Performance of MPI/OpenMP
Hybrid VASP on Cray XC40 Based

on Intel Knights Landing Many
Integrated Core Architecture

ackage

imulation

Zhengji Zhao' (zzhao@Ibl.gov), Martijn Marsman? (martiin.marsman@univie.ac.at), Florian
Wende? (wende@zib.de), and Jeongnim Kim#* (ieongnim.kim@intel.com)

) National Energy Research Scientific Computing Center (ERSC), Lawrence Berkeley National Laboratory,
Berkeley, USA; 2 University of Vienna, Vienna, Austria;3 Zuse Institute Berlin (ZIB), Germany; 4 Intel, USA

Cray User Group Meeting, May 11, 2017, Redmond, WA

®

i\e/ﬁrsnét (intel/ Look Inside:

EEEEEEEEEEEE Ofﬁce Of

u.s.
ENERGY Science

Acknowledgement

 Intel Corp. within the “Research Center for Many-core
High-Performance Computing” (IPCC) at ZIB.

« NERSC Exascale Science Applications Program
(NESAP).

Outline

« Motivation
 MPI+OpenMP Hybrid VASP — Optimizations for KNL
 Benchmarks and Experiment Setups

* Performance and Analysis

—Thread scaling, NUMA,MCDRAM modes, hugepages, Hyper-
Threading, compilers and libraries

« Summary and Future work

Background

« With the recent installation of Cori KNL system, NERSC is

transitioning from the multi-core to the more energy-efficient
many-core era.

* Most of the applications at NERSC must be ported, optimized, or
re-implemented to run efficiently on this new architecture.

« (Code optimizations need to address increased parallelisms on the
node, larger vector units, high bandwidth on chip memory.

VASP has recently completed the transition from an MPI-
only to an MPI/OpenMP hybrid code base

NERSC 2015 Code Usage

Vienna Ab initio Simulation Package (VASP), is
a state-of-art electronic structure (ES) code.

« Supporting a wide range of electronic structure
methods, from Density-Functional-Theory (DFT),
Hartree-Fock (HF) and hybrid (HF/DFT) functionals, to
the many-body-perturbative approaches based on the
random-phase-approximation (GW and ACFDT).

« Solving non-linear eigenvalue problem iteratively.
FFTs and Linear Algebra libraries (BLAS/LAPACK/
ScalLAPACK) are heavily depended on.

* Written in Fortran 90 and parallelized with MPI prior to
the MPI/OpenMP hybrid VASP.

VASP, ranked #1 among ~700 application codes at NERSC, consumes
more than 10-12% of the computing cycles at NERSC.

MPI1/OpenMP hybrid VASP outperforms the pure MPI code by
2-3 times on Cori KNL

500

450

400

350

300

250

200

LOOP Time (sec)

150

100

50

K'VASP 5.4.1, MPI only

Cori Haswell (256;64,8)

I & MPI/OpenMP Hybrid VASP

Cori KNL (192;128,8)
Quad,Cache

Cori KNL(128,8), Cori KNL (128,8) Cori KNL (128,8) Cori KNL (128,8)
Quad,Flat, used DDR Quad,Cache, buit with Quad,Flat Quad,Cache,No
only -xCORE-AVX2; ran with Hugepages

MKL_ENABLE_INSTRUCTIONS=AVX2

All runs used 8 Haswell or KNL nodes on Cori. The numbers inside the “()”, [num;] num,num, are the number of MPI tasks
used for the MPI only VASP 5.4.1, if present; the MPI tasks, OpenMP threads per task used to run the Hybrid VASP.

LOOP Time (sec)

MPI1/OpenMP hybrid VASP outperforms the pure MPI code by

2-3 times on Cori KNL

500

450

400

350

300

250

200

150

100

50

K'VASP 5.4.1, MPI only

I & MPI/OpenMP Hybrid VASP

The optimal performance was not possible without using optimal
build/run/boot time options and optimal nhumber of MPI tasks and
OpenMP threads.

MPI1/OpenMP Hybrid VASP
and Optimizations for KNL

More details on optimizations in the hybrid VASP can be found in a IWOMP17 submission:
Porting VASP from MPI to MPI + OpenMP [SIMD]

Optimization Strategies, Insights and Feature Proposals

®

Wi‘éﬁrsnét (intel/ Look Inside:

= AY
U.S. DEPARTMENT OF Office of fm"' N - 3 -
ﬁ NERGY Science BE'“&E_LQLJ‘_J - T

AlB

OpenMP threading are added into existing MPI code base

 VASP solves a set of Schrodinger-like H[{y}v,=e,w,, n=1,..N

eigenvalue/function problems

JenETe e N PO [Vi) ()dr = 8.
—using iterative matrix diagonalization schemes,

e.g, Blocked Davidson or RMM-DIIS. W,(r) = FFT{¥,(G)}(r)

« MPI parallelization (distributing data)
—over the bands (high level)
—over Fourier coefficient of the bands (low level)

 MPI + OpenMP parallelization
—MPI over bands (high level)

—OpenMP threading over the coefficients of bands, either by explicitly adding
OpenMP directives or via using threaded FFTW and LAPACK/BLASS libraries

—No nested OpenMP

SIMD vectorization is deployed extensively in the hybrid

VASP

Either implicitly within library calls or explicitly at the loop level

— loop vectorization via !$omp simd

— function vectorization via !$omp declare simd

1. SIMD Vectorization for nested
subroutines calls

— by splitting the loops into chunks of SIMD
length, pack and unpack data into vectors .

2. LOOP splitting

module simd
type, public :: simd_real$8
real*8 :: x(0 : SIMD_WIDTH-1)
end type simd_real8
type, public :: simd_mask8
logical :: x(0 : SIMD_WIDTH-1)
end type simd_mask8

interface

function simd_exp (x) bind(c,name="__exp_finite")E
!'$omp declare simd (simd_exp) i
real*8 :: simd_exp
real*8, value, intent(in) :: x

end function simd_exp

end interface
end module simd

to use libmvec

For GNU compileré

subroutine foo(..)

doi=1,n

call bar(x(i),y(i))

enddo
end subroutine foo

subroutine bar(x, y)
real*8 :: x, y

y = log(x)

end subroutine bar

subroutine vbar(x, 7y,

subroutine foo(..)

do i =1, n, SIMD_WIDTH
!$omp simd

do ii = 0, SIMD_WIDTH-1
vmask%x(ii) = .false.

if ((i + ii) .le. n) then
vmask)x(ii) = .true.
vxhx(ii) = x(i + ii)

endif
enddo
call vbar (vx,vy,vmask)
!$omp simd

do ii = 0, SIMD_WIDTH-1

if (vmask%x(ii)) x(i + ii) = vx%x(ii)

enddo
enddo

end subroutine foo

type(simd_real8) :: x, y
type (simd_mask8) :: mask
integer :: ii

!'$omp simd

do ii = 0, SIMD_WIDTH-1

if (mask%x(ii)) y%x(ii)

enddo

end subroutine vbar

mask)

log (x%x(ii))

Explicit use of MCDRAM was explored in hybrid VASP via Intel
compiler directive, however, it was not adopted in the hybrid VASP

e To use MCDRAM, some of the stack variables had to be converted
to allocatable heap variables, unfortunately this change itself
slowed down the code significantly.

* VASP uses MCDRAM as cache or flat memory via numactl.

» Other external tools such as Intel AutoHBW can be exploited as
well

SUBROUTINE RACCOMU(NONLR_S, WDES1, CPROJ_LOC, CRACC, LD, NSIM, LDO)

"~ REAL(gn),ALLOCATABLE:: WORK(:),TMP(.,:)
GDEF.ALLOCATABLE :: CPROJ(::)

IDIR$ ATTRIBUTES FASTMEM :: WORK,TMP,CPROJ

ALLOCATE(WORK(ndata*NSIM*NONLR_S%IRMAX), TMP(NLM,ndata*2*NSIM),CPROJ(WDES1%NPRO_TOT,NSIM))

"END SUBROUTINE RACCOMU

Benchmarks and
Performance Test setups

®

(intel) Look Inside:

~
A
::::::: ""|

Y4
i)

U.S. DEPARTMENT OF Oﬁlce Of /\
ﬁ NERGY Science BERICLEY UAD

Cori hardware and software overview

» Cori, a Cray XC40 system at NERSC based on Intel KNL and Haswell
architectures, interconnected with Cray Aries network

—Cori has over 9300 single-socket Intel® Xeon Phi™ Processor 7250 ("Knights Landing")
nodes @1.4 GHz with 68 cores (272 threads) per node, two 512 bit vector units per
core, and 16 GB high bandwidth on-package memory (MCDRAM) with 5X the
bandwidth of DDR4 DRAM memory (>400 GB/sec) and 96 GB DDR4 2400 MHz
memory per node.

—Cori has over 2000 dual-socket 16-cor Intel® Xeon™ Processor E5-2698 v3 ("Haswell")
nodes @2.3GHz with 32 cores (64 threads) per node, two 256 bit vector units per
core, 128 GB 2133 MHz DDR4 memory. Cori nodes are interconnected with Cray’s

Aries network with Dragonfly topology.
* Coriruns CLE 6.3 Update 4, and SLURM 2017.02.

Selected 6 benchmarks cover representative VASP workloads,
exercising different code paths, ionic constituent and problem sizes

_ PdO4 GaAsBi -64 Si256 B.hR105 PdO2

Electrons (Ions) 3288 (348) 266 (64) 1064 (98) 1020 (255) 315 (105) 1644(174)
Functional DFT DFT vDW HSE HSE DFT
Algo RMM (VeryFast) BD+RMM (Fast) RMM (VeryFast) CG (Damped) CG (Damped) RMM (VeryFast)
NEML(NELMDL) 5 (3) 8 (0) 10 (5) 3(0) 10 (5) 10 (4)
NBANDS 2048 192 640 640 256 1024
FFT grids 80x120x54 70x70x70 70x70x210 80x80x80 48x48x48 80x60x54
160x240x108 140x140x140 120x120x350 160x160x160 96x96x96 160x120x108
NPLWV 518400 343000 1029000 512000 110592 259200
IRMAX 1445 4177 3797 1579 1847 1445
IRDMAX 3515 17249 50841 4998 2358 3515
LMDIM 18 18 18 18 8 18

KPOINTS 111 444 331 111 111 111

Benchmarking approach

Benchmark measures the LOOP+ time, which is the
major portion of the execution time in the production
execution of the VASP (disabled 1/0).

Run each benchmark multiple times (>3 times) and took
the best run time.

Process/thread affinity controlled by the OpenMP
runtime (memory affinity by numactl) across all compiler
builds of of VASP.

—Export OMP_PROC_BIND=true

—Export OMP_PLACES=Threads

VASP versions, compilers and libraries used

 MPI+OpenMP hybrid version (last commit date 4/13/2017) was
used in the most of the tests, some earlier versions, e.qg., 3/23/2017
was used in some of the tests as well.

« CDT 17.08 (cray-mpich/7.5.3, cray-libsci/16.11.1, fftw/ 3.4.6.6)

* Intel compiler and MKL from 2017 Update 1 + ELPA (version
2016.005)

« GNU compiler 6.3
« Cray compiler 8.5.4

MPI1/OpenMP Parallel Scaling

Hybrid VASP performs best with 4 or 8 OpenMP threads/

MPI task

KNL,Cache vs Haswell (HugepagesZM 1 Thread/Core,PdO4)

200 ~

180

160

140

(sec)
N
o

LOOP+ Time
5]
o

60

40

20

1 node

liu

2 nodes 4 nodes 8 nodes

No. of OpenMP Threads per MPI Task /No. of Nodes

I KNL I
[IHaswell

it

12 4 816 1 2 4 816 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

16 nodes

The spikes at thread
counts at 16 needs to
be investigated, which
could be some
indication of the system
issue, as Cori KNL
system is undergoing
continuous
configuration change
and system upgrades
before entering
productions.

Hybrid VASP performs best with 4 or 8 OpenMP threads/

task

KNL,Cache vs Haswell (Hugepages2M, 1 Thread/Core,Si256_hse)

2500 - _

2000 -

1500 -

LOOP+ Time (sec)
S
o
o
T

500 -

1 node

2 nodes 4 nodes 8 nodes

No. of OpenMP Threads per MPI Task /No. of Nodes

I KNL
[IHaswell

L e

12 4 816 1 2 4 816 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

16 nodes

At larger node counts,
the code can make
use of the more
threads per task (e.g,
16). This is a
promising feature of
the code, which opens
door to scale to more
nodes to solve bigger
and more complex
problems faster.

Using 4 and 8 threads helps the performance.

KNL,Cache vs Haswell (Hugepages2M, 1 Thread/Core,CuC_vdw
T T
I KNL
no - [IHaswell

500 -

400

300 -

LOOP+ Time (sec)

100

0 | ||
12 4 816 1 2 4 816 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

1 node 2 nodes 4 nodes 8 nodes 16 nodes

No. of OpenMP Threads per MPI Task /No. of Nodes

Hybrid VASP performs best with 4 or 8 OpenMP threads/task

KNL,Cache vs Haswell (Hugepages2M, 1 Thread/Core,GaAsBi-64)
T T T T T T T T T T T T T T T

T T T T

150 I KNL =
[IHaswell

T

C
-
o
o
T

LOOP+ Time (sec)

50 -

1 node 2 nodes 4 nodes 8 nodes

No. of OpenMP Threads per MPI Task /No. of Nodes

Hybrid VASP performs best with 4 or 8 OpenMP threads/task

KNL,Cache vs Haswell (Hugepages2M, 1 Thread/Core,B.hR105_hse)
T T T T T T T T

T T

250 -~

200 -~

150

LOOP+ Time (sec)
=
o
T

50 -

1 node

T T T T T T

8 16 1 2 4 8 16 1 2 4 8 16 1 2

T T T

I KNL
[THaswell

2 nodes 4 nodes 8 nodes

No. of OpenMP Threads per MPI Task /No. of Nodes

The spikes were
reproducible, need further
investigation.

Hybrid VASP performs best with 4 or 8 OpenMP threads/
task

KNL,Cache vs Haswell (Hugepages2M, 1 Thread/Core,Pd02)
T T T T T

120 k I KNL _
[JHaswell

100 N

@
o
|

LOOP+ Time (sec)
3

40

20

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

1 node 2 nodes 4 nodes 8 nodes

No. of OpenMP Threads per MPI Task /No. of Nodes

NUMA,MCDRAM Modes

Hybrid VASP performs similarly under the cache/flat
modes for the workloads that fit into MCDRAM

LOOP+ Time (sec)

200

180

160

140

-
n
o

-
o
o

80

60

40

20

Cache vs Flat modes on K

NL (Hugepages2M, 1 Thread/Core,PdO4,
T T T T T T T T

Il

11

Il Cache
[IFlat

Il

1

2 4 8 16 1

1 node

2 4 8 16 1

2 nodes

2 4 8 16 1

4 nodes

2 4 8 16 1

8 nodes

No. of OpenMP Threads per MPI Task /No. of Nodes

2 4 8 16

16 nodes

(sec)

LOOP+ Time

2500

2000

1500

1000

500

Cache vs Flat modes on K

NL (Hugepages2M, 1 Thr
T T T T T T T

ead/Core,Si256_hse)

(1l

1

2 4 8 16 1

1 node

2 4 8 16

2 nodes

1 2 4 8 16 1

4 nodes

RITIINETTE

2 4 8 16 1

8 nodes

No. of OpenMP Threads per MPI Task /No. of Nodes

2 4 8 16

16 nodes

Hybrid VASP performs similarly under the cache/flat
modes for the workloads that fit into MCDRAM

Cache vs Flat modes on KNL (Hugepages2M, 1 Thread/Core,CuC_vdw) Cache vs Flat modes on KNL (Hugepages2M, 1 Thread/Core,GaAsBi-64)
T LI LI r T
I Cac 150 + I Cache |
[CJFlat [CFlat
500
400
g é 100 B
o o
E 300 - £
[[~
& g
(@) [©]
le) o
S 200 - S ol i
B m_m_\““
0 0
i 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

12 4 816 1 2 4 816 1 2 4 8 16 1 2 4 8 16 1 2 4 8

1 node 2 nodes 4 nodes 8 nodes 16 nodes 1 node 2 nodes 4 nodes 8 nodes

No. of OpenMP Threads per MPI Task /No. of Nodes No. of OpenMP Threads per MPI Task /No. of Nodes

Hybrid VASP performs similarly under the cache/flat
modes for the workloads that fit into MCDRAM

LOOP+ Time (sec)

250

200

150

100

50

Cache vs Flat modes on KNL (Hugepages2M, 1 Threa
T T T T T T T T

d/Core,B

.hR105_hse)
T T

2 nodes

4 nodes

8 nodes

No. of OpenMP Threads per MPI Task /No. of Nodes

[Cache
[IFlat

LOOP+ Time (sec)

120

100

©
o

(o2}
o

S
o

20

Cache vs Flat modes on KNL (Hugepages2M, 1 Thread/Core,Pd02)
T T T T T T T T T T T T T T T T T

2 nodes

4 nodes

8 nodes

No. of OpenMP Threads per MPI Task /No. of Nodes

Hyper-Threading

Hyper-Threading helps HSE workloads (arguably), but not
other workloads in the parallel scaling regions on KNL

LOOP+ Time (sec)

Hyper-Threading Effect on KNL (Cache Mode, Hugepages2M,PdO4) Hyper-Threading Effect on KNL (Cache Mode, Hugepages2M,Si256_hse)
T T T T T T T T T T T T T T T T T

T T T
Il 1 Thread/Core 1500 - I 1 Thread/Core
120 I 2 Threads/Core [2 Threads/Core
100 -
< 1000 ~
@
80 - 42
[0
£
'_
60 - 44
@]
(@]
-1 500 - B
40 .
0
4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8
1 node 2 nodes 4 nodes 8 nodes 16 nodes 1 node 2 nodes 4 nodes 8 nodes 16 nodes

No. of OpenMP Threads per MPI Task /No. of Nodes No. of OpenMP Threads per MPI Task /No. of Nodes

Hyper-Threading rarely helps the hybrid VASP
performance on KNL

Hyper-Threading Effect on KNL (Cache Mode, Hugepages2M,CuC_vdw) Hyper-Threading Effect on KNL (Cache Mode, Hugepages2M,GaAsBi-64)
T T T T T T T T T T T T T T T T T T
%00 r I 1 Thread/Core) [l 1 Thread/Core
I 2 Threads/Core 70 - Il > Threads/Core | _|
250 i
60 _
o 200 1 o50f 4
Q [
K2 2
[0} (0]
£ E 40 _
i= 150 4 =
a g
o Q30 |- il
S S
=100 + 4
20 + B
50 - i
10 + -
0
4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8
1 node 2 nodes 4 nodes 8 nodes 16 nodes 1 node 2 nodes 4 nodes 8 nodes
No. of OpenMP Threads per MPI Task /No. of Nodes No. of OpenMP Threads per MPI Task /No. of Nodes

Hyper-Threading rarely helps the hybrid VASP
performance on KNL

Hyper-Threading Effect on KNL (Cache Mode, Hugepages2M,B.hR105_hse)
T T T T T T T

LOOP+ Time (sec)
B (41 [}
o o o
T T T

W
o
T

20

4 8 4 8 4 8

1 node 2 nodes 4 nodes

No. of OpenMP Threads per MPI Task /No. of Nodes

I 1 Thread/Core
90 - I > Threads/Core

70

60

B (o2}
o o

LOOP+ Time (sec)
w
o

20

Hyper-Threading Effect on KNL (Cache Mode, Hugepages2M,Pd02)
T T T T T T T

4

1 node

T
I 1 Thread/Core
Il ° Threads/Core
8 4 8 4 8 4 8
2 nodes 4 nodes 8 nodes

No. of OpenMP Threads per MPI Task /No. of Nodes

Hugepage Memory

Hugepage memory helps hybrid VASP performance on
KNL

Hugepages Effect on KNL (Cache Mode, 1 Thread/Core,Pd0O4)
T T T T T T T T

Hugepages Effect on KNL (Cache Mode, 1 Thread/Core,Si256_hse)
T T T T T T T T

T T

T T

1500 i
I Hugepages2M I Hugepages2M
[No Hugepages [No Hugepages
120 - i
100 - i
5 5 1000 4
2 3
£ 80 - \;
£ 2
o o
g 60r 7o
8 8
= 2 500 - §
40 | 4
1 JI_IL JI_IlJI_IL
0
4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8
1 node 2 nodes 4 nodes 8 nodes 16 nodes 1 node 2 nodes 4 nodes 8 nodes 16 nodes

No. of OpenMP Threads per MPI Task /No. of Nodes No. of OpenMP Threads per MPI Task /No. of Nodes

TVASP ran out of 2M hugepage memory with 1 thread/task runs for
Si256_hse.
Hugepages

The use of hugepage memory does not slow down the
code for the workloads it does not help significantly

LOOP+ Time (sec)

Hugepages Effect on KNL (Cache Mode, 1 Thread/Core,CuC_vdw)
T T T T T T

T T l T T

300 5
I Hugepages2M
[No Hugepages
250 B
200 B
150 B
100 B
i JI_IlJLIL

4 8 4 8 4 8 4 8 4 8

1 node 2 nodes 4 nodes 8 nodes 16 nodes

No. of OpenMP Threads per MPI Task /No. of Nodes

LOOP+ Time (sec)

Hugepages Effect on KNL (Cache Mode, 1 Thread/Core,GaAsBi-64)
T T T T T

T T

4 8 4 8 4 8

1 node 2 nodes 4 nodes

No. of OpenMP Threads per MPI Task /No. of Nodes

T
I Hugepages2M

[No Hugepages | _|

4 8

8 nodes

Hugepage memory helps hybrid VASP performance

Hugepages Effect on KNL (Cache Mode, 1 Thread/Core,B.hR105_hse)
T T T T T T T

LOOP+ Time (sec)
[9] B o [o2)
o o o o

T T T T

n
o
T

10

4 8 4 8 4 8

1 node 2 nodes 4 nodes

No. of OpenMP Threads per MPI Task /No. of Nodes

4

8 nodes

T

I Hugepages2M
No Hugepages

LOOP+ Time (sec)

70 +

(o)
o
T

N
o
T

w
o
T

10 -

4 8 4 8 4 8

1 node 2 nodes 4 nodes

No. of OpenMP Threads per MPI Task /No. of Nodes

Hugepages Effect on KNL (Cache Mode, 1 Thread/Core,PdO2)
T T T T T T T

T

I Hugepages2M
[No Hugepages

4 8

8 nodes

Compilers and Libraries

Hybrid VASP linked to MKL outperforms that linked to Libsci + FFTW
for all three compilers (Intel, Cray and GNU) on KNL

Compiler + Libraries (Hugepages2M, 1 Thread/Core,Pd0O4)

300 .
250 .
3 200 | B intel-mk-elpa
« . .
s [] !ntel-mkl-glpa-dynamlc
IS Il intel-libsci-fftw
5 Il intel-mki+libsci(scalapack)
Q I cray-libsci-fftw
100 | [cray-mkl
B cray-mkl-fftw
Il cray-mkl-libsci(scalapack)
B gnu-libsci-fftw-pthread-iomp5
%0 1 I gnu-libsci-fitw
B gnu-mkl
0‘

4 8

4 nodes 8 nodes

No. of OpenMP Threads per MPI Task /No. of Nodes

Hybrid VASP linked to MKL outperforms that linked to Libsci + FFTW
for all three compilers (Intel, Cray and GNU) on KNL

Compiler + Libraries (Hugepages2M, 1 Thread/Core,CuC_vdw)

LOOP+ Time (sec)

1200 .
1000 .
800 .
B intel-mkl-elpa
I intel-mkl-elpa-dynamic
600 - - I intel-libsci-fftw
B intel-mkl
Il intel-mki+libsci(scalapack)
I cray-libsci-fftw
400 1 1 [cray-mkl
B cray-mkl-fitw
Il cray-mkl-libsci(scalapack)
200 - I gnu-libsci-fftw-pthread-iomp5
Bl gnu-libsci-fftw
B gnu-mki

4 8 4 8

4 nodes 8 nodes

No. of OpenMP Threads per MPI Task /No. of Nodes

Summary and Future work

Conclusions and best practice tips

We studied the parallel/thread scaling of the MPI/OpenMP hybrid
code with representative VASP workloads on Cori KNL system and
tested the performance impact from a few build/boot/run time
options. Our study shows that

1. The hybrid code performs best at 4 or 8 threads per MPI task.
Using 8 threads per task in production runs is recommended.

2. Intel compilers + MKL (and FFTW interface wrappers from MKL)
delivers the best performance among other compiler and library
combinations, e.g., Intel, Cray and GNU compilers + Libsci and
FFTW.

Best practice

3. Hugepages helps (or no hinder to) the performance almost in all
cases, so the use of hugepages is recommended.

4. For the workloads that fit into MCDRAM, the cache and flat
mode performs similarly. We recommend to run the hybrid VASP
under the cache mode for simplicity.

5. Hybrid VASP gets most performance benefit from using
MCDRAM. So it could be beneficial to use more nodes and
threads (8 threads) to reduce the memory requirement per node.

Best practice

6. Using 1 hardware thread per core is recommended in general.
However, hyper-threading could help the VASP performance
with the HSE workloads, especially when running at a smaller
node count.

7. Using 64 cores out of 68 available cores were used.

Issues and future work

* Further investigation is needed to understand the
reproducible spikes in the performance data (at
OpenMP thread counts 1 and 16)

Thank you!

®

wi\e/%rsitét (intel/ Look Inside:

U.S. DEPARTMENT OF Oﬁlce of ‘ T e
ﬁ NERGY Science B;'S_DJLAB - e

