPU processor. 

Fortran 2008 [FTN10] added the do concurrent 

construct.  The standard declares that the execution of the 

iterations “may occur in any order,” including in parallel, 

and that “the loop iterations have no interdependencies.”  

It does not specify how the loop must be executed.  

Rather, it gives properties of the loop that must be true, 

allowing the implementation to parallelize or otherwise 

optimize the loop execution.  The compiler may vectorize 

the loop, or software pipeline it, or run it in parallel using 

multiple hardware cores, or using hardware threads within 

a core, or any combination of these that is appropriate for 

the target. The do concurrent construct provides the 

dynamic scalability needed for effectively targeting 

multiple architectures.  Fortran 2015 [FTN15] also adds 

support for private and shared data annotations on do 

concurrent, but notably does not add support for 

reductions. 

C++17 [CPP15] adds extensions for parallelism, 

expressed as execution policies on common C++ 

algorithms.  There are about 75 of these algorithms, 

including sort, finding the maximum element, and so on.  

For this discussion, the key algorithm is for_each, which 

functions much like a loop, invoking a function or lambda 

on each value of an index range.  Invoking the for_each 

algorithm with a par or par_vec execution policy will tell 

the implementation that parallel execution is legal.  In 

particular, specifying the par_vec policy allows any 

execution ordering, much like the Fortran do concurrent, 

including interleaving on a single thread, as with software 

pipelining.  As with do concurrent, the par_vec policy 

seems to provide the dynamic scalability needed to 

effectively target multiple parallelism profiles effectively. 

As hardware parallelism and complexity increases, 

including multiple dimensions of parallelism, more 

parallelism must be exposed and exploited in software. 

The software to hardware mapping problem becomes 

increasingly challenging.  Creating efficient mappings 

requires knowledge of the characteristics of the program 

as well as the target hardware.  For the languages we are 

considering in this discussion, a compiler processes a 

program for execution on a specific hardware target.  This 

is a key advantage of compilers and perhaps the strongest 

argument for pushing the mapping problem as much as 

possible into a compiler.  Another argument is that while 

programmers can often manually create mappings that are 

more efficient than a compiler, compilers are tireless.  A 

compiler that delivers mappings with reasonable 

efficiency on a consistent basis provides a huge boost to 

programmer productivity. 

This is exemplified by the inner workings of 

vectorizing compilers, which have been common for more 

than four decades [Co73, LC91].  A vectorizing compiler 

determines whether to generate vector or SIMD 

instructions for a given loop by analyzing both legality 

and profitability.  Most compiler literature on this topic 

focuses on the legality analysis, such as flow graph and 

data dependence analysis.   

However, in some cases SIMD code is slower than 

the corresponding sequential code.  For instance, if the 

code requires gather or scatter operations but the 

instruction set has no SIMD gather instruction, simulating 

the gather operation may be slower than just executing the 

loop sequentially. Compilers use both compile-time 

heuristics and dynamic runtime checks to drive alternate 

code paths and optimize the chances that an optimal code 

sequence is executed. This profitability analysis for 

vectorizing compilers is carefully tuned for the target 

architecture.  This technology has been successful enough 

that it’s now relatively uncommon for HPC programmers 

to manually vectorize loops using SIMD intrinsics.   

The same characteristics and opportunities hold true 

for generating parallel code in general, but the mapping 

problem is more complex.  Not only must the programmer 

or the compiler decide if parallel code is legal, but also 
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whether it is profitable and how to map it efficiently onto 

the target hardware parallelism.   

 

5. Bottlenecks to Scaling 

To support performance portability, we must promote 

a programming style that enables applications to scale and 

perform well across all HPC target architectures.  This 

means training users to write programs that will run well, 

and training compilers (and compiler implementers) how 

to compile these programs for high performance.  

Successful applications tend to live for many years and 

are used across many hardware targets and generations of 

HPC systems. As a consequence, programmers should 

focus on scalable parallel constructs which can be flexibly 

exploited on different targets and allow expression of 

enough parallelism to fill the many compute lanes that 

current and future processors will have. 

Specifically, hindrances to scalable parallelism or any 

bottlenecks in the middle of a parallel construct should be 

avoided.  Synchronization features were intentionally 

minimized in the design of OpenACC, and are limited to 

reductions and atomics. These are so commonly used in 

important applications as to be unavoidable, and modern 

hardware often adds features to maximize their efficiency.  

OpenMP has a rich set of synchronization features, 

many of which were designed for systems with very 

modest parallelism in the form of a few SMP processors.  

These include OpenMP single, master, critical, ordered 

and barrier constructs, and use of unstructured locks in 

general.  These OpenMP features should be avoided at all 

costs in the design and implementation of scalable 

programs. 

The OpenMP sections and tasks constructs can 

generate parallelism, but it is hard to create and exploit 

scalable parallelism with these constructs alone.  For 

sections the source code itself literally does not scale, and 

OpenMP tasks have an implicit bottleneck in the task 

queue that limits scalability.  These constructs should be 

used carefully, and only where the code in the section or 

in the task itself exploits scalable parallelism. 

Encoding parallelism limits into your code will 

inhibit scalability as well.  OpenMP clauses like 

num_threads, num_teams, and safelen should be 

avoided.  Any values used may be optimal for some target 

and very wrong for others.  If your current program needs 

these features, you should either explore a more scalable 

algorithm, or look for another dimension of parallelism in 

your application. The same holds true for use of the 

OpenACC clauses num_gangs, num_workers and 

vector_length. 

6. Data Management 

There are two aspects of data management in HPC: 

data structure design and access patterns, and the exposed 

memory hierarchy or memory pools in current and 

upcoming systems.  We explore each briefly here in 

relation to programming models and compilers. 

6.1 Data Structure Design 

 

The key point for data structure design is that strides 

matter.  All current machines use hardware data caches 

with a cache line size typically around 64 bytes.  This 

means when the processor loads a word, the surrounding 

8 words are loaded into the cache.  If those other 7 words 

are not used before that cache line is evicted, the memory 

bandwidth used to load the cache line was mostly wasted.  

When designing a data structure, it should take into 

account how the data is being accessed.  Arrays of 

structures are great for keeping logically-related data 

together, but if the data members are not accessed 

together, the logical relation should be questioned.  

Multidimensional arrays should be declared so that inner 

loops run across the low-stride dimension. 

SIMD load and store instructions sometimes require 

data to be contiguous in memory.  Some processors have 

SIMD gather and scatter instructions, but contiguous 

loads and stores are faster.  GPUs may not have SIMD 

instructions, but the compute cores executing in lock-step 

will all issue memory instructions simultaneously.  These 

operations will be fastest when the addresses are all 

contiguous in memory, taking best advantage of memory 

bandwidth and cache behavior.  In that sense, the GPU 

lock-step compute cores can be treated very like SIMD 

lanes when designing algorithms and data structure access 

patterns. 

6.2 Exposed Memory Hierarchy 

The key characteristics for each level of a memory 

hierarchy are capacity, latency and bandwidth.  Current 

systems with GPU-accelerated nodes have a large system 

memory attached to the CPU processor(s) and a smaller, 

high bandwidth (HBW) memory attached to each GPU. 

The upcoming KNL nodes have both a large system 

memory and a much smaller HBW memory attached to 

the processor.  Both of these designs are much like a 

memory hierarchy, where the system memory has more 

capacity but the HBW memory has higher bandwidth.  

However, they are different from current cache or virtual 

memory hierarchies because an application can or in some 

cases must control placement or movement of data in the 

hierarchy.  This is a challenge for programmers and 

compilers, since placement and movement necessarily 

must take into account the size of the smaller (HBW) 
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memory, and that size may differ across systems and 

generations of hardware. 

Two approaches towards memory placement and 

movement have been developed.  The first is to create 

new allocation routines (in C or C++) or attributes 

(Fortran) to allocate memory in a given memory.  For a 

GPU, examples are cudaMalloc for CUDA C [NV15] 

and the device attribute in CUDA Fortran [PGI11].  For a 

KNL node, examples are hbw_malloc (built on the more 

general memkind heap manager) and the attributes 

fastmem directive for Intel Fortran [SO15].  These 

approaches require programmers to modify programs for 

each target.  If the program data structures do not fit in the 

HBW memory, the programmer is responsible for 

swapping blocks of data between HBW and system 

memory.  If the next generation node has a larger (or 

smaller) HBW memory, the swapping tradeoffs may 

change. 

A second approach is to enhance parallel 

programming directives with data management clauses.  

This is the approach taken by OpenACC, and which was 

later adopted in OpenMP 4+.  The data clauses describe 

whether and how data objects should be moved to the 

HBW memory for use by the highly parallel compute 

engine (GPU or KNL).  For earlier GPUs, explicit data 

movement by either the programmer or the compiler 

runtime support libraries was required for correct 

execution, since the GPU could not directly access the 

whole of system memory.  The NVIDIA Pascal GPU with 

updated operating system and driver support will be able 

to move data automatically between system and HBW 

memory, much like virtual memory paging support.   

In both OpenACC and OpenMP, if the parallel 

compute device can access system memory directly the 

data clauses can be ignored.  In this case the hardware or 

system software support manages system memory access.  

A compiler implementation for a KNL or Pascal GPU 

may then use the data clauses as hints to the runtime to 

prefetch data to the HBW, while ignoring those directives 

entirely on a multicore node.  In all of these cases, the 

data clauses become potential optimizations rather than 

requirements for correct program execution.  This allows 

the programmer to focus on parallelism first, and then 

tune the data management as a second step. 

 

7. OpenACC and OpenMP gaps  

There are several notable gaps in both OpenACC and 

OpenMP with respect to future HPC nodes, which we list 

here briefly. 

For accelerated compute nodes, OpenMP currently 

has a structure for distinguishing which parallel regions 

should be compiled for the multicore host (normal 

OpenMP omp parallel region) and which should be 

compiled for the accelerator (omp target).  OpenACC 

has no such structure.  OpenACC syntax is much simpler 

as a result, but there is currently no way for the 

programmer to direct where a given region should 

execute.  

When a compute node has multiple accelerators, both 

OpenMP and OpenACC have inconvenient and difficult 

methods for sharing data and work across devices.  

OpenACC has an API routine to set the current device.  

OpenMP has a device clause, which takes an integer 

device number.  We have experimented with both 

methods and find both of them hard to use.  With current 

GPUs, where data placement is necessary for correct 

execution, having to continually select on which device to 

run, or to carry or compute an extra variable for the 

device ID, is very error prone.  The situation may improve 

with devices that share the same virtual memory as the 

CPU, but false sharing on virtual memory pages may 

generate excessive memory traffic between devices. 

On accelerated compute nodes, the multicore CPU 

itself may be considered and targeted as a compute 

device.  A node with a single GPU could be treated as 

having two compute devices: the GPU and the multicore 

CPU.  Neither OpenMP nor OpenACC include a good 

method to spread data and work across heterogeneous 

devices like this.  

Threadprivate data is an OpenMP feature that 

allows parallel execution across procedures that access 

global data, such as Fortran common and module 

variables or C/C++ extern variables.  OpenACC has no 

such concept.  OpenMP requires that global 

threadprivate data be created for each thread.  With 

highly parallel compute nodes, the number of threads and 

the overhead of threadprivate data will increase.   

8. Conclusions 

Achieving high performance requires a collaboration 

of effort between the programmer, the language designer, 

and the language implementer.  Current and future highly 

parallel compute nodes require a much higher degree of 

parallelism in applications.  The application writer must 

expose as much parallelism as possible, and drive toward 

more parallel and scalable algorithms.  Application 

parallelism should be expressed descriptively, so that it 

can be effectively mapped onto different hardware 

parallelism profiles.  The compiler and runtime must be 

tuned to exploit parallelism efficiently.  It is far easier for 

a compiler and runtime to scale parallelism down to a 

level appropriate for the target, than for an application 

writer to modernize a program with more parallelism 

when a new machine is targeted. 
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SIMD parallelism has been and will continue to be 

important as distinguished from multicore parallelism.  

Effective SIMD parallelism requires contiguous (stride-1) 

memory references and that the parallel compute lanes 

mostly take the same branches (convergent execution).  

Current and future processors depend on a high degree of 

SIMD parallelism for performance, and data structures 

and  algorithms should be designed to take advantage of 

this. 

Many modern processor nodes include a high 

bandwidth memory attached to the highly parallel 

compute device.  This adds a new dimension to data 

management, allocating data in or moving data to and 

from the HBW memory.  With appropriate programming 

model support, use of this performance-critical resource 

can be considered as an optimization rather than as a 

requirement for correct program execution. 
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