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Abstract—HPC applications heavily rely on Message Passing
Interface (MPI) and SHMEM programming models to develop
distributed memory parallel applications. This paper describes a
set of new features and optimizations that have been introduced
in Cray MPT software libraries to optimize the performance
of scientific parallel applications on modern Cray XC series
supercomputers. For Cray XC systems based on the Intel KNL
processor, Cray MPT libraries have been optimized to improve
communication performance, memory utilization, while also facil-
itating better utilization of the MCDRAM technology. Cray MPI
continues to improve the performance of hybrid MPI/OpenMP
applications that perform communication operations in threaded
regions. In addition, Cray MPI is being enhanced to support
the MPI Dynamic Process Management Interface and Cray PMI
now offers optimized process placement strategies to improve the
communication performance of applications on Cray XC systems.
Cray SHMEM offers API extensions to create and maintain
SHMEM Teams. Finally, this paper describes efforts involved in
optimizing real-world applications such as WOMBAT and SNAP
on the latest Cray XC supercomputers

I. INTRODUCTION AND MOTIVATION

Multi-/Many-core processor architectures, accelerators and
high performance networks are enabling the development
of highly capable supercomputers. These architectural trends
introduce new opportunities and challenges for achieving high
performance on modern supercomputers. In this environment,
it is imperative to design application and system software
stacks in a high performance and scalable manner. Application
scientists rely heavily on Message Passing Interface (MPI) and
SHMEM programming models to develop scalable distributed
memory parallel codes. This paper describes a set of new
features and optimizations introduced in the Cray Message
Passing Toolkit (MPT) software stacks for modern Cray XC
series supercomputers. The Cray MPT product comprises
of Cray MPI and Cray SHMEM software libraries that are
highly tuned for Cray XC systems. Cray MPI is currently
compliant with the MPI-3.1 specification and Cray SHMEM
is conformant with the OpenSHMEM-1.3 specification.

The latest Many Integrated Core (MIC) processor, The Intel
Xeon Phi. processor, code named Knights Landing (KNL) [1],
offers at least 64 compute cores per chip and more than
2 TF double precision floating point performance. However,
the performance characteristics of the KNL processor are
quite different from those of a contemporary Intel Xeon
processor. While the KNL processor offers support for wide
vector instructions, the processor cores operate at slower clock
frequencies and offer slower scalar processing capabilities.

Considering that MPI processing is largely scalar, MPI im-
plementations need to be carefully optimized to improve the
communication performance of parallel applications.

KNL also offers an on-package high bandwidth memory
technology called Multi-Channel DRAM (MCDRAM) in ad-
dition to traditional DRAM. MCDRAM offers high bandwidth
(up to 4X more than DDR4) with limited capacity (up to
16GB). MCDRAM can be configured as a direct mapped
L3 cache layer or as a distinct NUMA node. Configuring
the MCDRAM as an L3 cache layer is a convenient way to
port existing applications on to KNL based systems. However,
configuring the MCDRAM as a distinct NUMA node and
re-designing an application to fully take advantage of the
high bandwidth offered by the MCDRAM can improve the
performance of memory bandwidth bound applications [2].
The Cray MPT software stack offers new features that can
be used by applications to improve the utilization of the
MCDRAM and DDR NUMA nodes available on the KNL
systems.

II. KEY CONTRIBUTIONS

This paper describes a range of new optimizations that
improve communication latency, bandwidth, and the internal
memory utilization of the Cray MPI implementation. Specifi-
cally, these optimizations improve off-node MPI point-to-point
latency by up to 34% when compared to Cray MPT-7.3.3 and
on-node point-to-point bandwidth by up to 2X for a range
of message lengths. These optimizations also improve the
performance of the Sandia Micro Benchmark message rate
benchmark by up to 60% for small messages on Cray XC
systems based on KNL processors. A new optimization in the
Cray MPI library also improves the latency of small message
MPI Bcast operations by up to 16%. Section IV includes a
detailed summary of these new optimizations on Cray XC
systems based on KNL processors. While these optimizations
specifically target the KNL architecture, many of them are also
applicable to the Xeon processors.

Apart from providing support for standard OpenSHMEM-
1.3 [3] features, Cray SHMEM continues to support other
optimized non-standard features to improve ease of program-
ming and application performance. Existing support for Cray
SHMEM teams [4] or flexible PE subsets now includes new
team creation and management routines. Optimized team-
based collective reduction routines are available with the
existing set of other team-based collective operations. The new



team-based collective reduction routines achieve equivalent
performance when compared to the OpenSHMEM standard
active-set based reduction routines. In addition, collective
reduction performance is improved by up to 2X for large
messages.

With increasing number of cores per compute node,
Cray MPI continues to improve the performance of hybrid
MPI/OpenMP applications that perform MPI communication
concurrently from multiple threads. [5] discussed the benefits
of the “Thread Hot” MPI-3 RMA implementation on Cray
XC systems based on Intel Xeon processors. This paper
demonstrates the benefits of the optimized MPI-3 RMA imple-
mentation on Cray XC systems based on the KNL processors.
In addition, Cray MPI offers a new fast and fair locking
implementation to improve the performance of point-to-point
and collective operations that are performed concurrently
from multiple threads. Section IV includes a detailed set of
micro-benchmark results to study the performance benefits of
optimizing the MPI THREAD MULTIPLE threading support
in Cray MPI. In addition to the micro-benchmark results, this
paper also includes a summary of optimizing and tuning real-
world applications such as WOMBAT [6] and SNAP [7]. On
Cray XC series supercomputers based on KNL processors,
the “Thread-Hot” DMAPP-based MPI-3 RMA implementation
in Cray MPT-7.5.3 improves the performance of WOMBAT
and SNAP by up to 14% and 22% respectively. Section VII
contains a detailed summary of the performance of WOMBAT
and SNAP on Cray XC systems based on KNL processors.

Finally, Section VIII describes some of the new and emerg-
ing features and optimizations in the Cray MPT software
suite. Cray MPI will soon support the MPI Dynamic Process
Management feature. The Cray Process Management Interface
(PMI) has been extended to expose important system topology
information that can be used by user-level applications and
libraries to optimize communication performance on Cray
XC systems. The latest Cray MPI offers a new lock-ahead
optimization for MPI I/O along with exposing internal timers
and statistics for I/O performance profiling. Cray MPI also
supports a set of user-level statistics that have been integrated
with the MPI Tools interface.

The experimental results included in this paper are based
on studies performed on Cray XC series systems based on
the Aries [8] Interconnect with Intel KNL processors, Intel
Broadwell processors and NVIDIA GPUs.

To summarize, the following are the major contributions of
this paper:

1) New solutions within Cray MPI and Cray SHMEM
to improve the communication performance on Cray
XC Series Supercomputers based on the Intel KNL
processors.

2) A description of optimizations in Cray MPI to improve
the performance of communication operations in Hybrid
applications.

3) A summary of enhancements in Cray MPI and Cray
SHMEM software stacks to help users best utilize the
MCDRAM memory on KNL.

4) A brief overview of new and upcoming features in Cray
MPT.

III. BACKGROUND

This section presents the relevant background information
for the various concepts covered in this paper.

A. Support for MPI THREAD MULTIPLE in CRAY MPICH

MPI offers three threading modes –
MPI THREAD SERIALIZED, MPI THREAD FUNNELED
and MPI THREAD MULTIPLE. In the SERIALIZED
and FUNNELED modes, only one thread is allowed
to issue and progress MPI communication operations.
MPI THREAD MULTIPLE enables parallel applications
to allow multiple threads to perform MPI operations
concurrently.

Most MPI implementations (including the default Cray
MPI implementation) rely on a single global lock to guaran-
tee thread-safety for the MPI THREAD MULTIPLE mode.
Each communicating thread must acquire the global lock
to perform any MPI operations. Cray MPI also offers an
alternate library that relies on fine-grained “per-object” locking
mechanisms [9]. In this approach, communicating threads can
concurrently enter the MPI library and acquire separate locks
that protect different critical sections. This flavor of Cray
MPI also uses the global lock to ensure thread-safety for
specific components and data structures. Hence, this approach
improves the level of concurrency within the MPI library. [5]
and [9] discussed the benefits of using the fine-grained per-
object locking approach when compared to the single global
lock approach. This paper describes a new optimization that
is now available in the Cray MPI stack that improves the
performance of hybrid applications that perform MPI opera-
tions concurrently from multiple threads. This optimization is
available in both flavors of the Cray MPI library: the default
version that uses the global-lock and the fine-grained “per-
object” version.

B. Optimized implementations for MPI-3 RMA in Cray MPI

Cray MPI offers an optimized implementation for MPI-3
RMA operations by leveraging DMAPP [10], the low-level
communication library for one-sided data transfers. On Cray
systems, [9] demonstrated the benefits of using the DMAPP
optimized MPI-3 RMA implementation in Cray MPI when
compared to the point-to-point based MPI-3 RMA imple-
mentation that is available in the ANL MPICH software. In
addition, the MPI-3 RMA implementation in Cray MPI offers
“Thread Hot” communication capabilities. This feature is
specifically geared towards improving the RMA communica-
tion overheads of multi-threaded hybrid MPI applications [5].
Section IV includes a summary of new optimizations and
tuning efforts to improve the performance of MPI-3 RMA
operations on Cray XC systems based on the Intel KNL
processor.
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C. KNL MCDRAM and support for Huge page backed mem-
ory regions

The KNL processor offers a specialized on package memory
called Multi-Channel DRAM (MCDRAM) in addition to the
traditional DDR memory. MCDRAM is a high-bandwidth, low
capacity memory device that can be configured as a third-
level cache, or a distinct NUMA node. When the MCDRAM
is configured as a distinct NUMA node in the “flat” mode,
applications can benefit if their entire dataset, or the frequently
accessed datasets have affinity to the MCDRAM memory.
Application developers have four ways of setting memory
affinity to the MCDRAM memory: (a) using directives spec-
ified by compilers, (b) numactl, or (c) using libraries such
as Memkind [11], or (d) by managing memory via OS system
calls such as mmap() and mbind(). The Memkind library offers
preliminary support for allocating memory regions that are
backed by huge pages. This support is currently limited to
either 2MB or 1GB page sizes, and may require changes to
the OS kernel. Depending on the memory access pattern of a
given application, huge pages with 2 MB page size might not
be sufficient to achieve high performance communication on a
Cray XC system. Allocating all memory regions to be backed
by huge pages of 1GB page size is also not a viable solution.
Section VI describes a set of new environment variables and
API extensions in Cray MPT that enable applications utilize
the MCDRAM NUMA node along with huge page support.

D. WOMBAT

WOMBAT is a shock capturing magneto-hydrodynamic
(MHD) code used to study a number of astrophysical phenom-
ena including outflows from super-massive black holes [6],
the evolution of galactic super-bubbles, and MHD turbulence
in environments such as the intra-cluster medium in galaxy
clusters. New development is extending the capabilities of
the code to cosmological simulations with the addition of a
particle-mesh dark matter solver and full multi-grid solver for
gravity. This work supports science goals of studying MHD
turbulence in galaxy clusters over cosmological scales at very
high resolution using a combination of static and adaptive
mesh-refinement (SMR and AMR respectively) strategies.
WOMBAT development is a collaboration between Cray Inc.
Programming Environments and the University of Minnesota
- Minnesota Institute for Astrophysics. The performance char-
acteristics of WOMBAT with the Thread Hot MPI-3 RMA
capabilities available in Cray MPICH on Cray XC systems
based on Intel Xeon processors were studied in [5] and [6].
This paper builds on this effort and evaluates the performance
of WOMBAT on Cray XC systems that are based on the Intel
KNL processors.

E. SNAP

SNAP serves as a proxy application to model the per-
formance of a modern discrete ordinates neutral particle
transport application [7]. It may be considered an update to

Sweep3D, intended for hybrid computing architectures. SNAP
decomposes a 3D domain with a 2D process grid and each
rank managing the full extent of the first dimension. The
communication pattern is a wave front with a rank at the
corner of the grid producing fluxes that are communicated
to the two downstream processes in the Y and Z directions.
SNAP has highly optimized computational loops executed in
a high level OpenMP parallel region. Non-blocking point-
to-point communication is performed by each thread in the
parallel region in an effort to overlap it with computation.
Since Cray MPT offers a highly optimized “Thread Hot”
MPI-3 RMA implementation, Cray has modified SNAP to use
MPI-3 RMA operations from within OpenMP parallel regions.
Section VII-B studies the performance of the two versions of
SNAP on Cray XC systems based on KNL processors.

IV. NEW OPTIMIZATIONS IN CRAY MPI FOR KNL

This section describes a set of optimizations that have been
introduced in Cray MPI to improve the performance of various
MPI operations.

A. Off-Node MPI Point-to-Point Performance

As part of delivering and optimizing Cray MPI on XC
systems based on the KNL processors, the Cray MPT develop-
ment group has conducted a detailed performance analysis of
MPI point-to-point latency, comparing the Intel KNL proces-
sors to the Intel XEON processors. It is important to note the
Cray MPI library (and code path) is the same on both KNL
and XEON processors. When this performance analysis began,
MPT 7.3.3 was the state-of-the-art MPT version available on
Cray XC systems with KNL processors. Hence, initial results
presented in this paper are based on Cray MPT-7.3.3. As
discussed in Section II, the KNL processor operates at a slower
frequency and offers slower scalar performance. Since the
internals of an MPI implementation are largely scalar, it is
necessary to minimize the number of instructions executed in
the critical code paths inside the MPI library. To this end, the
Cray MPT development team explored several optimizations to
simplify the polling logic and to reduce the number of function
calls in the critical paths of the Cray MPI stack.

Figure 1(a) compares the MPI point-to-point latency ob-
served with Cray MPT-7.3.3 and Cray MPT-7.5.3 for small
message off-node ping-pong transfers. Cray MPT 7.5.3 per-
forms about 34% faster for point-to-point off-node transfers
when compared to Cray MPT-7.3.3. The Cray MPT develop-
ment group continues to investigate additional optimizations
to improve the communication latency of MPI operations on
XC systems based on KNL processors.

B. On-Node MPI Point-to-Point Bandwidth

Apart from optimizing off-node MPI point-to-point perfor-
mance, Cray MPT also offers enhancements to improve the
performance of on-node communication between MPI ranks.
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Fig. 1. MPI Point-to-Point Performance Studies: (a) Off-node latency (b) On-node Bandwidth

These enhancements rely on a new memcpy() implemen-
tation that is specifically tuned for the KNL architecture.
Figure 1 (b) compares the performance of Cray MPT versions
7.3.3 and 7.5.3 on the KNL processor. The latest Cray MPT
7.5.3 implementation outperforms the Cray MPT 7.3.3 version
by up to 2.7X for on-node communication bandwidth for
a range of message sizes that are greater than 1KB. This
experiment used with the PrgEnv-gnu module instead of the
PrgEnv-cray module. This is because with the PrgEnv-cray
module loaded, the Cray compiler software also internally
uses the memcpy routines that are optimized for KNL. Hence,
using the PrgEnv-gnu module facilitates the comparison of
the system default memcpy routines and the Cray optimized
memcpy routines on KNL.

C. Off-Node Multi-Pair Latency

Enhancements in Cray MPI also improve the communica-
tion performance of MPI point-to-point operations that involve
multiple communicating pairs. Figure 2(a) studies the perfor-
mance of the OSU Multi-pair latency test (osu multi lat.c).
This benchmark measures the average communication latency
between pairs of communicating processes across a range
of message lengths. This benchmark was run on an XC
system with 2 KNL nodes and 68 processes per node with 32
communicating pairs. The optimized Cray MPT-7.5.3 library
outperforms the Cray MPT-7.4.0 library by up to 60% for
small messages.

Figure 2(b) studies the performance of the Sandia Micro
Benchmark (SMB) with 32 KNL nodes, with 64 MPI pro-
cesses per KNL (2,048 MPI processes). This experiment used
a fixed number of communicating peers (6 and varying the
message length from 8B to 2KB. The craype-hugepages8M
module was used to perform this experiment. The SMB
benchmark reports the communication bandwidth statistics for
single-direction, pair-based, pre-post and all-start configura-
tions. For the sake of brevity, this study compares the com-
munication bandwidth reported by the pair-based test between
Cray MPT-7.5.3 and Cray MPT-7.4.0. The optimizations dis-
cussed in Section IV-A also help improve the performance of

the Cray MPT 7.5.3 library with the Sandia Micro Benchmark
by as much as 60% for small messages, when compared to
the Cray MPT-7.4.0 library.

D. MPI Bcast Optimizations

Figure 3 studies the performance of the MPI Bcast collec-
tive operation on Cray XC systems based on the KNL proces-
sor. Cray MPT 7.5.0 introduces a new design to optimize the
performance of the MPI Bcast operation. This design involves
directly issuing data transfer operations via uGNI library calls
and by-passing the CH3 channel and the low-level netmod
layer within the Cray MPT stack. This approach greatly re-
duces the number of instructions executed in the critical code-
paths, which in turn leads to significantly minimizing the com-
munication overheads involved in the MPI Bcast operation.
This optimization is currently disabled by default. Users must
set the MPICH NETWORK BUFFER COLL OPT environ-
ment variable to enable the optimization. The experiment in
Figure 3 used 64 KNL nodes, with 64 MPI processes per node
(4,096 MPI Processes). For small messages, this optimiza-
tion improves the communication latency of the MPI Bcast
collective by up to 20%. In Figure 3, the latency of the
MPI Bcast operation in Cray MPT-7.5.0 is considered as the
baseline, since this version already includes all KNL related
optimizations that have been introduced into the Cray MPT
stack since the 7.3.3 version.

E. Threading Optimizations in Cray MPI for off-node point-
to-point transfers

As discussed in Section III-A, the Cray MPT suite
currently offers two versions of Cray MPI library that
offer different levels of support for MPI communi-
cation operations in multi-threaded environments. While
both libraries support the different threading levels de-
fined by the MPI Specification (MPI THREAD MULTIPLE,
MPI THREAD FUNNELED, MPI THREAD SERIALIZED
and MPI THREAD SINGLE), the default flavor of Cray MPI
relies on a single global lock to ensure threads safety. The
alternate library relies on using a single global lock when
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needed, in conjunction with multiple fine-grained per-object
locks to improve concurrency inside the MPI library. As
documented in the Cray intro mpi man pages, the alternate
library is exposed to the users via a linker flag (-craympich-
mt). The fine-grained version of Cray MPI reduces the size
of the critical sections and can potentially allow one user-
level thread to perform low-level network transactions, while
another thread user-level thread operates on higher level MPI
constructs, such as the MPI request queue.

Traditionally, both versions of Cray MPI have used the
pthread library API to ensure thread safety. While the pthread
library offers a standard way of ensuring thread safety in
multi-threaded environments, it is not necessarily suitable
for high performance communication libraries. For exam-
ple, the pthread mutex lock() API does not guarantee that
locks are shared between the blocked threads in a fair
manner [12]. Cray MPI 7.5.3 offers an optimization that
improves the performance of the global locks in both fla-
vors of Cray MPI library – Global and Per-Object. This
optimization implements the recursive global locks by us-
ing GCC atomics instead of using the pthread library API.
This optimization allows the global lock to be shared be-
tween competing threads in a high performance and fair
manner. Figure 4 compare the performance of Cray MPI

7.5.0 and Cray MPI 7.5.3 libraries with the osu latency th.c
benchmark, between 2 KNL nodes on a Cray XC system.
MPICH MAX THREAD SAFETY=multiple was set in order
to allow multiple user-level threads to perform MPI operations.
Each MPI process has 16 communicating threads. This figure
also compares the performance of both flavors of the Cray MPI
stacks – default (global lock) and the fine-grained per-object
lock. For small messages (Figure 4 (a)), the default version
Cray MPI-7.5.3 that uses the new global lock implementation
performs about 62% better than the default version of Cray
MPI-7.5.0 that uses the pthread library to implement the
global locks. In addition, the Per-Object (Pobj) version of
Cray MPI-7.5.3 performs about 42% better than the Per-Object
version of Cray MPI-7.5.0. For larger messages (Figure 4
(b)), the Global-lock version of Cray MPI-7.5.3 performs
about 38% better than the Global-lock version of Cray MPI-
7.5.0, while the Per-Object version of Cray MPI-7.5.3 is about
13% better than the Per-Object version of Cray MPI-7.5.0. A
significant result of this contribution is that the communication
performance of multi-threaded point-to-point operations in
both the Global and the Per-Object versions of Cray MPI-7.5.3
are now comparable with the osu latency mt.c benchmark on
Cray XC systems based on KNL processors.

F. MPI3-RMA Performance on KNL

As discussed in Section III-B, Cray MPI offers an op-
timized MPI-3 RMA implementation by utilizing the low-
level DMAPP communication layer [10]. Starting from Cray
MPI 7.4.0 version, the RMA implementation is also op-
timized to offer “Thread-Hot” communication by allowing
multiple threads to concurrently issue one-sided operations
with minimal resource sharing and lock contention [5]. This
implementation was further optimized to achieve very high
one-sided message injection rates on Cray XC systems based
on the Intel KNL processors. Figures 5 (a) and (b) study
the performance characteristics of performing MPI Get and
MPI Put operations between two MPI ranks on two KNL
nodes, each rank performs RMA operations concurrently from
64 threads. MPICH MAX THREAD SAFETY=multiple was
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Fig. 4. Cray MPI MPI THREAD MULTIPLE communication performance (a) small message (b) large messages

set in order to allow multiple user-level threads to perform MPI
operations. In order to enable the Thread-Hot optimization for
MPI-3 RMA operations, the executable must be linked against
the DMAPP library, and the MPICH RMA OVER DMAPP
environment variable must be set to 1. Figure 5 (a) demon-
strates that the latest Cray MPI implementation significantly
improves the small message communication bandwidth when
compared to the DMAPP-based MPI-3 RMA implementation
in Cray MPT 7.2.0. This is solely because the Cray MPI-
7.5.1 implementation allows each communicating thread to
perform the DMAPP-based network operations in an indepen-
dent manner, whereas Cray MPT 7.2.0 used a single global
lock to serialize all network operations that are performed
via the low-level DMAPP library. Figure 5 (b) compares the
communication bandwidth observed with the same benchmark
for large messages. Cray MPT-7.5.0 continues to outperform
Cray MPT-7.2.0 for large messages by about 30%.

V. NEW OPTIMIZATIONS IN CRAY SHMEM FOR KNL

This section describes the set of optimizations and new
extensions that have been introduced in Cray SHMEM to
improve the performance of various SHMEM operations.

A. Off-Node Put Latency

The SHMEM Put operation provides a method to copy data
from a contiguous local data object to a remote data object on a
specified PE. As per the OpenSHMEM standards, the blocking
Put operation returns immediately after the data is copied
out of the local data object. In Cray MPT-7.3.3, the default
behavior of SHMEM blocking put did not return immediately
after the data is copied out. It returned only when the data
is copied into the remote data object. The strict completion
semantics of blocking put in Cray SHMEM is enforced for
thread-safety reasons.

As part of performance improvements in Cray SHMEM,
starting from Cray MPT-7.4.0, the default behavior of
SHMEM Put operation is enhanced and is now consistent
with the blocking Put semantics defined in the OpenSH-
MEM Specification. Cray SHMEM now allows users to reuse

the local data buffer after a shmem put() operation returns.
However, the global visibility of the put operation is not
guaranteed until a shmem fence() or shmem barrier[ all]()
call is completed. A new Cray-specific environment variable
(SHMEM DMAPP PUT NBI) is now available. Users can
set this flag to 0, if the previous behavior of Cray SHMEM
(version 7.3.3) is desired.

Figures 6 (a) and (b) compare the bi-directional write
bandwidth with blocking put using Cray MPT-7.3.3 and Cray
MPT-7.4.0. Figure 6 (a) compares the performance of Put
operations with small message sizes on Cray XC systems
based on the Intel Broadwell processor, whereas Figure 6 (b)
compares the performance observed on XC systems based on
the Intel KNL processor. This experiment uses the SOS [13]
bi-directional write bandwidth micro-benchmark [14]. This
benchmark uses two PEs on two separate nodes, where both
PEs repeatedly perform a stream of shmem_putmem op-
eration on a fixed window size before performing memory
ordering with shmem_quiet, to ensure data delivery from
the previous shmem_putmem stream. For small data sizes
less than 4K, the blocking Put in Cray MPT-7.4.0 performs
about 1.8X better than Cray MPT-7.3.3 on BDW and 64%
better than Cray MPT-7.3.3 on KNL.

B. Improved API Extensions to Create and Maintain Teams

Many OpenSHMEM routines operate on a subset of PE
called Active set. The Active set is specified using three
arguments:

• the lowest PE number of the active set of PEs,
• the log (base 2) of the stride between consecutive PE

numbers in the active set, and
• the number of PEs in the Active set.

On many HPC applications, using Active set for work decom-
position is highly insufficient. Cray SHMEM provides a set of
Cray-specific extensions for creating and maintaining flexible
PE Subsets called Teams.

Apart from the existing color- and stride-based Team cre-
ation routines, Table I shows the new set of Team creation
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Fig. 6. SHMEM Bidirectional Put Performance Studies: (a) BDW Bandwidth (b) KNL Bandwidth

extensions added to support two and three dimensional Carte-
sian based Team splits.

2-Dimensional Cartesian splits

shmemx_team_split_2d (
shmem_team_t parent team,
int xaxis range, int yaxis range,
shmem_team_t* xaxis team,
shmem_team_t* yaxis team )

3-Dimensional Cartesian splits

shmemx_team_split_3d (
shmem_team_t parent team,
int xaxis range, int yaxis range,
int zaxis range,
shmem_team_t* xaxis team,
shmem_team_t* yaxis team,
shmem_team_t* zaxis team )

TABLE I
TEAM CREATION BASED ON CARTESIAN SPLITS

In addition to the Active set based collective operations,
Cray SHMEM also supports Team-based collective operations.
(Table II).

C. All-reduce collective Performance Improvements

Optimizations in Cray SHMEM improve the performance
of OpenSHMEM Active set based All-Reduce collective
communication for large data sizes greater than 16K. The

SHMEM_BARRIER
shmemx_team_barrier (
shmem_team_t team, long* pSync )

SHMEM_REDUCTIONS

shmemx_team_[TYPE]_[OPR]_to_all (
shmem_team_t team, [TYPE]* dest,
const [TYPE]* source, int nreduce,
[TYPE]* pWrk, long* pSync )

SHMEM_ALLTOALL

shmemx_team_alltoall (
void* dest, const void* source,
int nelems, shmem_team_t team,
long* pSync )

SHMEM_ALLTOALLV

shmemx_team_alltoallv (
void* dest, size_t* dest offsets,
size_t* dest sizes, const void* source,
size_t* src offsets, size_t* src sizes,
shmem_team_t team, long* pSync )

TABLE II
TEAM BASED COLLECTIVES

SHMEM USE LARGE OPT REDUCE environment vari-
able enables the usage of this optimized collective re-
duction algorithm and the 16K cutoff size for enabling
the usage of this algorithm can be modified using the
SHMEM REDUCE CUTOFF SIZE environment variable.

Figure 7 shows the performance improvements observed
with the optimized collective reduction algorithm for large
data sizes. This experiment used the PGAS All-reduce micro-
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Fig. 7. SHMEM REDUCE Optimization for large data sizes

benchmark [15]. The optimized collective reduction algorithm
performs about 12X better than the default reduction algo-
rithm for very large data sizes. This experiment used 18,000
SHMEM PEs distrubuted across 500 KNL nodes on a Cray
XC system.

As mentioned in Section V-B, Cray SHMEM provides
support for Team based collective reduction, along with
supporting Shared Memory (SMP) based optimizations.
SHMEM TEAM SMP REDUCE environment variable is
used to enable the SMP-based reduction optimizations. Appli-
cations with collective reductions involving the use of two or
more PEs per node benefit for the SMP-based optimizations.

Figures 8(a) and (b) shows the usage of SMP-based opti-
mizations on team-based collective reductions using the PGAS
micro-benchmarks with 36 PEs per node with 500 KNL nodes
(18,000 SHMEM PEs) on a Cray XC system. The SMP
optimization improves the communication latency by up to
64% for small messages and by up to 4X for messages of
length 16KB.

VI. API EXTENSIONS AND ENVIRONMENT VARIABLES IN
CRAY MPT TO SUPPORT KNL MCDRAM

This section describes the set of API extensions and new
environment variables in Cray MPICH and Cray SHMEM
software stacks to enable users better utilize the MCDRAM
memory along with hugepages.

A. New Environment Variables in Cray MPI to support KNL
MCDRAM

On Cray XC series systems, depending on the communica-
tion characteristics of the parallel application, it is beneficial to
use huge pages [5]. On KNL based XC systems, if MCDRAM
memory configured in the flat mode, application developers
now have the flexibility to use hugepage memory regions on
both DDR and MCDRAM. As discussed in Section III-C,
the programming environment and the WLM offer support to
allow users to allocate memory on the MCDRAM, when the
MCDRAM is either configured fully or partially in the “flat”
mode. However, the current level of support is insufficient

to offer memory regions that are bound to the MCDRAM
and are also backed by huge pages of a specific page size.
Cray MPT software stacks offer solutions to allow users
to set specific parameters for various memory allocations.
Specifically, users can set the page size, memory policy and
memory affinity settings for all memory allocations handled
by the MPI Alloc mem() and MPI Win allocate() operations
during the execution of the job. In addition, Cray MPI also
offers support to manage the configuration parameters for
communication buffers that are allocated by the MPI stack
to allow users to better utilize the memory available on the
MCDRAM.

MPICH ALLOC MEM AFFINITY specifies the affinity
of memory regions allocated by calls to MPI Alloc mem()
and MPI Win allocate(). By default, the memory affinity
is handled according to the default affinity settings on a
given system (referred to as SYS DEFAULT). For example,
consider a job launched with numactl –membind=1 on a
KNL system configured in the Quad/Flat mode. By default,
any call to MPI Alloc mem() or MPI Win allocate() will
set the memory affinity to the MCDRAM NUMA node. The
MPICH ALLOC MEM AFFINITY variable can be used to
override the system default affinity settings. When this variable
is set to DDR (or D), memory allocated by MPI Alloc mem
and MPI Win allocate() will be bound to DDR memory.
Similarly, if the job was launched with numactl –membind=0
all calls to MPI Alloc mem() and MPI Win allocate() will,
by default, allocate memory with affinity set to DDR. The
MPICH ALLOC MEM AFFINITY variable can be set to
MCDRAM (or M) to set the affinity of memory regions
allocated by MPI Alloc mem() and MPI WIn allocate() to
KNL’s MCDRAM memory.

MPICH ALLOC MEM POLICY specifies the
memory affinity policy for memory regions
allocated by the MPI library when the user calls
MPI Alloc mem(), or MPI Win allocate(). Suppose
MPICH ALLOC MEM AFFINITY is set to MCDRAM.
If an MPI Alloc mem(), or MPI Win Allocate() operation
is unable to bind the memory region to MCDRAM, the
MPICH ALLOC MEM POLICY variable determines the
expected behavior of the program. The Cray MPI library
accepts the following policy values: ”Mandatory” (or ”M”),
”Preferred” (or ”P”), or ”Interleave (or ”I”). By default, the
memory affinity policy is set to ”Preferred”. This variable has
no effect if the MPICH ALLOC MEM AFFINITY variable
is not set to ”MCDRAM”. If set to ”Preferred” (or ”P”) and
the allocation on MCDRAM is not possible, the MPI library
sets the memory affinity to DDR and continues execution. If
set to ”Mandatory” (or ”M”), the MPI library fails to allocate
memory and displays a meaningful error message. If set to
”Interleave” (or ”I”), the MPI library will try to interleave
the individual pages of the allocated memory region across
the available MCDRAM NUMA nodes.

The MPICH ALLOC MEM PG SZ variable allows the
user to set a specific page size for MPI Alloc mem and
MPI Win allocate operations. The supported values are
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4K, 2M, 4M, 8M, 16M, 32M, 64M, 128M, 256M and
512M. By default, these operations use the 4K base pages.
On Cray XC systems based on the KNL processors, if
MPICH ALLOC MEM AFFINITY is set to MCDRAM and
MPICH ALLOC MEM PG SZ is set to X (X>= 2M), the
memory region will be backed by huge pages of size X bytes,
and the memory affinity will be set to MCDRAM.

Cray MPI offers the MPICH INTERNAL MEM AFFINITY
variable to control the affinity of internal memory regions
allocated by the MPI library. This variable currently affects
the memory affinity of the mail-boxes used for off-node
communication, and the shared-memory regions that are
used for on-node pt2pt and collective operations. On KNL,
this variable allows users to specifically request the internal
memory regions used by the MPI library to be bound to
either DDR, or the MCDRAM. The default affinity settings
will be governed by the system defaults. For example, on a
KNL system configured in the Quad/Flat mode, if the job is
run with numactl –membind=1, all of MPI’s internal memory
will be bound to MCDRAM if this variable is not set. This
variable can be set to DDR if some of the important memory
regions that are used by the MPI library need to be placed
on DDR instead.

B. Memory Partitions in Cray SHMEM to support KNL MC-
DRAM

This section describes the joint efforts of Cray and Intel
to define OpenSHMEM runtime changes and extensions to
support different kinds of memory for the symmetric heap.
At present, symmetric heap is created at a memory location
determined by the implementation. The runtime changes in
Cray SHMEM allow users to determine the memory location
at which the symmetric heaps can be created. These user-
determined memory locations are referred to as “Memory
Partitions”. Each memory partition features a list of traits to
define their characteristics – memory kind being one of those
featured traits.

We introduce a new environment variable called
SHMEM SYMMETRIC PARTITION to define the

SHMEM SYMMETRIC PARTITION<ID>= size=<size>
[:pgsize=<page size>][:kind=<mem kind>][:policy=<mem policy>]

SHMEM SYMMETRIC PARTITION1=size=2G:kind=NORMALMEM
SHMEM SYMMETRIC PARTITION2=size=500M:kind=FASTMEM
SHMEM SYMMETRIC PARTITION3=size=500M:kind=F:policy=M

TABLE III
ENVIRONMENTAL VARIABLE TO CREATE MEMORY PARTITIONS

characteristics of each partition by passing one or more
traits as inputs. Table III shows the usage of the new
SHMEM SYMMETRIC PARTITION environmental variable
in Cray SHMEM to create memory partitions. At present, we
support the following four traits:

• Symmetric heap size - number of bytes to allocate for
a symmetric heap and a mandatory input parameter
required for each partition,

• Page size - number of bytes to specify the size of the
page used by the partition.

• Memory kind - kind of memory if multiple memory kinds
are supported by the system. On Intel KNL processors,
users can select DDR(NORMALMEM) or on-package
MCDRAM(FASTMEM) as input.

• Memory policy - policy to handle scenarios when suf-
ficient memory is unavailable. Users can use MANDA-
TORY or PREFERRED as policy.

Cray SHMEM also provides support for two new exten-
sions shmem_kind_malloc and shmem_kind_align to
create symmetric data objects specific to a memory partition.
Users are advised to review the Cray SHMEM man pages for
additional information.

VII. OPTIMIZING REAL-WORLD APPLICATIONS ON CRAY
XC SYSTEMS WITH KNL PROCESSORS

This section describes a summary of optimizing two real-
world applications, WOMBAT and SNAP, on Cray XC sys-
tems based on the KNL processors.
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A. WOMBAT

Section III-D briefly described the design and implemen-
tation of WOMBAT. WOMBAT extensively relies on multi-
ple user-level threads concurrently performing MPI-3 RMA
operations to achieve very high efficiency on modern multi-
/many-core processor architectures. Cray MPI offers Thread
Hot MPI-3 RMA capabilities to multiple user-level threads
to concurrently perform RMA communication and synchro-
nization operations. On Cray XC supercomputers based on
the Intel Broadwell processors, the Thread Hot MPI-3 RMA
optimization in Cray MPICH improves the performance by
more than 18% [5]. Figure 9(a) studies the performance of
WOMBAT on Cray XC systems based on the KNL processors.
Specifically, this study compares the time required to perform
a time step in the WOMBAT application which involves both
compute as well as communication operations. In addition, this
study also elicits the difference in the performance character-
istics of WOMBAT by using two versions of Cray MPI: Cray
MPT-7.3.1 relies on a global lock to ensure thread-safety for
RMA operations, and Cray MPT-7.5.3 offers thread hot RMA
communication capabilities. This study was performed on a
Cray XC system with 125 KNL nodes, with 4 MPI process per
node and 16 threads per MPI rank. Figure 9(a) demonstrates
that on XC systems based on the KNL processors, the time
required to perform an update is about 14% lesser when using
the optimized Cray MPI version that offers Thread Hot MPI-3
RMA communication capabilities.

B. SNAP

The primary communication in SNAP consists of
MPI Isend() and MPI Recv() called by all threads in a high-
level OpenMP region. The communication pattern, described
in Section III-E, is a producer-consumer model that is latency
sensitive. Traditional point-to-point operations protected with
a global lock reduces limits thread scaling because of the
added latency from serializing communication. We modified
SNAP to use MPI-3 RMA to take advantage of the lower
latency and ”Thread-Hot” capabilities within Cray MPICH.
These modifications consist of changing point-to-point calls
into MPI Put() operations with synchronization handled with
a signaling mechanism similar to that used in WOMBAT [6].
A single RMA window and buffer manages both payload
and signals in a passive exposure epoch that persists for the
full execution time. The RMA buffer is allocated to be large
enough to allow independent communication of all energy
groups. The main loop over the energy groups is the level
at which work is partitioned across threads.

Figure 9(b) compares the solve time for the best performing
rank/thread combination for a given number of KNL nodes
for the original point-to-point (Pt2Pt) and the new MPI-RMA
(RMA) versions of SNAP. The runs are weak scaled with the
problem size per node parameters given in Table IV. The RMA
version of SNAP performs up to 22% better than the Pt2Pt
version with 512 KNL nodes on a Cray XC system. For all
RMA runs the optimal configuration was 8 OpenMP threads

per rank and 16 ranks per node using 2 Hyperthreads per core.
Table V shows the optimal combinations of threads/ranks at
a given number of nodes for the Pt2Pt version. The Pt2Pt
version is limited to just 4 OpenMP threads and at the largest
node counts just a single thread with no Hyperthreads for best
performance. In all cases the RMA version enables scaling to
higher numbers of threads with better overall performance.

Exp. Type Threads/Rank Ranks/Node
Pt2Pt: 2, 16, 64 Nodes 4 32
Pt2Pt: 256, 512 Nodes 1 64

RMA: All Nodes 8 16

TABLE IV
SNAP: CONFIGURATIONS FOR PT2PT AND RMA EXPERIMENTS

Parameter Value
Nang 48

nx 720
ny 16
nz 16
ng 32

TABLE V
PROBLEM SIZE PER NODE PARAMETERS

VIII. UPCOMING FEATURES IN CRAY MPT

This section profiles two new features that will be available
in Cray MPT in the near future.

A. Dynamic Process Management and Improvements in MPI
Tag space and message matching

Cray MPT will soon support the Dynamic Process
Management interface defined in the MPI Specification.
The support for this feature will be rolled out incrementally
during Q2 and Q3 of 2017. The Q2 release of Cray
MPT will offer support for the MPI Comm connect()
and MPI Comm accept(). Later releases of Cray
MPT will support the MPI Comm spawn() and
MPI Comm spawn multiple(). To use connect/accept in the
official Cray MPT release that supports DPM, users will have
to set an environment variable MPICH DPM SERVER=1
for the server process, and MPICH DPM CLIENT=“<file
path>” for the client process, where “<file path>” is the
absolute path to a file created by MPI when launching the
server.

B. Improved Network Topology Mapping Interfaces in Cray
PMI

Cray PMI now provides a topology-aware, rank-reordering
feature that improves communication performance on Cray XC
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Fig. 9. Application performance on XC systems based on Intel KNL: (a) WOMBAT and (b) SNAP

systems with the Aries Interconnect. In order to use this fea-
ture, users must know the communication pattern of their ap-
plication. The CrayPAT tool can be used on Cray XC systems
to obtain this information. Next, users need to set the following
environment variable MPICH RANK REORDER METHOD
= 4 to override the default rank placement strategy set by the
work load manager. In addition, users must set a new en-
vironment variable, MPICH RANK REORDER OPTS, with
the relevant information for a given job. For example,
an application with a 3-dimensional cubic grid, nearest-
neighbor communication pattern utilizing 4096 ranks would
set: MPICH RANK REORDER OPTS=“– –ndims=3 – –
dims=16,16,16 – –nearest”. During the execution of the job
on a Cray XC system, Cray PMI will automatically reorder
MPI ranks using a compactness optimization that adapts to the
topology of the resources allocated to the user’s job to max-
imize communication locality. For further details, the reader
is encouraged to read the “intro mpi” man-page available a
Cray XC system.

Figure 10 studies the performance of the MiniGhost Bench-
mark on the Trinity XC 40 System. In this experiment,
MiniGhost used 8 MPI ranks per node, with each rank
having 4 OpenMP threads, across a range of job sizes on
the system. The execution time observed with the default
process placement for a given job size is compared with the
optimized rank placement strategy for the same job size. This
study demonstrates that Cray PMI is able to generate highly
optimized rank placement strategies for a given job size and
this results in an improvement of up to 32% in the overall
execution time of the MiniGhost Benchmark.

C. New MPI I/O Optimizations in Cray MPT

Shared-file locking mechanisms available in the Standard
Lustre implementations limit scaling of shared-file I/O oper-
ations on modern high performance Lustre servers. “Lustre
lockahead” is a new Cray enhancement in Lustre to signifi-
cantly improve write performance for collective and shared-
file I/O workloads. Preliminary evaluations show about 200%
improvements for small transfer sizes and over 100% improve-
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Fig. 10. MiniGhost Execution time on the Trinity XC 40 System

ments for larger transfer sizes, when compared to locking
methods available in traditional Lustre implementations. MPI
I/O operations in Cray MPT are able to take advantage of
this feature to significantly improve shared-file collective I/O
performance, achieving more than 80% of file per process
performance. [16] describes this new optimization in detail.

Cray MPT-7.5.3 offers improved support for gathering tim-
ing data for MPI I/O operations. MPICH MPIIO TIMERS
is a new environment variable available in Cray MPT-7.5.3.
If this variable is set to 1, timing data for different phases
in MPI IO is collected locally by each MPI process. During
MPI FILE close the data is consolidated and printed. Some
timing data is displayed in seconds, other data is displayed
in clock ticks, possibly scaled down. Additional information
on the timing data for MPI I/O operations in Cray MPT is
available in the intro mpi man pages.

IX. RELATED WORK

The importance of optimizing the performance of multi-
threaded applications is widely recognized. Si [17] et al. have
explored the problem of offering a transparent multi-threaded
MPI communication library for the benefit of applications
that perform MPI operations from a single thread. Amer
et al. [18] have explored the problem on optimizing thread
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arbitration and scheduling on modern processor architectures.
Kumar et al. [19] have also investigated the challenges as-
sociated with optimizing multi-threaded MPI communication
on IBM BlueGene systems. Balaji et al. [20] proposed the
concept of using fine-grained locking mechanisms to improve
the performance of multi-threaded applications. This paper
discusses the performance characteristics of a new fast and fair
thread synchronization mechanism on Cray XC systems. [21]
presents the design, implementation and performance charac-
teristics of a SHMEM implementation over the LibFabric [22]
interface on Cray XC systems.In [2], the authors discuss the
performance characteristics of memory bound applications on
KNL processors with MCDRAM configured as a separate
NUMA node.

X. SUMMARY AND CONCLUSION

This paper provides a detailed description of a broad range
of new features and optimizations to improve the performance
of communication micro-benchmarks and real-world scientific
applications on the latest Cray XC series supercomputers.
The Cray MPT team added new optimizations to improve
communication latency, bandwidth, and message rates on XC
systems based on KNL processors. Cray MPI also offers sev-
eral optimizations to improve the performance of applications
that use the MPI THREAD MULTIPLE threading support.
In addition, Cray SHMEM offers enhancements to improve
the performance of collective operations that use the Active
set and Team semantics. Nearly all of these enhancements
are available in the Cray MPT software stacks. In addition,
this paper also demonstrates that the performance of real-
world applications such as WOMBAT and SNAP on Cray XC
systems based on the KNL processors are improved by up to
22%. Finally, this paper also previews some of the key features
and enhancements that will soon be available in Cray MPT.
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