
CUG Talk

Porting the microphysics model 

CASIM to GPU and KNL Cray 

machines

Nick Brown, EPCC

nick.brown@ed.ac.uk



Contents
• Background

• What is CASIM

• Existing work on our porting of atmospheric codes to GPUs

• CASIM on the GPU

• Approach adopted

• Performance comparison between K20X and P100 with CASIM

• Challenges encountered

• CASIM on the KNL

• Performance against GPU and CPU versions



Background
• Cloud AeroSol Interactions Microphysics (CASIM) model 

is a bulk microphysics scheme

• Concerned with modelling the interaction of water droplets at 

millimetre scale

• Microphysics is a critical aspect of many weather and climate 

models. CASIM is used as a sub-model by the UM, MONC, LEM 

and KiD models

• Computationally intensive
• Can double or even treble the 

overall runtime

• CASIM is interesting because it 
explicitly carries aerosol mass 
in the cloud which allows one 
to study the evaporation of 
aerosol and how moisture is 
returned to the system



Met Office NERC Cloud (MONC) model
• MONC is a new model we have developed for simulating 

clouds and atmospheric flows

• Written in Fortran 2003 and oriented around the concept of plug-

ins. 

• A model core is provided which contains general utility functionality 

but all science and parallelism is provided by independent, 

separate components

• Runs on much larger domains 

(billions of grid points) than 

previous generations of models

• A parent model for CASIM and a 

coupler has been developed as a 

component



MONC acceleration on GPUs
• In previous work, before CASIM 

was integrated, we identified that 

advection was the most 

computationally intensive part of 

the code

• Part of the dynamics group of 

components

• Components in the dynamics 

group contribute their 

calculations to source terms

• This operator (addition) is commutative and 

associative

• Can execute in any order as long as step fields 

(integration of source terms) is done last

• So lets offload it!



The hybrid approach
• Data transfer is 

asynchronous

• Constants copied 

across only once 

on model 

initialisation

• Share data 

between GPU 

kernels

• Wind in x,y,z is 

common to all

• OpenACC

• Cray compiler

Dynamics

Diffusion

Viscosity

Coriolis

buoyancy

GPU

advection

Send required data to GPU

Wait for results from GPU

Step fields combining CPU and 

GPU data

GPU source terms

CPU and GPU 

source terms

CPU



However…….
• The performance was not particularly good

• There was not enough computation in advection to amortise the 

cost of data transfer and-so we did not get a speed up

• But CASIM is many times more computationally intensive 

than the advection kernel we offloaded

• So can we use this same hybrid approach, infrastructure and 

OpenACC to offload this and get a performance benefit?

• This previous work was done with OpenACC (Cray 

compiler)

• Learnt about a number of challenges and their workarounds



OpenACC CASIM: A choice
• The challenge is that CASIM has a 

number of computationally 

intensive kernels

• These are called frequently in the code 

but with lots of non-computational work 

done before and after each hotspot

• Such as conditionals, loops etc

• The scheme is operating on many 

Q (moisture) fields in vertical 

columns

• Tightly coupled in the vertical but not in 

other two dimensions

• Per timestep columns are independent



OpenACC CASIM: A choice

• So we can either refactor the code 

like so

• But this will result in lots of data 

movement and the CPU will still be busy 

(negate our hybrid approach)

• Or we can offload the entirety of 

CASIM to the GPU



Offloading the entirety of CASIM

• CPU code contains lots of intermediate 

temporary variables

• Which have to be duplicated for each thread

• OpenACC support 

offloading subroutines

• We allocate a thread per 

column in the domain

• Hence the seq in each 

subroutine

• In total 50 Fortran 

modules and 123 

subroutines offloaded



OpenACC implementation challenges
• Passing arrays of derived types to OpenACC subroutines

• We had to wrap these arrays in a wrapper derived type or else the 
PTX code would report an error during assembly

type :: process_name

integer :: id

...

end type process_name

subroutine sum_procs(..., iprocs, ...)

!acc routine seq

type(process_name), intent(in) :: 

iprocs(:)

...

end subroutine sum_procs

type :: cray_workaround_iprocs_wrapper

type(process_name) :: iprocs(22)

integer :: iprocs_count

end type cray_workaround_iprocs_wrapper

subroutine sum_procs(..., iprocs, ...)

!acc routine seq

type(cray_workaround_iprocs_wrapper), 

intent(in) :: iprocs

...

end subroutine sum_procs



OpenACC CASIM challenges
• Above a certain threshold CUDA supports arguments by 

copying them into a buffer and passing the pointer

• Host side of large arguments is not supported by the Cray 

compiler

• Empirically found at 532 arguments are packed into memory rather 

than passed separately which is not supported

subroutine process(q1, q2, q3, ...)

!acc routine seq

double, dimension(:,:,:), 

intent(in) :: q1, q2, q3

...

end subroutine process

subroutine process(q, ...)

!acc routine seq

double, dimension(:,:,:, :), 

intent(in) :: q

...

end subroutine process

• Arrays can take up to 10 CUDA kernel 

arguments, we merged many of the Q 

fields together from multiple 3D arrays 

to a single 4D array



OpenACC CASIM challenges
• At higher levels of optimisation, variables that are 

provided a value only under some logical condition 

generate an error during assembly

• So need to ensure that all variables are assigned a value 

irrespective

• Arguably this is good style anyway, but the existing code did not do 

this & was still legal Fortran

...

if (some_condition) dm_3=5.435

...

if (some_condition) othervariable=dm_3

...

dm_3=0.0

othervariable=0.0

if (some_condition) dm_3=5.435

...

if (some_condition) othervariable=dm_3



OpenACC CASIM performance
Large runtime jump 

due to exhaustion of 

registers (64 per 

thread)

With 56 SMs we have 

many more registers so 

use 128 per thread on 

the P100

• Run on Piz Daint, warm stratus test case for 
2000 model seconds. 60 vertical levels. Cray 
compiler (CCE 8.5.5), O3



CASIM OpenACC Performance
• XC50 runs 

(P100)

• Warm (5 Q fields) 

and cold (18 Q 

fields) stratus test 

cases

• Time is average 

CASIM runtime 

per model 

timestep

• Cray compiler



CASIM OpenACC Performance

With 12 Haswell cores 

the CPU is 

outperforming the GPU

But remember that this 

is running in a 

concurrent fashion to 

the rest of MONC, so 

the overall parent 

model runtime would 

still be less



CASIM Performance reasons
• The vast majority of GPU time 

is spent executing CASIM 
rather than data transfers

• But the option for offloading 
the entirety of the model 
means we are dominated by 
integer operations

The pie chart is based on figures 
from nvprof on 4000 columns, but 
due to the size of the kernel this 
ran out of memory (collecting 
metrics and events) with larger 
numbers of columns



Configuration choices
• With OpenACC it is possible to explicitly set the number 

of gangs (number of thread blocks) and vector length 

(threads per block.)

• Getting the “wrong” value resulted in very poor performance. As did 

the default settings

• At smaller numbers of vertical 

columns (threads) use more, 

smaller, thread blocks

• At greater numbers of vertical 

columns (threads), use fewer 

larger thread blocks

• It is a shame we can not 

dynamically control this at runtime



CASIM on the KNL

• An implementation of CASIM for the KNL using OpenMP

has been produced

• So we have a choice between processes and threads on the KNL

• Distributed columns amongst threads

• Deals with the global data via the threadprivate clause by 

the declaration and copyin to copy the values in (and 

allocate space) for them on entry to CASIM.

• Applied the SIMD OpenMP directive to inner 

computationally intensive loops working up or down the 

column



Performance of CASIM on KNL

• 12 core Haswell

• 18 core Broadwell

• Stratus cold cloud 
test case, with 60 
vertical levels

• Average runtime 
for CASIM per 
timestep

• Cray compiler, O3

ARCHER XC40, 64 core KNL (7210), MCDRAM as 
cache and running in quadrant mode



But that’s not quite the end of the story….

• For smaller 

amounts of data 

there isn’t much 

difference between 

the Broadwell and 

KNL

• But for larger 

domain sizes the 

KNL performs 

significantly better



But that’s not quite the end of the story….

• For smaller 

amounts of data 

there isn’t much 

difference between 

the Broadwell and 

KNL

• But for larger 

domain sizes the 

KNL performs 

significantly better



Placement choices for the KNL
• We found that for small numbers of columns it was best to 

enable hyper-threading and run one CASIM process per 

hyper-thread (4 per physical core)

• There was a significant performance impact to running a process 

per physical core with four threads

• At around 12000-18000 columns, it became optimal to run 

one process per physical core threading over the hyper-

threads

• The GPU ran out of memory after 20000 columns, as on 

the GPU there was far more replication of temporary data 

for each column running as threads run concurrently



Conclusions and further work
• Offloaded the entirety of CASIM which was necessary to 

avoid excessive data transfer but this did have a memory, 

performance and development time impact

• The P100 is a significant improvement over the K20X

• KNL looks promising as long as one runs with large 

system sizes. 

• Much quicker to utilise and experiment with.

• Hard to beat a node with 36 Broadwell cores

• Many thanks to CSCS for access to Piz Daint for this work 

and previous GPU acceleration of MONC we also did

This work was funded under the embedded CSE 
programme of the ARCHER UK National 
Supercomputing Service (http://www.archer.ac.uk)


