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other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal 
codenames is at the sole risk of the user. 

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray 
Inc. products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual 
performance. 
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Agenda

● Recent Cray performance tools enhancements

● What’s coming next?

● Managing MCDRAM usage on Intel® Xeon Phi™ 7250 
(hereafter referred to as "KNL”)
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Cray Performance Tools

● Cray tools offer functionality that reduces the time 
investment associated with porting and tuning 
applications on Cray systems

● Whole program performance analysis across many 
nodes to help you find critical performance bottlenecks 
within a program

● Novice and advanced user interfaces for ease of use
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Highlights Since Last CUG

● Switch to perftools-base + instrumentation modules (6.4.0)
● perftools-base provides access Reveal, Apprentice2, pat_report and 

man pages without modification to applications

● perftools-base loaded by default starting with cdt-prgenv 6.0.4 
(May 2017)

● Load an instrumentation module to collect performance data
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Examples:

$ module load perftools-lite
$ module load perftools



Highlights Since Last CUG (continued)

● Memory high water mark per NUMA domain (6.4.4)

● Charm++ support (6.4.4)
● Build and Run Charm++ and NAMD on the Cray XC with CrayPat

● http://docs.cray.com/books/S-2802-10//S-2802-10.pdf

● Address job termination issues for OpenMP programs built with 
Intel compiler (6.4.4)

● MCDRAM configuration statistics included in job summary (6.4.4)

● HBM memory analysis tool (6.4.4)
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Reveal

CUG 2017 Copyright 2017 Cray Inc. 

● Reduce effort associated with 
adding OpenMP to MPI 
programs

● Get insight into optimizations 
performed by the Cray 
compiler

● Use to add OpenMP or as a 
first step to parallelize loops 
that will target GPUs

● Track requests to memory and 
evaluate the bandwidth 
contribution of objects within a 
program
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Reveal Enhancements

● Reveal auto-parallelization (6.4.0)
● With one-click, build experimental 

binary that includes automatic 
runtime-assisted parallelization

● Reveal client for Mac OS X (6.4.0)
● Improved tool response time with 

client that executes locally on laptop
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• Trigger dependence 
analysis 

• scope loops above 
given threshold

• create new binary



Reveal Auto-Parallelization Feedback
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What’s Coming Next..
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Functionality Coming Next

● CrayPat lite mode enhancement to disable 
instrumentation of test programs built through build 
systems (CMake/GNU Autotools) as part of application 
build
● export CRAYPAT_LITE_BLACKLIST=test1,test2

● CUDA support in Apprentice2 (overview, GPU timeline)
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CUDA Support in Apprentice2
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CudaMemcpy
Moving 62304 
bytes from GPU



Functionality Coming Next (Continued)

● Consolidation of Cray performance tools results files into single directory
● MPICH_RANK_ORDER.Grid, 
● MPICH_RANK_ORDER.USER_Time
● MPICH_RANK_ORDER.USER_Time_hybrid
● stencil_order+pat+49144-225t.xf
● stencil_order+pat+49144-225t.ap2
● stencil_order+pat+49144-225t.rpt
● stencil_order+pat+49144-225t.apa

● Same prefix naming scheme as used with current xf files
● stencil_order+pat+49144-225t/
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HBM Memory Analysis Assistance
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Managing Multi-tiered Memory

● Future systems are likely to include a high 
performance tier (for bandwidth or latency) and a high 
capacity tier at a lower cost

● Our goals to assist users with using more than one 
type of explicitly addressable on-node memory:
● Provide easy-to-use interface for user to allocate data into HBM

● Provide assistance with making best use of limited capacity
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a, b and mult reside in function 
called from several places, and 
are aliased throughout the program

Arrays a, b, and mult have a 
higher bandwidth sensitivity than 
array g

Identifying Arrays Is Difficult

subroutine ax_e()

do i=1,n
wr = g(1,i)*ur(i) + g(2,i)*us(i) + g(3,i)*ut(i)
ws = g(2,i)*ur(i) + g(4,i)*us(i) + g(5,i)*ut(i)
wt = g(3,i)*ur(i) + g(5,i)*us(i) + g(6,i)*ut(i)
ur(i) = wr
us(i) = ws
ut(i) = wt

enddo

subroutine glsc3()

do i=1,n
tmp = tmp + a(i)*b(i)*mult(i)

continue
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MCDRAM Usage Assistance

● Combination of CCE, CrayPat and Reveal are used to 
identify arrays that contribute most to memory 
bandwidth

● First introduced in December 2016
● cce/8.5.6
● perftools-base/6.4.4

● See http://docs.cray.com/books/S-2803-10//S-2803-10.pdf
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Perform Analysis on Xeon or Phi

● Haswell, Broadwell or KNL processors supported
● Memory traffic due to the hardware prefetcher on KNL is untracked
● HSW is not KNL (differences with page table walks, L3 cache, etc.)
● Prefer HSW for applications with streaming accesses
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$ module load PrgEnv-cray, craype-haswell
$ module load perftools-lite-hbm

$ cc –h pl=/path/my_program.pl my_program.c

Run program (no batch script modifications required) to create.ap2 file

$ reveal my_program.pl traffic_results.ap2



Ranked Arrays and Allocation Sites
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● Objects sorted by 
memory bandwidth 
contribution

● Match free()s to 
mallocs()

● For C++, Reveal shows 
how STL objects rank 
with other arrays
● User must find declaration 

site, modify declaration to 
point to an hbw-aware 
allocator



Build CCE Memory Allocation Directive
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Reveal inserts 
memory directive 
into source



Memory Analysis Results for Nekbone
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r,c,p,w
are used 
in glsc3()

● Low data collection 
overhead
● ~1% - few %
● Can analyze large 

jobs
● Functions that are 

entered and exited 
often and allocate 
arrays big enough to 
be tracked can 
increase runtime



Use Combination of Reveal and Text Report

● Check program memory footprint
● Available at top of report with job 

summary information
● If less than 16GB, use numactl --

membind=1 to force all allocations 
into MCDRAM

● Get ranking of which objects are 
referenced the most

● Pinpoint memory activity

● Review memory high water mark 
per NUMA domain
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Process | HiMem | HiMem |Numanode
HiMem | Numa | Numa | PE=ALL

(MBytes) | Node 0 | Node 1 |
| (MBytes) | (MBytes) |

786.9 | 534.5 | 252.4 |Total
|------------------------------------------
| 786.9 | 534.5 | 252.4 |numanode.0
||-----------------------------------------
|| 794.3 | 538.9 | 255.4 |pe.0
|| 791.3 | 537.6 | 253.8 |pe.64
|| 791.2 | 537.3 | 253.9 |pe.128
|| 791.1 | 537.3 | 253.8 |pe.192
…



Where to Find Memory Activity in Reports

● High water mark by allocation site
● Number of all objects active at any time

● Profile by Function table
● Shows where most of the memory traffic is happening within 

program

● Profile by Group, Function, and Line table
● Identifies memory traffic hot spots within a function
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MCDRAM Allocation Assistance Recap

● Cray Tools track requests to memory and evaluate the bandwidth 
contribution of objects within a program

● Helpful for memory-intensive programs that cannot fit within 
MCDRAM 

● Reduces time investment associated with selectively allocating 
data into KNL’s MCDRAM

● The result is performance portable code
● CCE memory allocation directives are ignored on X86 processors
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