
Profiling and Analyzing Program
Performance Using Cray Tools
Heidi Poxon

Legal Disclaimer

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property
rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release. Customers and
other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal
codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray
Inc. products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual
performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, and
URIKA. The following are trademarks of Cray Inc.: APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT,
ECOPHLEX, LIBSCI, NODEKARE, REVEAL, THREADSTORM. The following system family marks, and associated model number
marks, are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a sublicense
from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used in this document are
the property of their respective owners.

CUG 2017 Copyright 2017 Cray Inc.
2

Agenda

● Recent Cray performance tools enhancements

● What’s coming next?

● Managing MCDRAM usage on Intel® Xeon Phi™ 7250
(hereafter referred to as "KNL”)

CUG 2017 Copyright 2017 Cray Inc.
3

Cray Performance Tools

● Cray tools offer functionality that reduces the time
investment associated with porting and tuning
applications on Cray systems

● Whole program performance analysis across many
nodes to help you find critical performance bottlenecks
within a program

● Novice and advanced user interfaces for ease of use

CUG 2017 Copyright 2017 Cray Inc.
4

Highlights Since Last CUG

● Switch to perftools-base + instrumentation modules (6.4.0)
● perftools-base provides access Reveal, Apprentice2, pat_report and

man pages without modification to applications

● perftools-base loaded by default starting with cdt-prgenv 6.0.4
(May 2017)

● Load an instrumentation module to collect performance data

CUG 2017 Copyright 2017 Cray Inc.
5

Examples:

$ module load perftools-lite
$ module load perftools

Highlights Since Last CUG (continued)

● Memory high water mark per NUMA domain (6.4.4)

● Charm++ support (6.4.4)
● Build and Run Charm++ and NAMD on the Cray XC with CrayPat

● http://docs.cray.com/books/S-2802-10//S-2802-10.pdf

● Address job termination issues for OpenMP programs built with
Intel compiler (6.4.4)

● MCDRAM configuration statistics included in job summary (6.4.4)

● HBM memory analysis tool (6.4.4)

CUG 2017 Copyright 2017 Cray Inc.
6

Reveal

CUG 2017 Copyright 2017 Cray Inc.

● Reduce effort associated with
adding OpenMP to MPI
programs

● Get insight into optimizations
performed by the Cray
compiler

● Use to add OpenMP or as a
first step to parallelize loops
that will target GPUs

● Track requests to memory and
evaluate the bandwidth
contribution of objects within a
program

7

Reveal Enhancements

● Reveal auto-parallelization (6.4.0)
● With one-click, build experimental

binary that includes automatic
runtime-assisted parallelization

● Reveal client for Mac OS X (6.4.0)
● Improved tool response time with

client that executes locally on laptop

CUG 2017 Copyright 2017 Cray Inc.
8

• Trigger dependence
analysis

• scope loops above
given threshold

• create new binary

Reveal Auto-Parallelization Feedback

CUG 2017 Copyright 2017 Cray Inc.
9

What’s Coming Next..

CUG 2017 Copyright 2017 Cray Inc.
10

Functionality Coming Next

● CrayPat lite mode enhancement to disable
instrumentation of test programs built through build
systems (CMake/GNU Autotools) as part of application
build
● export CRAYPAT_LITE_BLACKLIST=test1,test2

● CUDA support in Apprentice2 (overview, GPU timeline)

CUG 2017 Copyright 2017 Cray Inc.
11

CUDA Support in Apprentice2

CUG 2017 Copyright 2017 Cray Inc.
12

CudaMemcpy
Moving 62304
bytes from GPU

Functionality Coming Next (Continued)

● Consolidation of Cray performance tools results files into single directory
● MPICH_RANK_ORDER.Grid,
● MPICH_RANK_ORDER.USER_Time
● MPICH_RANK_ORDER.USER_Time_hybrid
● stencil_order+pat+49144-225t.xf
● stencil_order+pat+49144-225t.ap2
● stencil_order+pat+49144-225t.rpt
● stencil_order+pat+49144-225t.apa

● Same prefix naming scheme as used with current xf files
● stencil_order+pat+49144-225t/

CUG 2017 Copyright 2017 Cray Inc.
13

HBM Memory Analysis Assistance

CUG 2017 Copyright 2017 Cray Inc.
14

Managing Multi-tiered Memory

● Future systems are likely to include a high
performance tier (for bandwidth or latency) and a high
capacity tier at a lower cost

● Our goals to assist users with using more than one
type of explicitly addressable on-node memory:
● Provide easy-to-use interface for user to allocate data into HBM

● Provide assistance with making best use of limited capacity

CUG 2017 Copyright 2017 Cray Inc.
15

a, b and mult reside in function
called from several places, and
are aliased throughout the program

Arrays a, b, and mult have a
higher bandwidth sensitivity than
array g

Identifying Arrays Is Difficult

subroutine ax_e()

do i=1,n
wr = g(1,i)*ur(i) + g(2,i)*us(i) + g(3,i)*ut(i)
ws = g(2,i)*ur(i) + g(4,i)*us(i) + g(5,i)*ut(i)
wt = g(3,i)*ur(i) + g(5,i)*us(i) + g(6,i)*ut(i)
ur(i) = wr
us(i) = ws
ut(i) = wt

enddo

subroutine glsc3()

do i=1,n
tmp = tmp + a(i)*b(i)*mult(i)

continue

CUG 2017 Copyright 2017 Cray Inc.
16

MCDRAM Usage Assistance

● Combination of CCE, CrayPat and Reveal are used to
identify arrays that contribute most to memory
bandwidth

● First introduced in December 2016
● cce/8.5.6
● perftools-base/6.4.4

● See http://docs.cray.com/books/S-2803-10//S-2803-10.pdf

CUG 2017 Copyright 2017 Cray Inc.
17

Perform Analysis on Xeon or Phi

● Haswell, Broadwell or KNL processors supported
● Memory traffic due to the hardware prefetcher on KNL is untracked
● HSW is not KNL (differences with page table walks, L3 cache, etc.)
● Prefer HSW for applications with streaming accesses

CUG 2017 Copyright 2017 Cray Inc.
18

$ module load PrgEnv-cray, craype-haswell
$ module load perftools-lite-hbm

$ cc –h pl=/path/my_program.pl my_program.c

Run program (no batch script modifications required) to create.ap2 file

$ reveal my_program.pl traffic_results.ap2

Ranked Arrays and Allocation Sites

CUG 2017 Copyright 2017 Cray Inc.
19

● Objects sorted by
memory bandwidth
contribution

● Match free()s to
mallocs()

● For C++, Reveal shows
how STL objects rank
with other arrays
● User must find declaration

site, modify declaration to
point to an hbw-aware
allocator

Build CCE Memory Allocation Directive

CUG 2017 Copyright 2017 Cray Inc.
20

Reveal inserts
memory directive
into source

Memory Analysis Results for Nekbone

CUG 2017 Copyright 2017 Cray Inc.
21

r,c,p,w
are used
in glsc3()

● Low data collection
overhead
● ~1% - few %
● Can analyze large

jobs
● Functions that are

entered and exited
often and allocate
arrays big enough to
be tracked can
increase runtime

Use Combination of Reveal and Text Report

● Check program memory footprint
● Available at top of report with job

summary information
● If less than 16GB, use numactl --

membind=1 to force all allocations
into MCDRAM

● Get ranking of which objects are
referenced the most

● Pinpoint memory activity

● Review memory high water mark
per NUMA domain

CUG 2017 Copyright 2017 Cray Inc.
22

Process | HiMem | HiMem |Numanode
HiMem | Numa | Numa | PE=ALL

(MBytes) | Node 0 | Node 1 |
| (MBytes) | (MBytes) |

786.9 | 534.5 | 252.4 |Total
|--
| 786.9 | 534.5 | 252.4 |numanode.0
||---
|| 794.3 | 538.9 | 255.4 |pe.0
|| 791.3 | 537.6 | 253.8 |pe.64
|| 791.2 | 537.3 | 253.9 |pe.128
|| 791.1 | 537.3 | 253.8 |pe.192
…

Where to Find Memory Activity in Reports

● High water mark by allocation site
● Number of all objects active at any time

● Profile by Function table
● Shows where most of the memory traffic is happening within

program

● Profile by Group, Function, and Line table
● Identifies memory traffic hot spots within a function

CUG 2017 Copyright 2017 Cray Inc.
23

MCDRAM Allocation Assistance Recap

● Cray Tools track requests to memory and evaluate the bandwidth
contribution of objects within a program

● Helpful for memory-intensive programs that cannot fit within
MCDRAM

● Reduces time investment associated with selectively allocating
data into KNL’s MCDRAM

● The result is performance portable code
● CCE memory allocation directives are ignored on X86 processors

CUG 2017 Copyright 2017 Cray Inc.
24

