CUG Talk

In-situ data analytics for highly
scalable cloud modelling on Cray
machines

Nick Brown, EPCC

nick.brown@ed.ac.uk |epCC‘

L
Met Office NERC Cloud model (MONC)

- Uses Large Eddy Simulation for modelling clouds &
atmospheric flows

- Written in Fortran 2003 due to scientist familiarity, uses MPI for
parallelisation

- Designed to be a community model which will be accessible to be
changed by non expert HPC programmers and scale/perform well.

- For use not just by Met Office scientists, but also those in the wider
weather/climate community
- Replaces an older model, the
LEM from the 1980s

- From 22 million to billions of
grid points

- From 256 cores to many
thousands

epCccC

9
oo
Ia
@]
ey

L
A challenge for analysis

Zn

Prognostics Diagnostics

- With much larger domains (billions of grid points) how can
we best analyse the data in a scalable fashion?

- Previous LEM model did this in line with computation, where the
model would stop and calculate diagnostics before continuing with

computation
- Could write to disk and analyse offline ‘epCC

<
AW
= iy
]
<

In-situ approach

- Have many computational processes and a number of

data analytics cores

- Typically one core per processor is dedicated to 10, serving the

other cores running the computational model

- Computational cores “fire and forget” their data

- In-situ as raw data is
never written out

- Would be too time
consuming

- Avoids blocking the
computational cores for
analytics and 10

@ e

epCccC

Existing approaches......

- Some existing approaches:
- XIOS
- Damaris
- ADIOS
- Unified Model IO server

- We need:

- To support dynamic time stepping

- Checkpoint-restart of the 10 server itself
- Bit reproducibility

- Scalability and performance

- Easy configuration & extendibility

epCccC

External Raw MONC data
API \
Raw
MoNe N\ Diagnostics Writer
federator Diagnostic data federator

N

Y \E

Inter 10 NetCDF file| |writer state

Operators communications Writer 2 Serialiser
Time \ /
manipulation .
|
/ \ NetCDF
Instantaneous Time output file
averaged .

epCcC

<
I
IS
o]
o

- Define the data from MONC

Raw MONC
- Arrays, scalars or maps mernal T
- Mandatory (default) or Raw\
Optiona| MONC Diagnostics J writer
data federator Diagnostic ~| federator

Inter 10 NetCDF s | serialiser

need to provide sizes per Operators | | communications

- A unique subset of a field A data \ e
(collective) or not. If collective ~ v state

H . file ther
dimension; z, zn, y ,x and Time
qf|e|ds manipu atlc;g
- Integer, double, float, I Santaneous —
boolean, string averaged

- The 10 server expects this data every “frequency” timesteps

- On registration the MONC process is told what data it should
send & when. MONC process tells the 10 server the sizes.

<data-definition name=%“data parcel™ frequency=2>
<field name="u" type="array" data type="double" size="z,y,x" collective=true/>

<field name="vwp local" type="array" data type="double" optional=true/>

</data-definition> ‘ ep(:(:

L9
>
~
(@]
1)

External Raw MONC
: : . : API data
* Define the diagnostics & its -
aw
. Diagnostics N Writ
attributes (';/';t);\' ¢ federator Diagnostic | fed:raetror

. N data
— Along with how to /) \ Writer
A2 state

generate this diagnostic Inter 10 NetCDF | | serialiser
Operators | | communications file writer [~
* Organised as communication manioulation
and operators Y
Instantaneous Time
averaged

<data-handling>

<diagnostic field="VWP mean" type="scalar" data type="double" units="kg/m"2">

<operator name="localreduce" operator="sum" result="VWP mean loc reduced"
field="vwp local"/>

<communication name="reduction" operator="sum" result="VWP mean g"
field="VWP mean loc reduced" root="auto"/>

<operator name="arithmetic" result="VWP mean"

equation="VWP mean g/ ({x size}*{y size})"/>

</diagnostic> e CC
<data-handling>

External Raw MONC data
API \
Raw
MoNe N\ Diagnostics Writer
federator Diagnostic data federator

N

Y \E

Inter 10 NetCDF file| |writer state

Operators communications Writer 2 Serialiser
Time \ /
manipulation .
|
/ \ NetCDF
Instantaneous Time output file
averaged .

epCcC

<
I
IS
o]
o

User configuration - writing

External Raw MONC
API data \
< =" fields"> Raw) : -
group name="3d fields MONG Diagnostics T wier
<member name="w"/> data federator Diagnostic ~| federator

N data
<member name="u"/> N A mT?r
Inter 10 state
</group>

o NetCDF serialiser
Operators | | communications file writer
\

Vv

Time
manipulation

N

Instantaneous Time
averaged

NetCDF
output file

<data-writing>

<file name="profile ts.nc" write time frequency="100.0" title="Profile">
<include field="VWP mean" time manipulation="averaged"

output frequency=%2.0"/>

<include group="3d fields" time manipulation="instantaneous”
output frequency="5.0"/>

</file> | ep‘ ‘
</data-writing>

L
Reuse of configuration

- Numerous existing XML configurations provided which can be
Included by the user

- Raises the issue of name conflicts
- Handled by the concept of namespaces

#include “checkpoint.xml”

#include “profile fields.xml”

#include “scalar fields.xml”

epCccC

9
oo
Ia
@]
ey

External Raw MONC data
API \
Raw
MoNe N\ Diagnostics Writer
federator Diagnostic data federator

N

Y \E

Inter 10 NetCDF file| |writer state

Operators communications Writer 2 Serialiser
Time \ /
manipulation .
|
/ \ NetCDF
Instantaneous Time output file
averaged .

epCcC

<
I
IS
o]
o

Event handling

- The federators and their sub activities are event handlers
- Process events concurrently by assigning these to these from a pool

- Aids asynchronous data handling
- As soon as data arrives process it
- Internal state of event handlers needs protection (mutexes/rw locks)

- Challenge: Event

- Bit reproducibility

- For some handlers
enforce a predictable
order of processing
events (based on
model timestep.)

- Queue up out of order
events

Request
thread
from pool

Process
event

Process
event

epCccC

<
<
I~
o)
i

Inter-10 communications challenge

- We promote External e
asynchronicity and Raw\‘ —— —
. MONC lagnostics - riter
pI’OCGSSIng Of events Out data federator Diagnostic federator

Inter 10 NetCDF | serialiser

. N data :
of order where possible / ! / IDNEE

o Many |nter |O Operators | | communications £ file writer
communications involve manipulatiog -I
. - NetCDF
collective operations (such as instantaneous | [Time |
averaged

a reduction)

- We would like to use MPI, but issue order of collectives matters (i.e. if IO
server 1 issues a reduce on field A and then B, then all other 10 servers
must issue reductions in that same order)

- But ensuring this would require additional overhead and/or coordination

- Solution: Abstract through active ‘epCC

messaging

<
> A%
'K-' i
o]
i

Active messaging for inter [IO comms

- These communication calls additionally provide

- UniquelD: matching collectives even if they are issued out of order
- Callback : Handling procedure called on the root when the data
arrives
- Inter_io_reduce(data, data_type, root, unigueld, callback)

- When this reduction is completed on the root, a thread is activated

from the pool and calls the handling function (typically in the event
handler)

- The Unique ID here is the concatenation of field name and timestep
- Built upon MPI P2P communication calls

call inter io reduce(data, type, 0, fieldname//” ”//timestep, handler)

subroutine handler (data, data type, uniqueld)

......... epCcC

Y~
I~
A
end subroutine handler

Active messaging for synchronisation

- File writing is done by NetCDF

- But this is not thread safe, so crucial that only one thread per 10
server process calls NetCDF functions concurrently

- Many NetCDF calls are collective (i.e. will block until called on all
processes in the communicator.)

- NetCDF close is an example of this, where each process will block
here until same call issued on all other processes

- Which we don’t want, as it will block access to NetCDF (and MPI)

- Active messaging barrier calls the handling function on
every process once a barrier has been issued by all
processes

call inter io barrier(filename uniquelD, closeHandler)

subroutine closeHandler (uniqueId)

call close netcdf file (...) ‘ epcc

end subroutine closeHandler

<

[%
=~ i
]

<

Checkpointing

- We need to support checkpoint-restart of the 10 server
and analytics
- This is challenging due to the amount of asynchronicity, especially

In the analytics
MONC fields

- Walt for all analytics [z Diagnosic

APl | MONC™| federator | Diagnostic data

to that point to Silds . AR

complete and just E/ Ttec 10 T A
store the state of the = M“mm{] L
writer federator |

- Two step process
- Walk the state, lock it and determine the amount of memory needed
- Serialise state, write this and unlock

Prognostic writing optimisation

- 10 servers servicing many computational cores means
that the data is naturally split up

- For prognostic field writes this can be a problem as it is very
iInefficient to do lots of independent writes to the file

P o o e e g o S M M S B e e Em gy

Chunk : Chunk
A | B

- Want to perform minimal collective
writes instead

- Search through the domain of local
computational cores and merge data
chunks together where possible to
produce smaller number of large
contiguous chunks

- Must do the same number of writes on
every core, some perform empty writes &
if not enough chunks |epCC %

L
Performance and scalability

Computation only I
Computation and diagnostics E===T

350 I I | |

300

250

200 -

150

Runtime (seconds)

100

50

512 2048 8192 32768

MNumber of computational cores

- Standard MONC stratus cloud test case

- Weak scaling on Cray XC30, 65536 local grid points

- 232 diagnostic values every timestep, time averaged over
10 model seconds. File written every 100 model seconds.
Run terminates after 2000 model seconds.

L
|O overhead as a metric

- To measure the performance of the 10 server and different
configurations we adopt an overhead metric

- This is the time difference from the MONC communication that
should trigger a write, to that write having being physically

Runtime (seconds)

performed

9 T T T

512

2048 8192

Number of computational cores

32768

MPI serialised 8.92
MPI multiple 12.02
MPI serialised + 8.14
hyperthreading
MPI multiple + 9.71
hyperthreading

epCcC

&
> =
IS
o]

o

L
Performance on the KNL

No hyper-threading I Hyper-threading enabled 25T

2.5 T I I I | |
299s
308s
2 -]
8
o
§ 1.5 h
o 317s 3225
T})
¢ Ll 390s § |
> 4375 N \
o N
§ \
05 r \ -
\
\
l:l \\
1 2 4 8 12 Shared

Number of computational cores per |0 server

- Cray XC40, 64 core KNL 7210
- Same stratus test case. 3.3 million grid points
- As MONC is not multi-threaded can we run one 10 ‘ epCC

server per MONC on the hyper-thread?

<
AW
=~ iy
]
<

Conclusions and further work

- We have discussed our approach for in-situ data analytics
and IO
- Which performs and scales well up to 32768 computational cores

- As well as the architecture, challenges and lessons learnt from
Implementing this

- Extend the active messaging layer to build upon
something other than MPI

- Plug in other writing mechanisms such as visualisation
tools
- Extract this from MONC to enable others to integrate with

their models
epCcec

<
AR
I~
]
<

