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Abstract—The Argonne Leadership Computing Facility
(ALCF) has recently deployed a nearly 10 PF Cray XC40 system
named Theta. Theta is nearly identical in performance capacity
to the ALCF’s current IBM Blue Gene/Q system Mira and
represents the first step in a path from Mira to a much larger
next generation Intel-Cray system named Aurora to be deployed
in 2018. Theta serves as both a production resource for scientific
computation and a platform for transitioning applications to run
efficiently on the Intel Xeon Phi architecture and the Dragonfly
topology based network.

This paper presents an initial evaluation of Theta. The Theta
system architecture will be described along with the results of
benchmarks characterizing the performance at the processor core,
memory, and network component levels. In addition, benchmarks
are used to evaluate the performance of important runtime
components such as MPI and OpenMP. Finally, performance
results for the scientific applications are described.

I. INTRODUCTION

The Argonne Leadership Computing Facility (ALCF) has
recently installed a nearly 10 PF Cray XC40 system named
Theta. The installation of Theta marks the start of a transition
from ALCF’s current production resource Mira [3], a 10
PF peak IBM Blue Gene/Q, to an announced 180 PF Intel-
Cray system named Aurora to be delivered in 2018. Aurora
is to be based on the upcoming 3rd generation Intel Xeon Phi
processor while Theta is based on the recently released 2nd

generation Xeon Phi processor code named Knights Landing
(KNL) [13]. Therefore, in addition to serving as a production
scientific computing platform, Theta is intended to facilitate
the transition between Mira and Aurora.

This paper presents an initial evaluation of Theta using
multiple benchmarks and important science and engineering
applications. Benchmarks are utilized to evaluate the perfor-
mance of major system subcomponents including processor
core, memory, and network along with the power consump-
tion. The performance overhead aspects of the OpenMP and
MPI programming models is also evaluated. These benchmark
results can be used to establish the baseline performance
expectations and to guide the optimization and implemen-
tation choices for the applications. The ability of the KNL
to achieve high floating point performance is demonstrated
using a DGEMM kernel. The capabilities of a KNL memory
are evaluated using STREAM and latency benchmarks. The
performance differences in the memory between the flat and
cache memory modes on KNL is also presented. MPI micro-
benchmarks are used to characterize the Cray Aries network
performance. Finally, performance and scalability results for
several ALCF scientific applications are discussed.

The remainder of the paper is organized as follows, Sec-
tion II describes the Theta system architecture. Section III
discusses the performance of KNL’s microarchitecture, mem-
ory, computation and communication subsystems using a set
of micro-benchmarks and Section IV covers the performance
of several key scientific applications.

II. THETA/XC40 ARCHITECTURE

The Cray XC40 is the latest in the Cray line of supercom-
puters. The ALCF Theta XC40 system has a nearly 10 PF peak
with key hardware specifications shown in Table I.

TABLE I
THETA – CRAY XC40 ARCHITECTURE

Nodes 3,624
Processor core KNL (64-bit)
Speed 1100 - 1500 MHz
# of cores 64
# of HW threads 4
# of nodes/rack 192
Peak per node 2662 GFlops
L1 cache 32 KB D + 32 KB I
L2 cache (shared) 1 MB
High-bandwidth memory 16 GB
Main Memory 192 GB
NVRAM per node 128 GB SSD
Power efficiency 4688 MF/watt [7]
Interconnect Cray Aries Dragonfly
Cooling Liquid cooling

Theta continues the ALCF’s architectural direction of highly
scalable homogeneous many core systems. The primary com-
ponents of this architecture are the second generation Intel
Xeon Phi Knights Landing many core processor and the
Cray Aries interconnect. The full system consists of 20 racks
which contain 3,624 compute nodes with an aggregate 231,936
cores, 57 TB of high-bandwidth IPM, and 680 TB of DRAM.
Compute nodes are connected into a 3-tier Aries dragonfly
network. A single Theta cabinet contains 192 compute nodes
and 48 Aries chips. Each Aries chip can connect up to 4 nodes
and incorporates 48-port Aries router which can direct commu-
nication traffic over electrical or optical links [4]. Additionally,
each node is equipped with 128 GB solid state drive (SSD)
resulting in total of 453 TB of solid state storage on the system.

Each Theta compute node consists of a KNL processor, 192
GB of DDR4 memory, 128 GB SSD, and a PCI-E connected
Aries NIC. The KNL processor is architected to have up to
72 compute cores with multiple versions available containing
either 64 or 68 cores as shown in Figure 1. Theta contains
the 64 core 7230 KNL variant. On the KNL chip the 64 cores
are organized into 32 tiles, with 2 cores per tile, connected



Fig. 1. KNL Processor (Credit Intel)

by a mesh network and with 16 GB of in-package multi-
channel DRAM (MCDRAM) memory. The core is based on the
64-bit Silvermont microarchitecture [13] with 6 independent
out-of-order pipelines, two of which perform floating point
operations. Each floating point unit can execute both scalar
and vector floating point instructions including earlier Intel
vector extensions in addition to the new AVX-512 instructions.
The peak instruction throughput of the KNL architecture is
two instructions per clock cycle, and these instructions may be
taken from the same hardware thread. Each core has a private
32 KB L1 instruction cache and 32 KB L1 data cache. Other
key features include:

1) Simultaneous Multi-Threading (SMT) via four hardware
threads

2) Two new independent 512-bit wide floating point units,
one unit per floating point pipeline that allow for eight
double precision operations per cycle per unit.

3) A new vector instruction extension AVX-512 that lever-
ages 512-bit wide vector registers with arithmetic op-
erations, conflict detection, gather/scatter, and special
mathematical operations.

4) Dynamic frequency scaling independently per tile. The
fixed clock “reference” frequency is 1.3 GHz on 7230
chips. Each tile may run at a lower “AVX frequency” of
1.1 GHz or a higher “Turbo frequency” of 1.4-1.5 GHz
depending on the mix of instructions it executes.

Two cores form a tile and share a 1 MB L2 cache. The tiles
are connected by the Network-on-Chip with mesh topology.
With the KNL, Intel has introduced on chip in-package high-
bandwidth memory (IPM) comprised of 16 GB of DRAM
integrated into the same package with the KNL processor. In
addition to on-chip memory, two DDR4 memory controllers
and 6 DDR4 memory channels are available and allow for up
to 384 GB of off-socket memory. Theta contains 192 GB of
DDR4 memory per node. The two memories can be configured
in multiple ways as shown in Figure 2:

• Cache mode - the IPM memory acts as a large direct-
mapped last-level cache for the DDR4 memory

• Flat mode - both IPM and DDR4 memories are directly
addressable and appear as two distinct NUMA domains

• Hybrid mode - one half or one quarter of the IPM
configured in cache or flat mode with the remaining
fraction in the opposite mode
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Fig. 2. Memory Modes

This configurable, multi-component memory system
presents novel programming options for developers.

III. SYSTEM CHARACTERIZATION

This section will present the results of micro-benchmarks
used to characterize the performance of the significant hard-
ware and software components of Theta. The processor core
is evaluated to test the achievable floating point rate. Memory
performance is evaluated for both the in-package memory and
the off-socket DDR4 memory and the impact of configuring the
memory in flat and cache mode is quantified. MPI and network
performance is evaluated using MPI benchmarks. OpenMP
performance is also evaluated. Finally, the power efficiency of
the KNL processor for both floating point and memory transfer
operations is determined.

A. Computation Characteristics
As show in Figure 1 the KNL processors on Theta contain 64

cores organized into tiles containing 2 cores and a shared 1 MB
L2 cache. Tiles are connected by an on die mesh network which
also connect the tiles with the IPM and DDR memory along
with off die IO. Each individual core consists of 6 functional
units: 2 integer units, 2 vector floating point, and 2 memory
units. Despite containing 6 functional units, instruction issue
is limited to two instructions per cycle due to instruction fetch



and decode. Instructions may generally issue and execute out-
of-order, with the restriction that memory operations issue in
order but may complete out of order.

The KNL features dynamic frequency scaling on each tile.
The reference frequency is defined based on the TDP of the
socket and set at 1.3 GHz on the Theta system. Depending
on the mix of instructions, each tile may independently vary
this frequency to a lower level, the AVX frequency 1.1 GHz,
or to a higher level, the Turbo frequency 1.4 GHz. Based on
the “reference” frequency, the theoretical peak of a KNL core
is 41.6 GFlops and 2.6 TFlops for a Theta node. However,
a stream of AVX-512 instructions cannot be executed at this
frequency for a long period of time due to power limitations.
Therefore, a more realistic estimate for peak flop rate should
account for “AVX frequency”, which is 1.1 GHz on Theta,
which gives 35.2 GFlops per core, or 2.25 TFlops per node.

We evaluate the performance of Theta’s computational ca-
pability using dgemm, a matrix multiplication kernel. This
benchmark achieves over 1.9 TFlops on a Theta node, or 86%
of peak performance, for a relatively small matrix size as
shown in Figure 3. As seen from dgemm benchmark, which
is compute intensive, running more than one thread per core
does not improve the performance. Utilizing more than one
hyper-thread is not beneficial for compute bound kernels since
one thread can issues the core limit of two instructions per
cycle. While not the case for the dgemm kernel, using more
than one hyper-thread can in some cases reduce performance
due to threads sharing resource such as L1 and L2 caches and
instruction re-order buffers.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 0  2000  4000  6000  8000  10000  12000  14000  16000  18000  20000

G
fl

o
p

/s

Matrix size(N)

32 T
64 T

128 T
256 T

Fig. 3. MKL DGEMM performance (in GFlops)

A number of factors have been observed which limit the per-
formance of the KNL core. While the KNL is capable of two
wide instruction issue, it is limited to fetching 16 bytes from
the instruction cache per cycle. An AVX-512 vector instruction
with a memory operand with non-compressed displacement can
be up to 12 bytes long. This may lead to significant degradation
of the issue rate, effectively reducing the instruction throughput
to only one instruction per clock cycle. Another important con-
sideration is apparent power limits on the throughput of vector
instructions for periods of time longer a millisecond. Testing
with AVX-512 dense instruction sequences has shown that a

KNL core does not continuously execute vector instructions
with peak throughput of two instructions per cycle (IPC) and
instead throttles throughput to about 1.8 IPC.

It has been observed that system noise from processing OS
serviced interrupts can influence the results of fine grained
benchmarking. To a degree this may be mitigated by using the
Cray’s core specialization feature, which localizes the interrupt
processing to specific cores. However, while this can reduce
run to run variability it may result in a net loss of application
performance if one or more cores are exclusively dedicated
to handling OS operations. Another source of performance
variability has been observed when two cores compete for the
shared L2 cache. When running identical workloads one of
the cores has been observed to consistently achieve a higher
L2 hit rate in some circumstances and therefore achieve better
performance. As consequence of this behavior, the two cores
running the same copy of a workload may exhibit noticeable
performance differences.

The performance of shared memory primitives is crucial for
effective thread scaling across the cores on a KNL. The scaling
of OpenMP primitives Barrier, Reduction and PARALLEL FOR
is shown in Figure 4 as the number of threads scales from 1
to 256 using the EPCC OpenMP benchmarks [5]. The cost of
the OpenMP primitives is seen to scale in relation to square
root of the thread count as in equation a * sqrt(T) + b where
T denotes the number of threads. The dotted lines in Figure 4
show a curve fitted using this equation to the experimentally
obtained values plotted using solid lines. The lack of a shared
last level cache on KNL may be impacting the cost of OpenMP
synchronization as the cost of the OpenMP operations relate
to the cost of memory access, with OpenMP operations taking
between 130 and 25,000 clock cycles.
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The cost of an OpenMP reduction operation may be com-
pared with that of an MPI Allreduce with all ranks present
on the same node. As shown in Figure 5, the cost of the
reduction is similar for small and large degrees of on node par-
allelism however the MPI reduction significantly outperforms
the OpenMP version in the middle of the range. Using large
numbers of MPI ranks per node is therefore not a disadvantage
in terms of the cost of reduction operations.
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B. Memory Subsystem Characteristics

The KNL processor has introduced a novel two compo-
nent memory architecture consisting of 16 GB of in-package
memory (IPM) along with standard off-socket DDR4 memory.
As is shown in Figure 1, the IPM memory is arranged in
8 stacks of 2 GB and the chip contains two DDR memory
controllers providing 6 channels of DDR4 2133 or 2400
memory. The configuration on Theta provides 192 GB of
DDR4 2400 memory on each node in addition to the IPM.
This new memory arrangement provides unique benefits and
challenges for applications.

This memory subsystem may be configured in one of several
ways at boot time as shown in Figure 2. The IPM may
be configured as a direct-mapped cache for the DDR, in
which case the IPM acts similar to a large L3 cache. This
configuration is referred to as ”Cache Mode”. Alternatively,
the IPM and DDR may be configured as seperately accessible
NUMA domains, which is referred to as ”Flat Mode”. Finally,
a ”Hybrid” mode exists which partitions the IPM into both
cache and flat portions, with configuration ratios of 25-75%
or 50-50%. In addition, affinity between memory and cores
and the distributed cache directory may be configured in a
variety of modes including AlltoAll, Quad, and SNC-4 modes.
To date the impact of these affinity modes have not been
explored in depth, but initial evaluations have not shown
significant performance differences. Application performance
can, however, be significantly different in Flat and Cache
modes.

Memory latency has been measured with a latency bench-
mark that measures the latency for contention-free accesses to
each level of cache hierarchy and the main memory. As seen in
Table II, the first-level cache is effectively implemented to have
4-cycle latency between an issue and ready to use. The second-
level cache has higher latency at 15 cycles. Both IPM and
DRAM memory pools are engineered with DRAM memory
and latency is similar at 140 ns for DDR and 161 ns for IPM.
However, it is noted that the IPM latency is slightly higher
then the DRAM latency, which is attributed to the increased
number of channels and associated overhead. Latency-sensitive
applications may not therefore readily benefit from placing

objects into the IPM.

TABLE II
BEST MEASURED CACHE AND MEMORY LATENCY AND BANDWIDTH.

L1 cache latency 4 cycles 3.1 ns
L2 cache latency 15 cycles 12.2 ns

IPM latency 210 cycles 161 ns
DRAM latency 183 cycles 140 ns

L1 cache bandwidth 44 B/cycle 28.4 GB/s
L2 cache bandwidth 52 B/cycle 30.9 GB/s

IPM flat bandwidth, reg stores 266 B/cycle 346 GB/s
IPM flat bandwidth, stream stores 373 B/cycle 485 GB/s
DRAM flat bandwidth, reg stores 51 B/cycle 66 GB/s

DRAM flat bandwidth, stream stores 68 B/cycle 88 GB/s
IPM cache bandwidth, reg stores 265 B/cycle 344 GB/s

IPM cache bandwidth, stream stores 271 B/cycle 352 GB/s
DRAM cache bandwidth, reg stores 52 B/cycle 67 GB/s

DRAM cache bandwidth, stream stores 45 B/cycle 59 GB/s

Memory bandwidth is characterized using the STREAM
triad benchmark [10]. Measurement of memory bandwidth on
the KNL is complicated by the two-level nature of the memory
architecture. The peak memory bandwidth observed with the
STREAM triad benchmark was dependent on the memory
mode (flat or cache), the memory being addressed (IPM or
DDR), and additionally upon the type of store instruction
utilized. The KNL processor implements both conventional
cacheable store instructions and the Intel non-temporal stream-
ing store instructions for which stored data is not cached at
certain levels of the cache hierarchy. For the KNL streaming
stores are not cached in the L1 or L2 caches, but may be cached
in IPM when configured as a cache. The potential advantages
for streaming stores are that they do not pollute the cache
when the stored data is not reused and they avoid a read-for-
ownership operation, which fetches cache lines being written
to into cache from main memory to insure the entire line is up
to date in cache. This operation consumes additional memory
bandwidth and limits the bandwidth available for other memory
operations.

Table II shows the STREAM triad results for a KNL node
on Theta. Flat-mode memory bandwidth results were obtained
using a 7.5 GB working set of data from both DDR and IPM
using both conventional and non-temporal streaming stores.
The peak bandwidth observed is 485 GB/s using IPM and
88 GB/s using DDR. Cache-mode bandwidth was tested using
two working set sizes, 7.5 GB/s which is roughly half the
IPM cache size, and 120 GB which is much larger than
the IPM cache and therefore data comes primarily from the
DRAM. Tests were again performed with both conventional
and non-temporal streaming stores. In cache mode 352 GB/s
was measured for the 7.5 GB working set case, however
significant variation was observed across the runs performed
on different nodes, with a low value of 225 GB/s observed. For
the 120 GB working set case a peak of 67 GB/s was observed.
This significantly reduced bandwidth is due to most memory
requests for this case being resolved in the DRAM memory as
the working set size is much greater than the 16 GB cache size
resulting in bandwidth scaled to the DRAM performance. No
significant variation across nodes was observed for this case
as virtually all memory requests miss in the IPM cache.

Flat mode can be seen to deliver significantly higher band-



width than cache mode. This is a consequence of an additional
read from the IPM memory which is required in cache mode
in order to check if the address of a line being written is
present in the IPM cache. This additional read reduces the
available memory bandwidth in cache mode for STREAM
triad by approximately 25%. Similar bandwidth rates are
observed when conventional stores are used in flat mode, which
also necessitates an additional read, in this case a read-for-
ownership, which reduces the effective bandwidth by a similar
amount. In cache mode there is no advantage to using non-
temporal streaming stores and these stores can be observed to
be detrimental for working sets larger than the IPM cache as
can be seen by the reduction in bandwidth from 67 to 59 GB/s
when non-temporal streaming stores are used.

The performance variation of 225-352 GB/s observed in
cache mode is attributable to cache misses in the direct mapped
IPM cache. These misses occur because cache lines are placed
into the cache using physical addresses and the Linux virtual
to physical address mapping can become effectively randomly
ordered at the page level which allows for cache conflicts on
physical addresses even though the virtual address range of 7.5
GB should produce no conflicts. The randomness of the page
ordering allows for a varied number of conflicts across differ-
ent nodes, producing nodes with virtually no conflict, which
achieve 352 GB/s, and nodes with higher numbers of conflict
which can reduce the bandwidth down to approximately 225
GB/s. Intel and Cray have implemented a kernel module, Zone
Sort, that provides sorting of the free memory page list and
attempts to reduce the shuffling of the pages in the virtual to
physical address mapping and thereby reduce the number of
spurious cache conflicts. This sorting, however, does not fully
prevent page shuffling as seen by the measured bandwidth
ranging from 225 - 352 GB/s which occurs even with the
sorting in place.

The above results utilize all of the cores on the KNL.
Peak STREAM triad bandwidth from memory obtainable using
only a single core is slightly over 14 GB/s, in this case the
performance for a single core is limited due to the number
of allowable outstanding loads and stores and the latency of
memory operations. It therefore requires a little over half of the
cores on a KNL node to saturate the 485 GB/s peak bandwidth
of the IPM.

The bandwidth numbers reported were obtained using the
Cray core specialization feature which relocates most OS
activity to the higher numbered cores. For these measurements
core specialization was used to move OS activity to the highest
numbered core and 63 cores were used to run the STREAM
benchmarks. An approximate 10% improvement in IPM band-
width was achieved in flat mode when core specialization was
used.

C. Communication Characteristics

Theta utilizes a Cray Aries interconnect arranged in a
dragonfly topology. Four Theta nodes are connected to a
single Aries chip via a PCI-E Gen3 interface. The Aries
chip contains four NICs for the attached nodes and 40 bi-
direction network ports operating in each direction at either
4.7 GB/s for optical links or 5.25 GB/s for electrical links.
The performance of the Theta Aries network is evaluated in this

section using OSU MPI benchmarks to quantify the achievable
latency and bandwidth for both point-to-point and collective
communication.

1) Messaging Rate (MMPS): The MMPS benchmark mea-
sures the aggregate number of messages sustainable between
two nodes on the network. It measures the interconnect mes-
saging rate, which is the number of messages that can be com-
municated to and from a node within a unit of time. This gives
a measure of the capability of the underlying implementation,
both software and hardware, to process incoming and outgoing
messages. In this benchmark, a reference node communicates
with a node that is located one hop away on the Dragonfly.
Each MPI task on the reference node communicates with the
corresponding MPI task on the neighbor node by sending and
receiving messages using non-blocking communication.
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Fig. 6. Messaging Rate (Million messages per sec) on Theta

Figure 6 depicts the messaging rate between 2 KNL nodes on
Theta that are 1 hop away. For smaller message sizes the link
bandwidth does not significantly influence the measurements
and thus the measurements with smaller messages indicate
the peak injection rate possible. A single core is unable to
achieve peak messaging rate, and the messaging rate increases
linearly as we add more MPI ranks per node due to the
increased number of communication streams, thereby leading
to a higher messaging rate. With 64 processes per node, a
maximum messaging rate of 23.7 mmps (million messages per
second) for the 1-byte message transfers is achieved.

The peak sustained bandwidth observed using 64 processes
per node was around 11.4 GB/s as shown in Figure 7. The
maximum bandwidth achievable using one process per node
reaches to only around 8 GB/s. As shown, using more MPI
processes per node improves the aggregate off-node bandwidth
up to around 16 ranks per node. For applications where the
communication rate is critical for performance using multiple
MPI ranks per node, or having multiple threads calling MPI,
could improve performance.

2) Latency: Minimizing point-to-point communication la-
tency is key for improved performance for many applications.
Several OSU MPI benchmarks were used to evaluate the
achievable bandwidth and latency between the nodes located
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at one hop away within the dragonfly topology. A node on
the Aries dragonfly network is connected to the router over
a PCIe interface having a 16 GB/s peak bandwidth, however
PCIe overheads limit the achievable bandwidth to significantly
lower values. A peak unidirectional bandwidth of close to 8
GB/s and peak bi-directional bandwidth of close to 12 GB/s
was observed for communication between the nodes as shown
in Figure 8.

The latency for nodes 1 hop away was also measured and is
shown in Table III. The latencies for sendrecv were measured
using the ping-pong benchmark and one-sided put and get
latencies were also measured. The 0-byte sendrecv latency is
3.07 us, whereas the 0-byte one-sided Get/Put has a latency
of just 0.61 us. 1-byte message latencies ranged from 3.22 to
4.7 us. The significant increase in one sided latency from 0 to
1 byte messages is possibly related to zero byte messages not
requiring any off node operations.

The Cray MPI implementation allows the use of one of
two underlying communication layers. The default layer is
Nemesis driver for Aries layered over uGNI [12]. Alternatively
the Distributed Shared Memory Application API [9] (DMAPP)
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may be used for improved one-sided operations performance.
Figure 9 shows the peak RMA Get bandwidth measured using
the default configuration is around 2 GB/s. Using DMAPP,
communication performance is significantly improved with a
peak bandwidth of 8 GB/s for RMA Get. Similar improvements
may be seen in Figure 10 for RMA Put bandwidth with a peak
bi-directional bandwidth of around 11.6 GB/s. Using Huge
pages was found to improve the bandwidth further, achieving
the peak bandwidth even with moderate sized messages. Using
huge pages helps avoid TLB thrashing on the Aries router and
thus helps in achieving higher bandwidth.
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3) Performance of Collective Communication: The perfor-
mance of three common MPI collective operations, Broadcast,

TABLE III
MPI MESSAGE LATENCY IN US

Benchmark Zero Bytes message One Byte message

Ping Pong 3.07 3.22
Put 0.61 2.90
Get 0.61 4.70



Gather, and Allreduce, which have distinct data flow depende-
cies [8] was evaluated.
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Figure 11 depicts the latency (in microseconds) of collective
operations for a message size of 8KB with increasing numbers
of nodes, using only one MPI rank per node. As expected
latencies increase with node count, though Allreduce shows
a spike at 64 nodes and has the overall steepest latency
increase. Gather is unexpectedly faster compared to Broadcast
and Allreduce is significantly slower than either Gather or
Bcast, which may be due to the additional cost of the floating
point operations required for a reduction. The reason for the
Allreduce spike at 64 nodes is unclear, but it should be noted
that considerable variation in MPI performance was observed
between measurements due to inter-job contention on the
dragonfly topology.

In the dragonfly topology most network links may be utilized
at any time by multiple applications running on the system
resulting in variable amounts of bandwidth available on a given
link for a given application. This variation adds complexity
to the benchmarking process and requires multiple runs to
minimize it’s impact on the reported results. This network
performance variability can also cause considerable variation
in the performance of applications.

D. Power Characteristics
The Intel Xeon Phi CPU occupies five of the top 10 positions

on the November 2016 Green500 list. Theta, specifically, is
number 7 on this list with a reported MFLOPS/W of 4688.0.
In this section the power efficiency of the KNL based com-
pute node on Theta is examined using the power monitoring
infrastructure provided by Cray. Cray provides two methods to
access power data. The first method is via Cray Hardware Su-
pervisory System (HSS) and the second is using Intel’s RAPL.
The power characteristics of the compute-intensive dgemm
benchmark and the memory-intensive STREAM benchmark
were examined using Cray’s provided mechanism to measure
the node’s power and access the data using PAPI.

Dgemm: Table IV depicts the power characteristics for
a single node of the dgemm benchmark as the number of
OpenMP threads per MPI rank are varied. A total of 64 MPI
ranks on the node was used, with one MPI rank per core and

TABLE IV
NODE POWER CHARACTERISTICS OF THE dgemm BENCHMARK FOR

1024× 1024 MATRIX AND A NUMBER OF THREADS PER CORE (TPC).

TPC Time Power Energy Flop Rate Power Eff.
sec. Watts kJ GFLOP/s GF/Watt

1 110.0 284.6 31.3 1249.5 4.39
2 118.6 285.4 33.9 1158.7 4.06
4 140.3 295.0 41.4 979.3 3.32

either 1, 2 or 4 threads per core. The node was configured
for flat quadrant mode with the application being bound to
IPM. The Intel MKL DGEMM library was executed with a
matrix size of 1024 × 1024, which is large enough to exceed
the L2 cache size, for 1000 iterations. The KNL does not
offer hardware to count the exact number of floating point
operations, so the number of FLOPs has been estimated as
2 × n3 FLOPS. Table IV shows that the best performance is
achieved with just a single thread per core, which has the best
overall time-to-solution as well as lowest power.

STREAM: Table V contains the power consumption and
efficiency for STREAM running on a single node in flat-
quadrant mode. The IPM and DDR are tested separately. The
STREAM benchmark is run with a single MPI rank using 64
threads with 1 thread per core. The “idle” power consumption
of a node is measured by a benchmark executing a sleep loop
which measures 48.4 W. For both the IPM and DDR4 tests,
a total of 15 GB of memory was used and each test case
was run for 100 iterations. It can be seen that IPM provides
a considerable gain of 4.3x in the memory bandwidth power
efficiency and an 1.2x increase in overall power consumption.

TABLE V
POWER CONSUMPTION OF THE STREAM BENCHMARK FOR A NODE. THE
PER NODE BANDWIDTH IS MEASURED BY RUNNING ONE THREAD ON EACH

CORE.

Stream IPM DDR4
GB/s Power Efficiency GB/s Power Efficiency

Watts GB/s/Watt Watts GB/s/Watt
Copy 420.4 265.8 1.58 82.9 216.1 0.38
Scale 426.6 267.2 1.60 82.9 220.1 0.38
Add 471.7 281.7 1.67 87.3 223.4 0.39

Triad 449.5 270.5 1.66 87.1 224.4 0.39

IV. APPLICATION STUDIES

This section will examine the performance of three applica-
tions, LAMMPS, MILC, and Nekbone on Theta. These three
applications represent a key cross-section of core hours used on
ALCF systems and cover a range of algorithmic characteristics
(See Table VI) which are common to many other applications
which will run on Theta.

TABLE VI
ARGONNE APPLICATIONS STRESS KEY ALGORITHMS

App Struct. Unstr. Dense Sparse FFT Particle Monte
Grid Grid LA LA N-Body Carlo

NEKbone
√ √ √

LAMMPS
√ √ √

MILC
√ √ √ √



A. LAMMPS

LAMMPS [11] is an open-source molecular dynamics code
that supports many potentials and models to efficiently simulate
particles in a myriad of systems (e.g. liquids, biomolecules,
materials, and mesoscopic systems). LAMMPS is modular
code written in portable C++ and supports parallelization
with MPI, OpenMP, and Kokkos and supports running on
both CPUs and GPUs. LAMMPS is principally parallelized
using spatial decomposition schemes that partition a system
into sub-volumes assigned to unique MPI ranks. Within each
sub-volume, multi-threaded parallelization (e.g. OpenMP and
Kokkos) can be used to complete operations common to
classical molecular simulations: build Verlet neighbor lists,
evaluate interparticle interactions, integrate Newton’s equations
of motion, etc... Modified versions of the LAMMPS rhodo
benchmark, simulating the rhodopsin protein within a solvated
lipid bilayer, was used in the following performance analyses.
For all single-node and strong-scaling analyses, simulations
sampling constant volume conditions were used along with
the quad cluster mode. Intel compiler version 2017.2.174 and
LAMMPS svn version 12990 from January 26, 2015 was
used in this work. Additional performance improvements are
available in LAMMPS for Intel hardware with installation of
the USER-INTEL package to accelerate energy and neighbor
list calculations.

Strong scaling results for a system with 32 million particles
are shown in Figure 12 for runs up to capability scale on
both Mira and Theta (cache-quad mode). In all cases, each
core maps to a single MPI rank and multiple OpenMP threads
are used: 2 and 4 OpenMP threads per MPI rank on Theta
and Mira, respectively. For these strong scaling results, an
important modification to the rhodo benchmark is evaluation
of electrostatic interactions using a pairwise damped Coulomb
potential (via pair style “lj/charmm/coul/charmm”) to mimic
large-scale coarse-grained simulations as opposed to using
the standard particle-particle particle-mesh (PPPM) algorithm
based on 3D Fast-Fourier Transforms (FFT). On Mira, 16
nodes is used for baseline as there is insufficient memory
available to run one MPI rank per core on fewer BG/Q
nodes. The parallel efficiency of LAMMPS on 3,072 nodes
of Theta is 50% with most of the scaling loss coming from
nearest neighbor communication for particle exchanges. The
pairwise computation and rebuilding of neighborlists both scale
linearly for this system up to 3072 nodes. On a per-core basis,
LAMMPS is 1.4x faster on Theta than Mira and 5.2x faster
on a per-node basis (comparing red-square and black-circle
curves in Figure 12). Several performance critical kernels in
LAMMPS have been ported to Intel hardware, including KNL
with AVX-512 instructions, and strong-scaling results for a
similar model are shown in Figure 12 as the blue-triangle curve.
These Intel-specific optimizations, which can not be executed
on the BG/Q, yield an additional 2.2x speedup on Theta, thus
bringing the total node-to-node speedup to 10.8x compared to
a BG/Q node.

The effect of memory mode (cache vs. flat) was exam-
ined in single-node runs with LAMMPS for a system of
256,000 particles. With pairwise electrostatics evaluated again
via pair style “lj/charmm/coul/charmm”, the run-times were

Fig. 12. Strong scaling of LAMMPS on BG/Q and KNL. In all cases, each
core maps to a single MPI rank and multiple OpenMP threads are used as
described in the text.

observed to be nearly identical in cache and flat modes, and
likewise were similar when allocating memory explicitly from
IPM or DRAM, with run-times being within 1% of one another.
Measurements with Intel Vtune Amplifier profiler indicate
that the maximum peaked memory bandwidth is ∼30 GB/s
from predominantly the pairwise computation and neighborlist
functions. With the USER-INTEL optimizations, the peaked
memory bandwidth observed was improved to ∼60 GB/s.
Since the KNL DRAM has been observed to deliver up to 88
GB/s (Table II), it can provide sufficient memory bandwidth
for this LAMMPS simulation. However, in similar single-node
runs where electrostatic interactions are now evaluated using
the PPPM method, which involves 3D Fast Fourier Transforms,
differences in run-times were observed with flat-dram mode
running slowest with (∼27%) difference in run-times. In mea-
surements with Vtune, a sustained peaked memory bandwidth
of ∼80 GB/s was observed primarily coming from the FFT
and particle-mesh operations in the PPPM algorithm. When
run in cache mode or allocating explicitly to IPM in flat mode,
the maximum peaked memory bandwidth observed was ∼170
GB/s. Similar memory bandwidth profiles for PPPM functions
were observed with the Intel-optimized implementation. While
performance measurements may be improved with more recent
versions of LAMMPS and its USER-INTEL add-on package,
the key observation here is that the IPM improves perfor-
mance for those kernels limited by memory bandwidth. It is
expected that, moving forward, optimal performance for large-
scale LAMMPS simulations that don’t fit entirely within IPM
would be obtained by allocating most of the data structures
to DRAM and explicitly allocating memory bandwidth critical
data structures (e.g. 3D FFTs for PPPM) to IPM.

B. MILC

MILC [2] is the MIMD Lattice Computation code designed
to address the fundamental understanding of high energy and
nuclear physics, such as the study of the mass spectrum of
strongly interacting particles, and the weak interactions of
these particles. MILC simulates the fundamental theory of
the strong nuclear force, Quantum Chromodynamics (QCD),



formulated on a four-dimensional space-time lattice. The MILC
codebase contains many components, but for this study the
su3 rhmd hisq application is used, which implements the
Rational Hybrid Monte Carlo algorithm. MILC is implemented
in C and, for this analysis, was run using MPI only with 64
ranks per node. The version of MILC used did not contain the
QPhiX optimizations.

Figure 13 shows the data from two weak scaling studies
performed a few days apart. For these runs the input data
set uses 244 lattice sites per node which requires a small
amount of memory per core that easily fits within the IPM
on the node. However, despite fitting entirely within the IPM
the runs were performed in cache memory mode, along with
the quadrant NUMA mode, because the majority of nodes on
Theta were only available in this configuration. In Figure 13,
the Y-axis units of MFLOP/s was computed by extracting the
timing data for several kernels and using known operation
counts determined by the MILC developers. Ideal weak scaling
performance should result in an identical number of MFLOPS
for each node count. Instead we see significant variance in
performance. This is a consequence of the general state of
the machine at the time the jobs were run. The first set of
benchmark runs were done during a time when Theta was
highly utilized, labelled ’pre-reboot’. The second set of runs
were done immediately after a maintenance period in which
the entire machine was rebooted. Two of the primary causes of
variability in performance for the MILC code are the variability
present in cache mode, described in Section III-B, and con-
tention on the dragonfly network, described in Section III-C.
The ’post-reboot’ data shows an overall improved performance
due to better overall performance of cache mode after a reboot
and the reduced number of running jobs causing contention on
the network.
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C. Nekbone

Nekbone [1] is a mini-app derived from the Nek5000 [6]
CFD code which is a high order, incompressible Navier-
Stokes CFD solver based on the spectral element method. It
exposes the principal computational kernels of Nek5000 to
reveal the essential elements of the algorithmic-architectural
coupling that are pertinent to Nek5000. Nekbone solves a

standard Poisson equation in a 3D box domain with a block
spatial domain decomposition among MPI ranks. The volume
within a rank is then partitioned into high-order quadrilateral
spectral elements. The solution phase consists of conjugate
gradient iterations that invoke the main computational kernel
which performs operations in an element-by-element fashion.
Overall, each iteration consists of invoking routines performing
vector operations, matrix-matrix multiply operations, nearest-
neighbor communication, and MPI Allreduce operations. The
code is written in Fortran and C, where C routines are used
for the nearest neighbor communication and the rest of the
routines are in Fortran. It uses hybrid parallelism implemented
with MPI and OpenMP. Nekbone is highly scalable and can
accommodate a wide range of problem sizes, specified by
setting the number of spectral elements and the number of
grid points within the elements.

Nekbone may be run using MPI ranks, OpenMP threads, or
a combination of the two. OpenMP threading in Nekbone is
coarse grained with only one parallel region spanning the entire
solver. Compute load is distributed across threads in the same
manner that it is done across ranks. In every iteration, a fixed
set of elements to be updated are assigned to threads or ranks.
Thus, the compute load and the amount of synchronization
performed by OpenMP threads is nearly identical to that of
MPI ranks. The number of elements per rank or thread may
be load balanced by ensuring that the configured run contains a
number of elements perfectly divisible by the number of ranks
and threads. Table VII shows the Nekbone solver time for the
same problem configuration run with varying numbers of ranks,
threads, and hyper-threads on a Theta node. As expected, given
the similar implementation of ranks and threads, there is no
significant difference in performance across the ranks vs thread
mix, except at high rank counts when multiple hyper-threads
are used. The use of more than one hyper-thread can be seen to
be detrimental to performance, which can be understood due
to the nature and performance by the various Nekbone kernels
which are discussed further below.

TABLE VII
NEKBONE THREADS AND RANKS

1 H.T. 2 H.T. 4 H.T.

Ranks thds time thds time thds time

1 64 3.07 128 3.65 256 4.72
2 32 3.00 64 3.66 128 4.70
4 16 3.02 32 3.61 64 4.57
8 8 3.02 16 3.63 32 4.59

16 4 3.05 8 3.67 16 4.58
32 2 3.04 4 3.66 8 4.61
64 1 3.14 2 3.75 4 4.69

128 1 4.10 2 5.08
256 1 14.9

To compare the performance of the Theta KNL processor
to that a of common Haswell configuration (E5-2699v3, dual
socket, 36 cores), Nekbone was configured for a single node
run using only OpenMP and using all of the cores on the
processor. For the same problem run on both nodes, the solve
time per element was 0.38 ms on KNL and 1.22 ms on Haswell,
showing a 3.2 times improvement in performance on KNL
over Haswell. This speedup is reasonable considering the 1.7x
improvement in peak FLOP rate and the 4x improvement in



memory bandwidth, when using IPM, on the KNL over the
Haswell node.

The scaling of Nekbone on Theta has been evaluated in
both weak and strong scaling contexts. Weak scaling results
are shown in Figure 14. This figure shows the weak scaling
performance for a number of problem sizes, all with 16
grid points per element and between 128 and 16,384 spectral
elements per node. The runs were performed using 2 MPI ranks
per node and 32 threads per rank with the node in flat mode
and using the libxsmm library for small matrix multiplies. In
general, the problems with more elements per node are seen
to scale better, which is expected given the higher compute-
communication ratio for these problems. However, even for
the largest problem size considered, the parallel efficiency
decreases appreciably as Nekbone is scaled to larger nodes
on Theta. Nekbone, itself is highly scalable, as shown in
Figure 15, which shows near perfect weak scaling on the ALCF
BG/Q system Mira up to 48k nodes when using 512 elements
per node. Loss of parallel efficiency with weak scaling on
Theta is attributable to either increased cost for point-to-point
communication due to network contention or the increased
cost of MPI Allreduce operations as the rank count increases,
since the workload per node remains otherwise same. Future
work will examine the use of explicit rank mapping across the
dragonfly network to optimize rank placement and minimize
point-to-point communication contention.
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Strong scaling results for Nekbone on Theta are shown in
Figure 16 for a range of different problems sizes containing
between 131,072 and 1,048,576 total elements. These runs
were again performed using 2 MPI ranks per node, 32 threads
per rank with 16 grid points per element on nodes using flat
memory mode. The libxsmm optimized version is used. The
scaling results can be observed to show a similar drop in
parallel efficiency as the node count increases. The curves
for the larger problems are shifted to the right, with given
levels of parallel efficiency hit at higher node counts. While
strong scaling parallel efficiency is expected to drop as the node
count is increased due to the diminishing computational work
available per node, the strong scaling for Nekbone on Theta
can likely be improved by optimizing the communication using
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the rank re-ordering.
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The routines in Nekbone may be grouped into three primary
types: streaming kernels which are memory bandwidth bound,
compute kernels which are primarily performing small matrix-
matrix multiply operations, and communication kernels which
perform point-to-point communication operations and reduc-
tions. At node counts where Nekbone is performing with 80%
parallel efficiency, the time for the streaming kernels accounts
for approximately 50% of the overall runtime, with matrix-
matrix multiplications accounting for approximately 20% of
the time, and communication related operations accounting
for approximately 30% of the time. The streaming kernels
were observed to achieve between 70% and 95% of peak flat
mode memory bandwidth, and the matrix multiply operations
achieved approximately 40% of peak FLOP rate when libxsmm
is used.

V. CONCLUSION

This study provides an initial evaluation of the Cray XC40
system, Theta, including performance characterization of the
system components such as KNL micro-architecture, memory
subsystem and the dragonfly interconnect. Three applications,



LAMMPS, MILC and Nekbone were evaluated in the context
of these component characteristics.

The peak floating point performance of the KNL core and
node are 35.2 GFlops and 2.25 TFlops respectively. An opti-
mized DGEMM benchmark was found to achieve around 86%
of the peak performance. While the KNL core has a theoretical
peak throughout of 2 IPC (instructions per clock cycle) actual
throughput can be limited by factors such as instruction width
(opcode length) and power constraints. Power measurements
show better computational efficiency when using fewer hyper-
threads. OS noise and the shared L2 cache contention have
been identified as the sources of core to core variability
on the node. Cray core specialization helps address the OS
noise which could have significant impact on the timing of
microkernels. The overhead of OpenMP constructs such as
Barrier and Reduce was quantified and found to be related to
the latency of main memory access due to the lack of a shared
last level cache. A simple performance model was developed
to quantify the overhead of OpenMP pragmas which scale as
the square root of the thread count.

The peak observed memory bandwidth of the DDR and IPM
memory was measured using the STREAM Triad benchmark.
Considerable variation was found in memory bandwidth be-
tween the flat and cache memory mode configurations. Use
of Streaming stores in place of the regular stores improves the
bandwidth in flat mode but can be detrimental in cache mode. It
was observed that IPM cache mode page conflicts are not fully
prevented by the Zone sort algorithm for free page management
which results in considerable node to node variability in
cache mode IPM bandwidth. Power measurements show better
efficiency when using IPM versus DDR memory.

The OSU MPI benchmarks were used to characterize the
performance of the Aries network and the Cray MPI implemen-
tation. A peak messaging rate of 23.7 million messages per sec
and a corresponding 11.4 GB/s peak off node bandwidth were
observed. The latency for 1 byte message transfers between
nearest nodes was found to in the range of 3-5 us. RMA
performance was found to increase significantly when the
DMAPP interface is used.

The performance optimization and scalability of three ap-
plications, LAMMPS, MILC, and Nekbone are shown with
respect to the performance characteristics identified at the
component level. In all cases, the applications were suc-
cessfully able to scale up to large fractions of Theta and
direct comparisons made to performance on ALCF’s current
production resource Mira. For a 32 million particle simulation,
LAMMPS continued to show performance improvements up
to 2048 nodes running 64 MPI ranks per node and memory
bandwidth measurements motivate exploration of explicitly
allocating specific data structures to IPM and DRAM. In weak-
scaling data for the MILC application, again running 64 MPI
ranks per node, effects on performance due to both cache-
mode and network variability were discussed. Strong-scaling
performance data for the Nekbone mini-app up to the full Theta
machine was discussed, as well as single-node performance
which showed no significant difference in runtime as MPI ranks
and OpenMP threads were varied. A common theme in the
three application studies was consideration of the variability
and contention in the interconnect and their effects on point-

to-point and collective communication. Looking forward, Theta
will serve as an invaluable resource for preparing science and
engineering applications for the upcoming 180 PF Intel-Cray
Aurora system.
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