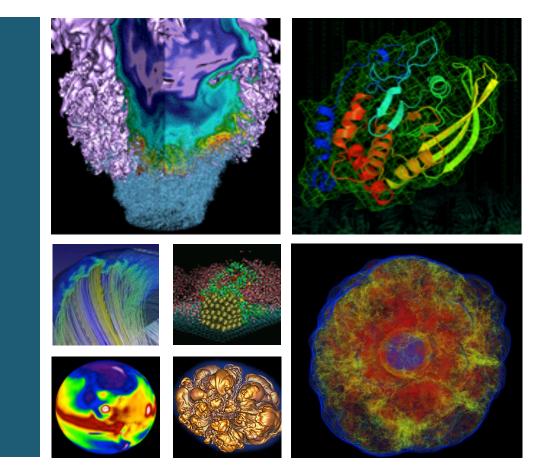


HPC Storage Operations from experience to new tools

Redmond, CUG2017 **Matteo Chesi (CSCS), Tina Declerck (NERSC), Maciej L. Olchowik (KAUST), Oliver Treiber (ECMWF)** May 9th, 2017 Since one year ago...


- "Jobs I/O monitoring for Lustre at scale BoF" in London
- Cray Caribou project
- Sonexion User experience improved, but still waiting for key features.

A new BoF on HPC Storage Operations from Cray Storage Administrators, let's discuss!

Lustre Purge

Jack Deslippe, November, 2016

What is purging? Why Purge?

- What is purging?
- Purging is generally a process for identifying and removing files a system.
 - The most common means of identifying these files is based on age
 - Site policy states how long files can expect to live so users are not surprised
- Considerations
 - Queue length shouldn't purge files for jobs that are waiting to run
 - Shortest time that allows user jobs to complete and generated data to be stored
 - Can possibly be longer if quotas help keep the file system under control
 - Are there 'special' users who need longer aging or are not subject to purging
- Why purge?
- Most file systems do NOT like being full
- If your users are like ours they don't necessarily do a good job of cleaning up files

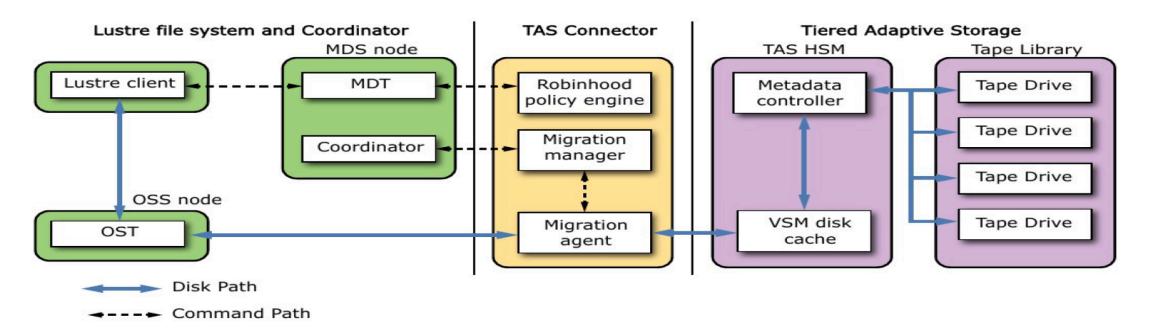
How is purging done?

- Solutions generally
 - Scan the file system to generate a "hit list"
 - Eliminate any files identified for the 'special' cases
 - Remove the specified files
 - Large file systems consider re-verify the data prior to removal
- Robinhood The French Alternative Energies and Atomic Energy Commission (CEA)
 - Policy engine for managing large file systems
 - Provides scan capability with policies that can be used to purge
 - Also can use the Lustre changelog
 - Supports DNE with a changelog reader per MDS

Issues & Benefits

- Issues
- Scale
 - Time to scan the file system can be measured in days
 - Changelogs have been problematic
 - Can't keep up
 - Filling the changelog space makes the file system unusable
 - Various problems with stripe width currently resolved
- Benefits
 - Robinhood database provides access without impacting the file system
 - du
 - File system data size reports
 - Top user reports

Data Migration Policies issues and TAS


Maciej Olchowik

System Administrator, Supercomputing Core Lab King Abdullah University of Science and Technology

Storage Overview

- 30PB Spectra Logic Tfinity tape library (20 drives)
- 16 PB single lustre filesystem divided into: /project - 20TB limit per project, anything above that is migrated to tape /scratch - no limit, but purge policy to remove files older than 60 days
- TAS connector

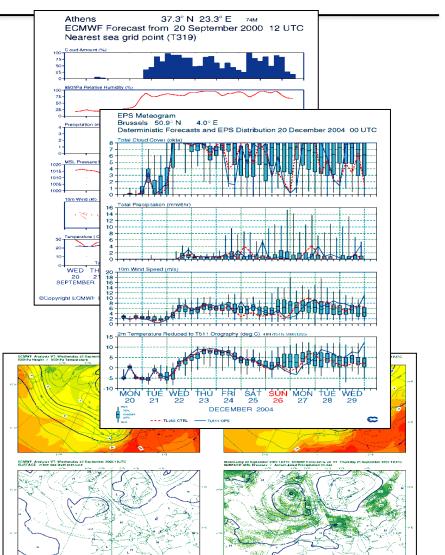
Issues with Lustre and TAS

- Robinhood policy engine not keeping up with lustre changelogs at our scale. Manual scans are required.
- File recall (from TAS) causing lustre deadlock (LU-7988) which affects all clients Temporary workaround to manually failover Sonexion MDS failover.
 Issue apparently fixed in SU23A.
- Lustre HSM coordinator not providing candidate files to archive at the expected rate (LU-8626). Lustre issue.
- Impact of lustre problems on the TAS connector
- Occasional lustre locks for not fully understood reasons

Under negotiation

Anyone leveraging Lustre DLM and RPC traces?

oliver.treiber@ecmwf.int ECMWF HPC systems team



Slide 10

ECMWF: European Centre for Medium-Range Weather Forecasts

European Centre	independent international organisation funded by 34 States
Medium-Range	forecasts up to fifteen days ahead; also monthly and seasonal forecasts, collection/store of meteorological data.
Weather Forecasts	global weather forecasts
Copernicus (EU)	ECMWF implements CAMS and C3S
People	~300 staff, specialists and contractors
Computer	2 XC40 (each ~3600n)

2 XC40 (each ~3600n) 26 cabs SNX 1600+2000

lustre "distributed" lock management (LDLM) and RPCs: Lustre traces

- MDT/namespace vs. OST/file-range locking
- ISSUE at EC recently: need to underst latencies for metadata ops like open, access, stat for specific paths
- I am just fishing: any experiences/expertise with leveraging Lustre traces out there that can be shared?
 - then, let's talk and collect...
- googl'ing does not seem to produce a lot of detail
 - not much in lustre pubs; source code maybe not best entry point
 - some background material
 - <u>http://people.redhat.com/ccaulfie/docs/rhdlmbook.pdf</u> (DLM)
 - http://wiki.old.lustre.org/images/d/da/Understanding_Lustre_Filesystem_Internals.pdf
 - http://cdn.opensfs.org/wp-content/uploads/2014/04/D3_S32_LustreLogAnalyzer.pdf

lustre "distributed" lock management (LDLM) and RPCs

- why interested?
- e.g., at EC, recently struggled a lot with this (MDT context) b/c of "suboptimal application config"
 - example pathology: struggled with suddenly appearing 10000x latency increases in timecrit apps...
 - jobs open/access/stat files through specific intermediate dir X: /lus/snx?/X/.../... (ops need protection by "shared lock")
 - as it turns out: some other apps also issuing high rate of "gratuitous", but NOT-HARMLESS "non-op" syscalls
 - rmdir(/lus/snx?/X/z), where z is not-empty
 - mkdir(/lus/snx/X/z), where z already exists
 - despite resulting in non-ops, on MDT these still trigger global lock revocation
 - latency for this global lock revocation depends on processing speed on MDS and latency of ldlm_cancel responses by lock holding client after receiving blocking ASTs
 - even when situation was bad, MDS had low CPU load and loads of free memory
 - suspicion was there can be sluggish Lustre clients
 - BTW: as non-ops, these rmdir/mkdir calls are not seen in lustre changelog
 - but those ops do ("anonymously", without identifying resoucrce) increment counters in MDT's exports' stats and IdIm_stats

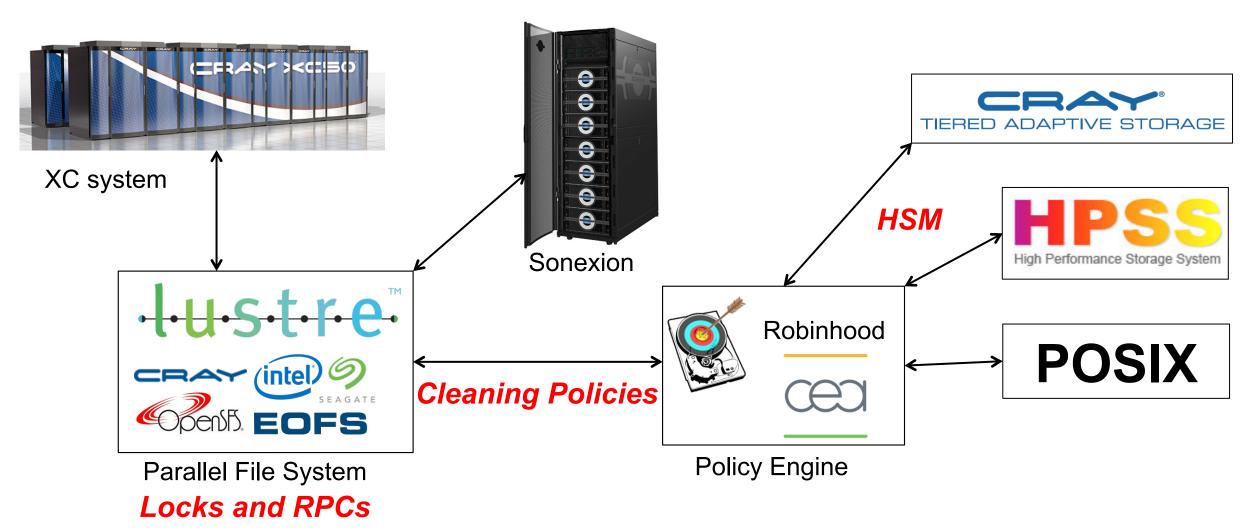
lustre "distributed" lock management, LDLM and RPC tracing

- suboptimal approach in tracking down: try to find contending syscalls through cluster-wide client-side strace and ftrace snooping
- instead try to gain insight (e.g., contended FIDs, latencies, nids,...) from "scripted" analysis of LDLM/RPC trace data
 - gather on demand: +rpctrace and +dlmtrace on /proc/sys/lnet/debug, and "lctl dk <outfile> 1"
 - nice events sequences visible- when looking at test system, but messier on production system
 - is this a per-core cyclic logbuffer? (to assess completeness/time covered)
 - what are the relevant patterns to correlate in output?

00010000:00010000:18.0:1487922524.103132:0:43815:0:(ldlm_lock.c:638:ldlm_add_bl_work_item()) ### lock incompatible; sending blocking AST. ns: mdt-snx11057-MDT0000_UUID lock: ffff8805ef351c00/0xe852b1841c75eb18 lrc: 2/0,0 mode: PR/PR res: [0x200047111:0x2:0x0].0 bits 0 x3 rrc: 8 type: IBT flags: 0x420000000000 nid: 6@gni remote: 0x6726e5786c2d0790 expref: 494 pid: 43826 timeout: 0

[...]

00010000:00010000:0.0:1487922524.103613:0:86788:0:(ldlm_lockd.c:2252:ldlm_cancel_hpreq_check()) ### hpreq cancel loc k ns: mdt-snx11057-MDT0000_UUID lock: ffff8805ef351c00/0xe852b1841c75eb18 lrc: 4/0,0 mode: PR/PR res: [0x200047111:0x2:0x0].0 bits 0x3 rrc: 8 type: IBT flags: 0x420000000020 nid: 6@gni remote: 0x6726e5786c2d0790 expref: 495 pid: 43826 timeout: 45055250172



lustre "distributed" lock management, LDLM and RPC tracing

- such lock contention on individual resources seems not exposed in usual Lustre monitoring tools
 - pay some attention by inclusion of global LDLM event rates in Caribou ?
- where are we now with this at EC? we first defused situation by cleaning up applications...
- but then entered next episode: MD latencies in aforementioned workflow increased again by ~1000x
 - we failed over MDS service, then latencies dropped!!! why did it clear, where did latency increase come from?
 - what mattered here ito the MDS failover? server or clients recovery?
 - we dlm/drop_caches on MAMUs once per hour anyway
 - currently investigating if related to leak in "granted" count (vs lock_count) (LU-8246) (not clear if applies)

The Big Picture

