Unified Workload Management for the Cray XC System with Univa Grid Engine

Daniel Gruber Senior Solution Architect Mai, 2016

Who is Univa?

Univa is a leading developer of Workload Optimization solutions

- Global reach based in Chicago with offices in Markham, Canada, Munich and Regensburg, Germany
- Fast growing enterprise software company
- "Home of Grid Engine." All Grid Engine developers work at Univa, including founder of the Grid Engine project
- Support global Fortune 500 companies

Customer Use-Cases

The most innovative companies are optimized on our platform:

BIG DATA	ENTERPRISE TECHNICAL	ENTERPRISE APPLICATION	I ISV/HVS
ARCHIMEDES Quantifying Healthcare	bp XXX	sears	SYNOPSYS °
€ CenturyLink ™	U NOVARTIS	Danske Bank	Graphics
Trans Union 。	ارامکو السعودية Saudi Aramco	NUANCE	NNSYS [®]
epsilon	SAMSUNG	Mobility Networks Logistics	
VERTEX		вмо	Microsoft
Cold Spring Harbor Laboratory	Č	nielsen	

Copyright © Univa Corporation, 2016. All Rights Reserved

Univa Solutions

Univa Grid Engine

Copyright © 2015 Univa Corporation, All Rights Reserved.

20 Years of History

- 1992: Initial developments @ Genias in Regensburg
- 1993: First Customer Shipment (as CODINE)
- 1996: Addition of GRD policy module
 - Collaboration with Raytheon & Instrumental Inc
- 1999: Merger with Chord Systems into Gridware
- 2000: Acquisition through Sun
 - Re-launch as Sun Grid Engine
- 2001: Open Sourcing
- Until 2010: Massive growth in adoption (>10,000 sites)
- 2010: Acquisition through Oracle
 - Open Source gets orphaned
- 2011: Key engineering team joins Univa
- 2013: Acquired all IP and assets from Oracle
- Soon: 5th major release of Univa Grid Engine

Major 8.1 Features & Benefits

Iviajor 8.1 Features & Benefits					
Feature Throughput Effort Cost How					
Feature	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				How
Job Classes		•	~	~	Templates providing ease of use, control and best fit
Resource Maps	~	~			Optimal mapping of resources to jobs
Core / NUMA Binding	~	~		~	Tuned utilization of CPU and memory architectures / per NUMA node memory reporting and accounting
Database Spooling	~	~		~	Increased uptime @ top performance
Fair Urgency	~	~			Balanced utilization of critical resources
MPI Integrations		~	~	~	Tuned, out-of-the-box integration with MPI versions
Improved Diagnostics			~	~	Faster time to resolution of issues

Major 8.2 Features & Benefits

Iviajor 6.2 Features & Benefits					
Feature Throughout Effort Cost How					
Feature	× ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		JIII F		How
Cgroups integration	V	~	~		Better workload isolation and resource limitation on Linux
Native Windows Support			~	~	Supports Windows as submit and execution host without requiring UNIX emulation layer
DRMAA2 API			~	~	Implements open, standardize API for job monitoring, job workflow management, and job submission
New read-only thread pool	~	~		~	Highly improved scalability due to new, separate components in qmaster
				~	Dozens of smaller improvements based on direct feedback of our customers reducing management overhead and simplifies product usage

Major 8.3 Features & Benefits

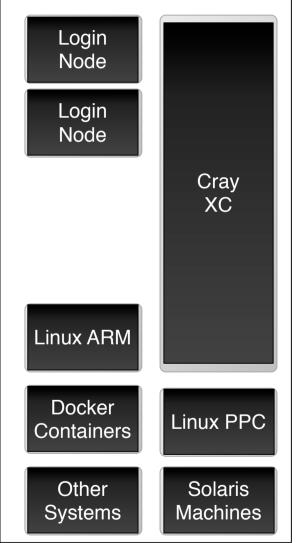
Indjul 0.5 realules & Denenits					
		roughe	ut ation	i xort	JUNIVA A
Feature					How
Short Jobs Add- on	~	~			Capability of running 100s of jobs per second through high performance message bus
Real Preemption		~		~	Freeing Grid Engine resources when job is preempted
Web Services API			~		Access Univa Grid Engine through REST Style API (status / configuration)
Universal Resource Broker Add-on			~	~	Running Spark or other Mesos frameworks on top of Univa Grid Engine

Univa Solutions

Special Support for Cray XC Systems

Customer Quote

- "Grid Engine has enabled us to integrate both Cray and non Cray jobs into the same scheduler. It allows us visibility of all our jobs in one place."
- "It allows us to use the advanced scheduling capabilities of GE to further enhance the Cray internal scheduler. GE effectively acts as a metascheduler for the Cray."
- "The GE environment has proven to be **very stable** environment scheduling on top of the Cray system."


Chris Semple, PGS

UNIVA

One Single Shared Resource Pool

- Univa Grid Engine supports heterogeneous clusters
 Global policies and rules for jobs / job classes, users, projects, departments, resources
- Single interfaces for users and admins including new REST API
- Fast, scalable, reliable

www.univa.com

UNIVA

Workload @ Cray XC using ALPS / BASIL

- Job Types:
 - Login node jobs (some use it for compilation)
 - Cray XC jobs (using aprun): **Batch** and **Interactive**, **Array Jobs**
- Cray XC node requests:
 - -q cray.q for routing to the Cray machine
 - -pe cray <nodes> for selecting the amount of nodes
 - Optional: *mppwidth mppdepth mppnppn cray_nodes*
- Cray XC Job:
 - Runs by using automatically reserved resources via aprun
 - Can use subset of reserved resources / can use resources multiple times sequentially

Workload @ Cray XC

- RUR Integration:
 - Mapping of Cray measurements into Univa Grid Engine counterparts:
 - utime → ru_utime
 - stime → ru_stime
 - max_rss → ru_maxrss
 - wchar → ru_oublock
 - rchar → ru_inblock
- Get aggregated usage statistics with **qacct**

Complex	Semantic
cray_nodes	Global consumable resource for compute node limitation
$cray_alps_version$	Displays ALPS version detected at installation time
$cray_basil_version$	Displays BASIL version detected at installation time
$cray_cores_per_host$	Displays the amount of cores on a Cray compute node
cray_forced	This complex protects cray.q so that no other job runs in
$cray_numa_nodes$	Amount of NUMA nodes on a Cray compute node
$\operatorname{mppwidth}$	Cray reservation request: Amount of Cray PEs to start up
${{ m mppdepth}}$	Cray reservation request: Distance between two Cray PEs
mppnppn	Cray reservation request: Amount of Cray PEs on a node

Simple Job Submission

```
> qsub -q cray.q -pe cray 3 /home/crayadm/job_script.sh
Your job 279 ("job_script.sh") has been submitted
```

```
> qstat -j 279
. . .
hard resource_list: cray_forced=1,cray_nodes=1,mppwidth=3,mppdepth=32,mppnppn=0
```

```
> apstat -a
Total placed applications: 1
Apid ResId User PEs Nodes Age State Command
3824 4262 crayadm 3
                        3 Oh00m run worker.sh
```


Automatic Alignment of Requests

> qsub -q cray.q -pe cray 3 -1 mppwidth=4,mppnppn=2 /home/crayadm/job_script.sh Your job 295 ("job_script.sh") has been submitted

> apstat Compute node summary arch config use avail down \mathbf{up} resv ΧТ 23 2 21 24 2 1 > qstat -j 295 . . . account: sge mppwidth=4,mppnppn=2,cray_forced=1,mppdepth=1,cray_nodes=1 hard resource_list: mail_list: crayadm@nid00034 FALSE notify: job_name: job_script.sh jobshare: 0 hard_queue_list: cray.q env_list: script_file: /home/crayadm/job_script.sh parallel environment: cray range: 2 context: reservation_1=4303

•••

Interactive Job Example

```
> grsh -pe cray 2 -g cray.g
```

```
# now on login node
```

```
> aprun -B /home/crayadm/installation/examples/jobsbin/lx-amd64/work 10
Forking -1 times.
Forking -1 times.
Application 3872 resources: utime ~200s, stime ~0s, Rss ~3572, inblocks ~0, outblocks ~0
# using the reservation requests: -B
> aprun -B /home/crayadm/installation/examples/jobsbin/lx-amd64/work -w 5
Forking -1 times.
Forking -1 times.
Application 3876 resources: utime ~10s, stime ~0s, Rss ~3572, inblocks ~0, outblocks ~0
```

```
> aprun -n 2 -d 32 /home/crayadm/installation/examples/jobsbin/lx-amd64/work -w 5
Forking -1 times.
Forking -1 times.
Application 3877 resources: utime ~10s, stime ~0s, Rss ~3572, inblocks ~0, outblocks ~0
```

> aprun -n 3 -d 32 /home/crayadm/installation/examples/jobsbin/lx-amd64/work -w 5 apsched: claim exceeds reservations node-count

Univa Grid Engine Features @ Cray XC

- Resource reservation for jobs / Advance Reservation
- Backfilling
- REST API
- Job dependencies between Cray XC and non-Cray jobs
- Job array support
- Job array inter-dependencies on task level
- Resource quotas on job classes, global level (Cray / non-Cray)
- Automatic resource alignment on Cray reconfiguration
- ...lots of policies and more

What is Cooking?

- UGE 8.4 is on the way \rightarrow June 2016
 - Docker ready: Automatic detection of Docker enabled nodes.
 Execution of jobs in automatically created containers.
- UniSight 4 is knocking at the door \rightarrow July 2016
 - Major re-write of UniSight 3
 - Now with **live dashboard** functionality for monitoring cluster
- Navops.io → Fastest way for deploying Kubernetes on bare metal or on cloud service providers (AWS, Google)
 - Free download! <u>www.navops.io</u>

Univa Solutions

Questions?

Thank You!

Speak with us! ③

Copyright © 2016 Univa Corporation, All Rights Reserved.