
Performance on Trinity Phase 2 (a Cray XC40 utilizing Intel Xeon Phi processors)
with Acceptance Applications and Benchmarks

A. M. Agelastos*, M. Rajan*, N. WichmannS, R. Baker†, S. Domino*, E. W. Draeger‡,
S. AndersonS, J. BalmaS, S. BehlingS, M. BerryS, P. CarrierS, M. DavisS,

K. McMahonS, D. SandnessS, K. ThomasS, S. WarrenS, and T. ZhuS
* Sandia National Laboratories, Albuquerque, NM

† Los Alamos National Laboratory, Los Alamos, NM
‡ Lawrence Livermore National Laboratory, Livermore, CA

S Cray, Inc., St. Paul, MN

Abstract—Trinity is the first Advanced Technology System
(ATS-1) from the Advanced Simulation and Computing (ASC)
Program, which supports the Dept. of Energy’s (DOE) National
Nuclear Security Administration (NNSA), and is designed to
provide the throughput required for the Nuclear Security
Enterprise. Trinity Phase 1, currently in production use, has
9,436 dual-socket Haswell nodes while Phase 2, the focus of this
paper, has 9,984 Intel Knights Landing Xeon Phi nodes. This
paper documents our experiences with the Phase 2 performance
acceptance tests which include the Capability Improvement
applications, Sustained System Performance benchmarks, and
several micro-benchmarks. Lessons learned to achieve optimum
performance include which Knights Landing modes to utilize
depending upon the application’s ability to support the memory
hierarchy present, and that each team should investigate huge
pages, MPI and thread task mapping, and static linking, which
are all commonly considered for extreme scale. Moreover, MPI
everywhere scales well for this platform depending upon the
application’s communication pattern, and optimal performance
typically requires making good use of all the available cores
on Knights Landing. The studies discussed herein provided us
with the needed information to guide optimal use for upcoming
production simulations beginning in the summer of 2017.

Keywords-Cray XC40, AVX512, MPI, OpenMP, performance
optimization, MIC

I. INTRODUCTION

Trinity, the first of NNSA’s Advanced Technology Sys-
tems (ATS-1), is a large Cray XC40 with approximately
20,000 compute nodes. This system was procured in the
following 2 “phases.”

Phase 1 This portion of Trinity contains 9,436 dual-
socket Intel Haswell (HSW) nodes and is cur-
rently in production use.

Phase 2 This portion of Trinity contains 9,984 Intel
Knights Landing (KNL) Xeon Phi nodes.

Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia,
LLC., a wholly owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA0003525. This unclassified document is approved for
unlimited release (SAND2017-4888C).

Formal acceptance of Trinity Phase 1 was concluded in
December of 2015. Phase 2 of the Trinity procurement was
concluded with formal acceptance in December 2016. The
Trinity architecture introduces new challenges to the code
developers and analysts; these include the transition from
multi-core to many-core, deeper memory hierarchies includ-
ing high-bandwidth memory (HBM) with MCDRAM on the
KNL nodes and wider SIMD/vector units. Additionally, we
have, for the first time on a large production capability
system, high-speed, solid-state Burst Buffer storage. The
Trinity performance assessment for Phase 2 Acceptance
leverages the following three tiers of application complexity:

1) production apps with one selected from each member
of the Tri-Labs (i.e., Lawrence Livermore National
Laboratory (LLNL), Los Alamos National Laboratory
(LANL), and Sandia National Laboratories (SNL)),
referred to as Capability Improvement (CI) apps

2) National Energy Research Scientific Computing Cen-
ter’s (NERSC) Sustained System Performance (SSP)
benchmark suite which consists of some full and
miniature applications that incorporate relevant kernels
from a number of the Tri-Labs’ and NERSC’s full apps

3) micro-benchmarks

These applications and benchmarks cover a wide range of
Tri-Lab- & NERSC-relevant algorithms, programming mod-
els, and use cases. Ultimately, the CI metric for the 3 selected
production apps quantify the performance at near-full scale
and the SSP metric provides a measure of the throughput
gain over the Alliance for Computing at Extreme Scale’s
(ACES) previous-generation capability system, Cielo. Both
the CI and SSP metrics, benchmarked on Trinity Phase 2,
exceeded their targets and met the requirements for formally
“accepting” the system. This paper compliments our CUG
paper last year [1] documenting the same set of metrics
used for acceptance of Trinity Phase 1. An overview of the
Trinity and NERSC-8 performance acceptance benchmarks
and code descriptions can be found at Reference [2].

Figure 1. High-level diagram of Trinity’s architecture.

Table I
TRINITY ARCHITECTURAL PARAMETERS.

Feature Phase 1 Phase 2

Total nodes 9,436 9,984

Total cores 301,952 678,912

Cores per node 32 68

Processor Intel Haswell Intel KNL

Clock speed 2.3 GHz 1.4 GHz

Peak node GFLOPs 1,177.6 3,046.4

DDR4 clock speed 2,133 MHz 2,400 MHz

DDR4 per core 4.0 GB 1.41 GB

Channels per socket 4 6

Processor cache
L1 16× 32 KB 68× 32 KB
L2 16× 256 KB 34× 1, 024 KB
L3 40 MB 16 GB MCDRAM

(if in cache mode)

Interconnect Aries
topology Dragonfly

II. TRINITY ARCHITECTURE

The Trinity architecture is shown in Figure 1. Table I
provides a comparison of some performance-related archi-
tectural parameters of Trinity Phase 1 and Phase 2; the reader
is referred to [1] for a similar comparison to Cielo.

The Phase 1 HSW partition has 9,436 nodes with dual-
socket Intel Xeon ES-2698 v3 running at 2.3 GHz. Each
processor has 16 cores and 4 memory channels connected
to four 16 GB DDR4 DIMMS clocked at 2.133GHz. The
processors are set up to support simultaneous multithreading
(SMT) and Intel Turbo Boost and the operating clock
frequency varies with the processor load.

Figure 2. Diagram of Trinity’s KNL node architecture.

Assuming a nominal 2.3 GHz operation, the peak
node double precision (DP) performance is 32 cores ×
16 FLOPs/cycle×2.3 GHz = 1, 177.6 GFLOPs/node. Each
core is capable of 16 DP FLOPs per cycle from the two 256-
bit AVX2 units with FMA. Trinity is listed at 8,101 TFLOPS
on top500.org and 182.6 TFLOPS on hpcg-benchmark.org.

The Phase 2 KNL partition has 9,984 nodes with single-
socket Intel Xeon Phi running at 1.4 GHz. Each processor
has 68 cores arranged in 34 tiles (2 tiles are deactivated)
interconnected by a mesh interconnect as shown in Figure 2.
Each tile has 2 cores, each with two AVX-512 VPU units and
the cores share a 1 MB L2 cache. Each processor has 96 GB
of DDR4 memory using 6 memory channels clocked at 2.4
GHz and 16 GB of MCDRAM (high-bandwidth memory,
HBM) that has 4 to 5 times the bandwidth of the DDR4 at
the cost of a small increase in latency. The physical core
supports 4 hardware (SMT) threads and the Intel Turbo
Boost technology enables operating clock frequency to vary
with the processor load. Assuming a nominal 1.4 GHz
operation, the peak node DP performance is 68 cores ×
32 FLOPs/cycle × 1.4 GHz = 3, 046.4 GFLOPS/node.
Each core is capable of 32 DP FLOPs per cycle from the
two 512-bit AVX-512 units.

This processor can be booted into multiple memory
modes, i.e., flat, cache, and hybrid (flat+cache), and multiple
sub-NUMA cluster (SNC) modes, i.e., hemisphere/quadrant,
all2all, and snc2/snc4. Permutations with these memory
and cluster modes result in ∼20 different available modes.
The modes that resulted in optimal Acceptance application

http://top500.org
http://hpcg-benchmark.org

performance utilized quadrant cluster mode (affinity between
CHA and memory channel) and the flat (MCDRAM and
DDR as different NUMA nodes) and cache (MCDRAM used
as direct-mapped cache) memory modes; these are referred
to as quad/flat and quad/cache, respectively.

Cache thrashing can occur when the MCDRAM is con-
figured as a direct-mapped cache. More recent kernel mod-
ification (i.e., Zone Sort) reduce the observed thrashing.
Running any application sensitive to KNL direct mapped
cache thrashing immediately after the compute nodes are
rebooted significantly reduces these issues.

III. ACCEPTANCE TESTS’ PERFORMANCE RESULTS

The “Acceptance” period for Phase 2 encompassed the
bulk of 2016. During this time frame, the operating envi-
ronments of Phase 2 and Trinity’s test beds (i.e., Mutrino,
Trinitite) were evolving to better handle KNL. The bulk
of the results presented herein were generated under an
UP01 or UP02 operating environment; refer to [3] for more
information regarding these environments.

Acceptance of Phase 2 ended up occurring while on a
“restricted” network. Approximately 1,068 Phase 2 nodes
were merged with Phase 1 which left approximately 8,907
Phase 2 nodes for testing. The benchmarks discussed herein
were all tested at as high of scale of possible up to 8,907
nodes. Despite not having access to the “full” ultimate Phase
2 system, all benchmarks surpassed their Phase 2 targets and
a lot of information was learned about how to develop for
and utilize KNL.

Application developers need to invest resources into in-
vestigating not just what memory mode best suits their
application but also what the optimal rank and thread layout
would be for maximum performance. The methodologies for
doing this are platform and compiler specific. Some of the
oft-used methods for acceptance are described below since
they will be referenced within forthcoming sub-sections.

The primary method of launching MPI applications on
Trinity during the acceptance period was by using Cray’s
aprun command. This utility’s --cpu-binding, or -cc
as the short version, command line argument provides the
user a lot of options for how the ranks and threads are bound
on a KNL node. A common option used for many of the
acceptance cases was depth. This enables the parent and
threads to float around on cores or hardware threads that are
relatively close together depending on the depth requested
(i.e., the --cpus-per-pe/-d command line option). For
example, if -d2 and -j2 (i.e., this is shortened version
of --cpus-per-cu which defines how many CPUs per
compute unit) options are set, then both the parent and
its thread will run on the same core on different hardware
threads, however if -d4 and -j2 are set, then the parent
and threads will be confined to the 2 cores of a tile with
each core running 2 hyperthreads.

Sometimes the -cc option was not sufficient for some
of the more custom arrangements desired. Cray systems
support setting the MPICH_RANK_REORDER_METHOD
environment variable which provides some additional
MPI rank re-ordering methods that can be used
to augment the selected -cc option selected. The
MPICH_RANK_REORDER_METHOD settings, and their
descriptions (directly extracted from the intro_mpi
manpage), used by the Acceptance Team are:
0 “Specifies round-robin placement. Sequential MPI

ranks are placed on the next node in the list. When
every node has been used, the rank placement starts
over again with the first node.”

1 “Specifies SMP-style placement. This is the default
aprun placement. For a multi-core node, sequential
MPI ranks are placed on the same node.”

3 “Specifies a custom rank placement defined in the file
MPICH_RANK_ORDER. The MPICH_RANK_ORDER
file must be readable by the first rank of the program,
and reside in the current running directory. The order in
which the ranks are listed in the file determines which
ranks are placed closest to each other, starting with the
first node in the list.”

A Cray utility to help generate a MPICH_RANK_ORDER file
is grid_order. The grid_order parameters, and their
descriptions, used by the Acceptance Team are:
-R is row-major ordering of ranks.
-P is a Peano space filling curve (optimal for FFT-

style communication) that lists successive rows in
alternating order.

-Z lists successive rows of cells in the same order,
jumping from the end of one row to the beginning
of the next.

-c is the desired node MPI grid.
-g is the global MPI grid.
-n is the number of ranks per line.
-m is the max. rank count.

A. ASC Application Capability Improvement (CI)
A key figure used to gauge performance at near full scale

is the Capability Improvement metric [4], which is computed
as an average improvement in performance over Cielo (Cray
XE6), of three ASC applications: PARTISN (from LANL),
Nalu (from SNL), and Qbox (from LLNL). The baseline
performance data was collected by using more than 2/3 of
the compute partition from our previous generation ASC
ACES platform Cielo in 2013. The CI metric is defined as

CI Metric⏟ ⏞
𝐶𝐼

=

(︃ Problem Size/
Complexity

Increase

)︃
⏟ ⏞

𝜒

×
(︂

Runtime
Speedup

)︂
⏟ ⏞

𝜏

(1)

Trinity’s target performance for the CI metric is 8× over
the baseline Cielo performance. The Phase 2 Acceptance

process specified that the average CI of these applications
must be 4× the Cielo benchmark. Such a metric was also
used in the acceptance benchmarks of Phase 1 and our
previous-generation ASC ACES capability platform, Cielo
[1][5].

A description of the 3 applications picked for the CI
benchmark, their performance measured on Phase 1, and
comparisons to Cielo are available in Ref [1] and is not
repeated here in detail. The Phase 2 aggregate CI, computed
as the arithmetic mean of the individual CI metrics, is
9.37, which exceeds the target 4.0. Each of the three CI
applications is discussed below.

1) SNL’s Nalu: Nalu is a low Mach computational fluid
dynamics (CFD) code built atop the Sierra Toolkit and
Trilinos solver Tpetra stack. Its capabilities are discussed
within [6] and it can be downloaded from [7]. Nalu version
1.01 was used for the CI simulations for Phase 2.

Problem Description: The problem of interest, which
is also a lightly modified version of “milestoneRun” within
Nalu’s regression test suite [8], is a turbulent open jet
(Reynolds number of ∼50, 000) with passive mixture frac-
tion transport using the one equation Ksgs large eddy
simulation (LES) model. The problem is discretized on an
unstructured mesh with hexahedral elements. The baseline
problem “R6” mesh, created with 6 consecutive uniform
mesh refinement steps, consists of 9 billion elements with the
total degree-of-freedom count approaching 60 billion. Given
the pressure projection scheme in the context of a monolithic
momentum solve, the maximum matrix size is ∼27 billion
rows (momentum) followed by a series of smaller ∼9 billion
row systems for the continuity system (elliptic Pressure
Poisson), mixture fraction, and turbulent kinetic energy.

Figure of Merit (FOM) Description: There are 2 FOMs
used for Nalu’s CI Metric; both involve the solution of the
momentum equations. The speedups of the two metrics are
weighted to produce a single speedup factor for Nalu. The
first FOM is the average solve time per linear iteration. The
second is the average matrix assemble time per nonlinear
step. Nalu’s runtime speedup is defined as

(︂
Runtime
Speedup

)︂
=
(︁ Speedup From

Momentum Solve

)︁
× 0.67

+
(︁ Speedup From

Momentum Assemble

)︁
× 0.33

⇔
𝜏 = 𝜏𝑆 × 0.67 + 𝜏𝐴 × 0.33 (2)

The Nalu CI simulation performs 25 time steps. Each
time step performs 2 nonlinear iterations and then a variable
number of linear iterations until tolerances are achieved. The
momentum assemble occurs for every nonlinear iteration,
i.e., a total of 25 × 2 = 50 times for the CI simulation,
whereas momentum solve occurs for every linear iteration,
i.e., a total of 25 × 2 × (no. avg. linear iter.) times. Nalu’s

Table II
THIS TABLE PROVIDES KEY NALU CI PARAMETERS.

Parameter Cielo Phase 1 Phase 2

No. Nodes 8,192 9,420 4,096

No. MPI Ranks per Node 16 32 64

No. Threads per Rank 1 1 1

Mesh Refinement Level, 𝑅 6 6 6

Avg. Momentum Equation
Assemble Time per Loop, 𝑡𝐴 (sec.) 2.712 0.637 1.231

Avg. Momentum Equation
Solve Time per Loop, 𝑡𝑆 (sec.) 0.502 0.129 0.356

Complexity Increase, 𝜒(︀
𝑅Trinity −𝑅Cielo

)︀
× 8 1.00 1.00

Runtime Speedup, 𝜏(︁
𝑡𝑆,Cielo
𝑡𝑆,Trinity

)︁
×0.67+

(︁
𝑡𝐴,Cielo
𝑡𝐴,Trinity

)︁
×0.33 4.01 1.67

Capability Improvement, 𝐶𝐼

𝜒× 𝜏 4.01 1.67

FOM and problem description are discussed in detail within
[9].

Capability Improvement Metric Run: Nalu’s formal CI
value is 1.67 and was obtained in October 2016 running
the same size problem as the Cielo baseline, i.e., the “R6”
mesh which has no complexity increase, on 4,096 nodes
with 64 MPI ranks per node in quad/cache mode. All of
that improvement accrues from the faster run time measured
for the average assemble time for the momentum equation
(measured value was 113.532 sec.) and the average solve
time for the momentum equation (measured value was
168.617 sec.). Strong scaling the same problem down to
2,048 nodes results in a CI value of 0.82. This exhibits better
than linear scaling and, if these trends hold which they are
expected to, Nalu was expected to achieve a CI value greater
than 4.0 at the full Phase 2 node count. Table II contains
the CI-relevant parameters for Nalu and compares them for
the Cielo, Phase 1, and Phase 2 systems.

The resultant CI falls short of the desired 4.0 because
there are out-of-memory (OOM) errors when run in quad/-
cache at the 8,192-node scale that are preventing Nalu from
achieving its target. This issue is described in the following
section.

Memory Debugging: Preliminary memory profiling of
Nalu using its built-in memory statistics, adding custom
ones, and leveraging Cray’s MPICH Memory Report (ac-
cessed by setting MPICH_MEMORY_REPORT environment
variable to 1) indicated that MPI had more memory allocated
to it than expected. This finding motivated 2 independent
studies. The first study was to better understand Nalu’s
communication pattern. The second study was to quantify
the memory needs of large-scale MPI applications that
have a lot of MPI point-to-point (p2p) connections, e.g.,
MPI_Send()/ MPI_Recv().

Table III
NALU CONNECTIVITY STATISTICS.

No. MPI ranks w/
64 ranks/node

Metric 1,024 8,192

Rank w/ max. p2p connections (𝑟max) 14 13

Max. p2p connections 1,023 7,671

Min. p2p connections 120 103

Mean p2p connections 307.7 463.4

Degree p2p-connected 30.0% 5.7%

Mean p2p connections
for rank ∈ [𝑟max − 1, 𝑟max + 1] 1,021.3 7,595.3

Mean p2p connections
for rank ∈ [𝑟max − 2, 𝑟max + 2] 859.6 7,472.6

Mean p2p connections
for rank ∈ [𝑟max − 4, 𝑟max + 4] 734.4 5,820.8

Mean p2p connections
for rank ∈ [𝑟max − 8, 𝑟max + 8] 663.3 4,660.1

Mean p2p connections
for rank ∈ [0, 𝑟max + 16] 569.8 3,717.0

Mean p2p connections
for rank ∈ [0, 𝑟max + 32] 498.0 3,097.2

Mean p2p connections
for rank ∈ [0, 𝑟max + 64] 457.8 2,586.7

Figure 3. Heat map of total number of point-to-point (p2p) calls for “R3”
Nalu simulation initialization and a single time step on 1,024 MPI ranks
(16 nodes with 64 ranks per node).

CrayPat was utilized to instrument the MPI functions and
gather statistics. Custom software was written to extract
information from CrayPat’s resultant AP2 file and generate
the desired statistics and connection heat maps. Data was
collected for the “R3” mesh utilizing 1,024 MPI ranks (16
nodes with 64 ranks/node) and for the “R4” mesh utilizing
8,192 MPI ranks (128 nodes with 64 ranks/node); these mesh

Table IV
THIS TABLE PROVIDES CRAY MPI MEMORY UTILIZATION LEVELS ON
TRINITY. PHASE 2 COMPUTE NODES HAVE 2.5 GB/NODE OF MEMORY

IN USE WITHOUT ANY HPC APPLICATIONS RUNNING.

Test No. MPI ranks across 8,192 nodes
Description 524,288 393,216 262,144 131,072

Test 1:
Full p2p 64.4 36.5 16.5 4.3
connectivity GB/node GB/node GB/node GB/node

Test 2: Full p2p
connectivity w/ 60.4 34.3 15.5 4.1
1 MPI mbox. alloc. GB/node GB/node GB/node GB/node

Test 3: Full
connectivity w/ 6.7 4.5 2.3 0.8
MPI_Alltoall() GB/node GB/node GB/node GB/node

Test 4:
1,024 p2p 6.2 3.9 2.0 0.7
connections GB/node GB/node GB/node GB/node

and rank count sets are weak scaled from the “R6” mesh uti-
lizing 524,288 MPI ranks (8,192 nodes with 64 ranks/node).
Connection statistics for the “R3” and “R4” simulations are
provided within Table III while the connection heat map for
“R3” is depicted in Figure 3.

Table III provides the MPI rank number for the simulation
that has the most p2p connections, 𝑟𝑚𝑎𝑥. It also provides the
maximum, minimum, and mean numbers of p2p connections
across that simulation’s ranks. Finally, it provides the aver-
age number of p2p connections that 𝑟𝑚𝑎𝑥 and some number
of its neighbors have; this ascertains how densely connected
this rank and its neighbors may be. If 𝑟𝑚𝑎𝑥 and many of its
neighbors have a large number of p2p connections, then the
node they fall upon will have to allocate a lot of buffers.

Table III indicates that some ranks tend to be connected
in a point-to-point fashion to a majority of the MPI ranks.
Specifically, rank 14 for the “R3” and rank 13 for the “R4”
are connected to 1,023 and 7,671 ranks, respectively. This
table also indicates that the neighbors of the ranks that are
heavily connected are, also, heavily connected. These ranks
are also represented by the horizontal block of green at the
top of the heat map in Figure 3.

The utility mpi_memused, which uses the same method
as NERSC’s mpimemu benchmark to determine node-level
memory usage, was used for the following 4 tests.

Test 1 This test issues MPI_Isend() and
MPI_Recv() between all ranks in the job.

Test 2 This is the same as Test 1 but with setting
the MPICH_GNI_MBOXES_PER_BLOCK envi-
ronment variable to the number of connections
being made. Cray MPI typically allocates GNI
mailboxes in chunks which has some wasted
memory at the end of each chunk. Setting this en-
vironment variable allocates all mailboxes in one

large chunk, which eliminates the aforementioned
wasted memory.

Test 3 This test uses a MPI_COMM_WORLD
MPI_Alltoall() collective call to exchange
unique data between all ranks.

Test 4 This test is the same as Test 1 but with each rank
only being connected to 1,024 other ranks.

The results from these tests are provided within Table IV
and indicate that a large amount of memory is required for
MPI buffers if ranks are heavily connected in a p2p fashion.
In cases such as this, we recommend the use of collectives
such as MPI_Alltoall to exchange the required data.

These 2 studies indicate that Nalu has contiguous ranks
that are point-to-point connected to a majority of all ranks
and these ranks will have a large amount of memory on the
node allocated to MPI buffers. This is the likely cause of
the OOM errors encountered. Research and development is
ongoing to alleviate this issue.

2) LANL’s PARTISN: PARTISN is a particle transport
code that provides neutron transport solutions on orthogonal
meshes in one, two, and three dimensions [10]. PAR-
TISN uses a multi-group energy treatment in conjunction
with the Sn angular approximation. PARTISN supports
time-dependent calculations and its primary components of
computation involved KBA sweeps and associated zero-
dimensional physics. The KBA sweep wave-front algorithm
provides two dimensional parallelism for three dimensional
geometries and is tightly coupled by nearest-neighbor com-
munications. PARTISN version 8.23 was used for the Phase
2 CI simulation.

Problem Description: The test problem is MIC_SN,
i.e., MIC with group-dependent Sn quadrature. Its descrip-
tion from [1] is provided below.

This problem is weak-scaled in the Y and Z
dimensions so as to maintain a constant block
shape per processor. A small set of parameters in
the input file (i.e., jt, kt, yints, zints) are
scaled to set up inputs for the weak scaling study
determining the number of zones/core. These pa-
rameters are doubled when the core count/MPI
task count is quadrupled. The number of OpenMP
threads for each MPI task is also specified in the
input file.
Figure of Merit (FOM) Description: PARTISN’s FOM

is its “Solver Iteration Time.” Ideally, this FOM should
remain constant for weak scaling. This parameter is directly
extracted from its simulation output.

Capability Improvement Metric Run: PARTISN’s final
CI value is 5.68 and was obtained in December 2016. This
CI result was from running PARTISN on a problem 9×
larger than the Cielo baseline with a ∼59% increase in
solver iteration time. The Cielo baseline utilized 2,880 zones
per core with 4 OpenMP threads per MPI rank on 8,192

Table V
THIS TABLE PROVIDES KEY PARTISN CI PARAMETERS.

Parameter Cielo Phase 1 Phase 2

No. Nodes 8,192 9,418 8,192

No. MPI Ranks per Node 4 32 32

No. Threads per Rank 4 1 2

No. Cores, 𝑛 131,072 301,376 524,288

Zones per Core, 𝑧 2,880 11,520 6,480

Solver Iteration Time, 𝑡 (sec.) 209.400 397.710 332.047

Complexity Increase, 𝜒
(𝑛× 𝑧)Trinity/(𝑛× 𝑧)Cielo 9.19 9.00

Runtime Speedup, 𝜏
𝑡Cielo/𝑡Trinity 0.526 0.631

Capability Improvement, 𝐶𝐼

𝜒× 𝜏 4.83 5.68

nodes with 4 MPI ranks per node for a total of 131,072
processing elements. The Phase 2 formal CI simulation
utilized 6,480 zones per core with 2 OpenMP threads per
MPI rank and 32 MPI ranks per node for a total of 524,288
processing elements. These parameters and their associated
CI calculation parameters are provided within Table V.

This performance was achieved by leverag-
ing 8 MB huge pages (i.e., module load
craype-hugepages8M), rank reordering (see
below for methodology used), hybrid paralellism (i.e.,
32 MPI Ranks/node × 2 OpenMP Threads/node reduced
simulation time by ∼2% from pure MPI), and changing
PARTISN’s nchunk parameter to 16 (i.e., this reduced
simulation time by ∼28%). All commands provided
henceforth will be in BASH.

export MPICH_RANK_REORDER_METHOD=3
grid_order -R -Z -m 262144 -n 32 \

-g 512x512 -c 4,4

Additionally, the OpenMP environment settings for the hy-
brid parallelism model utilized are below.

export OMP_WAIT_POLICY=active
export OMP_NUM_THREADS=2
export OMP_PROC_BIND=spread

3) LLNL’s Qbox: Qbox is a Density Functional Theory
(DFT) code used to compute the properties of materials
at the atomistic scale. Qbox’s primary algorithm uses a
Born-Oppenheimer description of atomic cores and electrons
with valence electrons treated quantum mechanically using
DFT and a plane wave basis. Core electrons and nuclei are
described by nonlocal pseudopotentials and are derived to
match all-electron, single-atom calculations external to a cut-
off radius. Qbox’s computational profile consists primarily
of dense, parallel linear algebra and three-dimensional, par-
allel, complex-to-complex Fast Fourier Transforms (FFTs)

Table VI
THIS TABLE PROVIDES KEY QBOX CI PARAMETERS.

Parameter Cielo Phase 1 Phase 2

No. Nodes 6,144 9,418 8,504

No. MPI Ranks per Node 16 8 16

No. Threads per Rank 1 8 4

No. Gold Atoms, 𝑛 1,600 8,800 6,000

Max. Iteration Time, 𝑡 (sec.) 1,663 7,974 4,227.448

Complexity Increase, 𝜒(︀
𝑛Trinity/𝑛Cielo

)︀3 166.38 52.73

Runtime Speedup, 𝜏
𝑡Cielo/𝑡Trinity 0.208 0.393

Capability Improvement, 𝐶𝐼

𝜒× 𝜏 34.7 20.74

[11][12]. Qbox revision 206 (qb@LL-r205 branch) was
utilized for the Phase 2 CI simulation.

Problem Description: The test problem is the initial
self-consistent wavefunction convergence of a large crys-
talline gold system. Its description from [1] is provided
below.

The Qbox benchmark problem is the ini-
tial self-consistent wavefunction convergence of
a large crystalline gold system (FCC, a0 = 7.71
a.u). This problem is computationally identical to
typical capability simulations of high-Z materials,
but easier to describe and generalize to arbitrary
numbers of atoms.
Figure of Merit (FOM) Description: Qbox’s FOM

is the maximum total wall clock time to run a single
self-consistent iteration with three non-self-consistent inner
iterations. This value is extracted directly from the max key
of Qbox’s XML timing sub-element whose where key
has run as its value and whose name key has iteration
as its value.

Capability Improvement Metric Run: Qbox’s final CI
value is 20.74 and was obtained in December 2016 running
a problem with 6,000 atoms (i.e., a complexity increase of
∼53 from the 1,600 atoms used for the Cielo baseline) on
8,504 nodes using 16 ranks per node and 4 threads per rank
in quad/cache mode. These parameters and their associated
CI calculation parameters are provided within Table VI.

This performance was achieved by leveraging 2 MB huge
pages (i.e., module load craype-hugepages2M),
rank reordering which is essential for both Phase 1 and
Phase 2 (see below for methodology used), static linking
(i.e., provided up to 40% reduction for some simulations,
refer to Table VII for more information), and using Cray
instead of Intel compilers. Slight modifications to qb.C
was required to enable static linking; the change was to use
getenv() instead of getlogin().

export MPICH_RANK_REORDER_METHOD=3

Table VII
THIS TABLE PROVIDES QBOX SIMULATION TIMINGS FOR DIFFERENT

LINKING STYLES; THE RUN CORRESPONDS TO A 256-NODE, 880-ATOM
SIMULATION WITH 32 MPI RANKS PER NODE AND 2 OPENMP

THREADS PER RANK WITH NROWMAX EQUAL TO 256.

Link Type Walltime

Dynamic 330 sec.

Dynamic w/ statically 215 sec.
linked Cray libsci (∼35% reduction)

198 sec.
Static (∼40% reduction)

Table VIII
THIS TABLE COMPARES BUILD AND RUN TIME PARAMETERS FOR THE 3

CI APPLICATIONS.

Parameter Nalu PARTISN Qbox

Code changes No No 2 LOC

KNL mode quad/cache quad/cache quad/cache

Language C++ Fortran 90/95 C++

Compiler used Intel v. 16.0.3 Intel v. 16.0.3 Cray v. 8.5.2

Linking used Static Dynamic Static

Hugepages No 8 MB 2 MB

Nodes 4,096 8,192 8,504

MPI ranks/node 64 32 16

Threads/rank N/A 2 4

Grid ordering No Yes Yes

CI 1.67 5.68 20.74

Average CI 9.36

grid_order -R -P -n 16 \
-g 128,1063 -c 4,4

Some early (first half of 2016) comparisons between KNL
and Intel Broadwell (BDW) on a small problem (i.e., 256
atoms) with 512 MPI ranks (i.e., 8 KNL nodes, 16 BDW
nodes) indicate that the overall subdivision of work within
Qbox remains consistent. Additionally, hyperthreading did
not increase Qbox’s runtime speedup with similar test cases
on KNL and Intel Broadwell; hyperthreading caused a
∼31% increase in wall time on a 1,280 atom simulation on
768 nodes with 32 ranks per node and 4 OpenMP threads
per rank.

4) Phase 2 CI Performance Summary: A high-level com-
parison of build and run time information for the 3 CI
applications is provided within Table VIII. Refer to Tables II,
V, and VI for additional, detailed comparisons between
Phase 2, Phase 1, and the Cielo baseline reference.

B. Sustained System Performance (SSP) Suite

The SSP suite is useful as a way of assessing the perfor-
mance of a given system using a set of benchmark programs
that represent a workload [13]. SSP is computed as a geo-
metric mean of the performance of the following 8 Tri-Lab
and NERSC benchmarks: miniFE, miniGhost, AMG, UMT,

Table IX
SSP BASELINE PERFORMANCE ON HOPPER.

App. / MPI Threads Ref. Time Pi

Parameter Tasks per Rank Nodes TFLOPs (sec.)
(︂

TFLOPs
sec.

node

)︂
miniFE 49,152 1 2,048 1,065.15 92.43 0.0056
miniGhost 49,152 1 2,048 3,350.20 95.97 0.0170
AMG 49,152 1 2,048 1,364.51 151.19 0.0044
UMT 49,152 1 2,048 18,409.40 1,514.28 0.0059
SNAP 49,152 1 2,048 4,729.66 1,013.10 0.0023
miniDFT 10,000 1 417 9,180.11 906.24 0.0243
GTC 19,200 1 800 19,911.35 2,286.82 0.0109
MILC 24,576 1 1,024 15,036.50 1,124.80 0.0131

Pi Geom. Mean: 0.0082

Hopper Nodes: 6,384

SSP: 52.1212

Table X
SSP PERFORMANCE ON PHASE 2.

App. / MPI Threads Ref. Time Pi

Parameter Tasks per Rank Nodes TFLOPs (sec.)
(︂

TFLOPs
sec.

node

)︂
miniFE1 15,360 32 3,840 1,065.15 7.20 0.0385
miniGhost 24,576 2 768 3,350.20 33.95 0.1285
AMG 49,152 2 768 1,364.51 160.36 0.0111
UMT2 49,184 4 769 18,409.40 467.26 0.0512
SNAP 24,576 2 768 4,729.66 212.00 0.0290
miniDFT 3,008 1 47 9,180.11 471.62 0.4142
GTC 9,600 1 150 19,911.35 2,118.73 0.0627
MILC1 24,576 1 384 15,036.50 631.27 0.0620

Pi Geom. Mean: 0.0582

Phase 2 Nodes: 9,984

SSP: 580.92
Target SSP: 489

1 Run in quad/flat wholly in HBM instead of quad/cache.
2 Its first node had 8 threads per rank and 32 MPI ranks.

SNAP, miniDFT, GTC, and MILC. The Phase 2 SSP target
is 489. The demonstrated performance on Phase 2 running
these benchmarks is 580.92. The baseline SSP parameters
from Hopper are provided within Table IX while the Phase 2
SSP parameters are provided within Table X. The following
sub-subsections contain SSP application-specific notes and
findings. This subsection is concluded with a summary.

1) miniFE: In May, 2016, a decomposition bug within
version 1.4 of miniFE was discovered. At this time, it was
decided to switch to version 2.0 since it did not exhibit
the bug. MiniFE was also one of the applications used for
Phase 2 “Factory Testing.” Initially, miniFE’s performance
in quad/cache was below expectations. Further analysis con-
cluded that this was due to direct mapped cache thrashing.

2) miniGhost: MiniGhost profiling indicates it is memory
bandwidth bound on KNL. Cray streamlined its stencil

kernel and modified it to do an Allreduce once per
timestep of a size equal to the number of variables being
reduced rather than once per variable per timestep.

3) AMG: Initial performance profiling revealed two
key routines: hypre_ParCSRRelax_L1() and
hypre_CSRMatrixMatvec(). Also, approximately
8.5% of the total wall time is spent within
MPI_Allreduce. An analysis indicated that performance
improvements could result from merging OpenMP parallel
regions, reducing the synchronization costs, and the use of
dynamic scheduling; these changes were implemented.

4) UMT: Cray’s compilers resulted in better UMT per-
formance than Intel’s compilers. Moreover, version 15 of the
Intel compiler had a Fortran bug that required legal Size
variable to be renamed. Also, Intel version 16 requires no
inlining to get a correct answer for UMT.

Significant optimizations were performed within
snflwxyz.F90, snswp3d.F90, and snqq.F90. These
are the same optimizations used for Phase 1. Also, a
race condition was discovered in the original OpenMP
implementation of UMT. Specifically, a memory overwrite
race condition was found within subroutine snreflect()
which is called within an OpenMP parallel region. The
frequency of its occurrence depends on the number of
OpenMP threads used (e.g., there is no race condition if
OpenMP is not used), the optimization level of routines
(i.e., more optimization increases likelihood), and the
problem size.

It was observed that 2 MPI ranks always required 20-
30% more time and memory than all other ranks. Multiple
program, multiple data (MPMD) was utilized to greatly
reduce load imbalance and total elapsed time which required
grid reordering and one node which contained fewer MPI
ranks compare to the other nodes, but each of these fewer
ranks spawned twice as many OpenMP threads.

5) SNAP: A newer version of SNAP (version 1.07 instead
of 1.01) was utilized since it had improved vectorization and
better support for hybrid parallelism. Also, this version of
SNAP using 2 MB page size is 3-22% faster than when using
the default 4 KB page size; the benefit of using a 2 MB
page size increases as the node count increases. It was also
observed that SNAP is 6-33% faster using grid ordering than
without. Moreover, both of these options appear to reduce
run-to-run variations.

6) miniDFT: Intel’s MKL libraries were used for ScaLA-
PACK, BLAS, and FFTW. Hyperthreading was evaluated on
KNL however no performance improvements were observed.
The 2 MB huge page size utilized has a large (i.e., ∼200%
improvement) impact on miniDFT performance when com-
pared to the default 4 KB page size. Additionally, the
command line parameter ntg was set to 4 instead of 1.

7) GTC: Initial performance studies of GTC in quad/-
cache had severe performance problems. Ultimately,
this was due to direct-mapped cache thrashing. Also,

Table XI
THIS TABLE COMPARES BUILD AND RUN TIME PARAMETERS FOR THE

SSP APPLICATIONS.

Compiler Linking Huge Grid
App. Used Used pages Ordering

miniFE Intel v. 16.0.3 Static 8 MB No
miniGhost Intel v. 16.0.3 Static No Yes
AMG Cray v. 8.5.2 Static 8 MB Yes
UMT Cray v. 8.5.3 Static 4 MB Yes
SNAP Intel v. 16.0.3 Static 2 MB Yes
miniDFT Intel v. 16.0.3 Static 2 MB No
GTC Intel v. 16.0.3 Static 2 MB Yes
MILC Intel v. 16.0.3 Static 8 MB Yes

MPICH_RANK_REORDER_METHOD was set to 0 to “fold”
the MPI ranks such that the toroidal communicator is
contained within a node to help improve performance.

8) MILC: MILC utilized the newer version
of Cray’s MPICH library (version 7.4.0) versus
the default. Additionally, compiler options within
ks_imp_dyn/Makefile.Intel_knl and
libraries/Make_vanilla were changed to improve
optimization and eliminiate the overhead of OpenMP for
single-threaded runs. These options are provided below;
please note that Cray’s module environment automatically
adds the compiler-specific flag for the targeted platform,
e.g., -xMIC-AVX512 for the options below.

OPT = -O3 -fp-model fast=2 -fno-alias \
-fno-fnalias -qopt-report=5 -no-prec-div

OCFLAGS = -std=c99 \
-DCRAY_CORRECT_FUNCTIONALITY

LMPI = -Wl,--whole-archive,\
-ldmapp,--no-whole-archive

9) Phase 2 SSP Performance Summary: Table XI com-
pares the compiler used, linking type, huge pages setting,
and whether or not grid ordering was used for the SSP
applications for their simulations.

C. Mini Apps Run at Extra-Large Scale

Acceptance requires that five out of the eight SSP mini-
applications (i.e., miniFE, miniGhost, AMG, UMT, and
SNAP) are to be run at near the full scale of Phase 2.
These simulations have been performed and their results are
provided below.

1) miniFE: It was selected to utilize quad/cache for
miniFE’s “large” simulation as opposed to how it was run for
the SSP calculation, which was in quad/flat. Figure 4 depicts
miniFE weak scaling trend on Phase 2 with quad/cache.
This problem was weak scaled from the SSP setup. The
SSP result at 3,840 nodes in quad/flat was also provided for
reference.

Figure 4. MiniFE weak scaling for quad/cache sized from SSP problem;
this is a semilog plot where the x axis is logarithmic with a base of 2.

Table XII
THIS TABLE PROVIDES SOME “LARGE” MINIGHOST RESULTS THAT

COMPARE TIMINGS WITH AND WITHOUT GRID_ORDER USAGE; THESE
PROBLEMS CORRESPOND TO 32 MPI RANKS PER NODE AND WITH 2

OPENMP THREADS PER RANK.

Grid Order?
No. Mem./ Global Local MPI No Yes

Nodes Node Grid Grid Grid (sec.) (sec.)

768 ∼64GB 5,3763 168×112×336 32×48×16 38.9 34.0
6,144 ∼64GB 10,7523 168×112×336 64×96×32 54.91 36.2
8,820 ∼72GB 12,6003 210×150×225 60×84×56 48.5 46.2
1,029 ∼77GB 6,3003 225×150×225 28×42×28 47.5 45.2
8,232 ∼77GB 12,6003 225×150×225 56×84×56 85.71 47.0
8,820 ∼87GB 13,4403 224×160×240 60×84×56 91.71 48.0

1 These values are larger than expected; cache thrashing
may be the cause, however this hasn’t been confirmed.

2) miniGhost: The SSP problem for miniGhost could
only weak scale up to 8 × 768 = 6,144 nodes, which
corresponds to a factor of 2 in each dimension. It was
chosen to set a requirement that the global grid must
remain cubic for this miniGhost scaling study. Analysis
indicates that miniGhost is sensitive to local and global grid
decompositions. Additional cubic global grids with larger
memory per node were also utilized in order to run larger
problems on large node counts. All of this data is within
Table XII. Some of the timings were larger than expected.
It is theorized that cache thrashing is the culprit, however
this hasn’t been confirmed yet.

3) AMG: The SSP problem size for AMG is on 768
nodes using 64 ranks per node totaling 49,152 ranks. The
𝑥/𝑧 and 𝑦/𝑧 ratios were kept fixed at 2/3 to enable weak
scaling from the SSP problem. OOM errors were encoun-
tered at 1,500 nodes and beyond with this methodology.
Profiling of AMG indicates that MPI_Allreduce has the
highest percentage of time than the other MPI functions. The

Figure 5. AMG weak scaling for quad/cache sized from SSP problem;
this is a semilog plot where the x axis is logarithmic with a base of 2.

Figure 6. UMT scaling comparison between HSW and KNL for “large”
MPI rank counts.

memory requirements of MPI_Allgatherv, also present
within AMG, grow with the number of ranks; this is one
of the culpable areas of memory growth. To work around
this constraint, the ranks per node configuration was halved
to 32 and the target node counts were doubled to scale
upwards; Figure 5 contains this data with the 64 and 32
MPI ranks per node data separated. This was sufficient to
run a “large” problem on Phase 2, however memory growth
was still observed. This is likely due to other MPI buffers in
AMG that grow as a function of the number of ranks. This
is still being investigated.

4) UMT: UMT is an approximately weak scaling code.
The number of iterations taken (i.e., the amount of work
performed) increases with increasing number of MPI ranks.
Each MPI rank corresponds to a zone in its mesh. With
these characteristics, it is insightful to examine UMT with
the metric “node-seconds” rather than just its time. Figure 6
provides the “node-seconds” comparing UMT on HSW with
KNL (quad/cache). The number of iterations increases from

Figure 7. SNAP weak scaling for quad/cache sized from SSP problem;
this is a semilog plot where the x axis is logarithmic with a base of 2.

116 to 119 for the 110,592 and 124,416 MPI rank cases
which means these points do more work than the lower MPI
rank count.

A segmentation violation occurs at 133,632 MPI ranks
and points to a problem within the CMG_CLEAN mesh gen-
eration code. Integer(s) overflowing is the current diagnosis
from strace. Replacing int with long declarations was
not attempted.

5) SNAP: SNAP weak scaling on Phase 2 is provided
within Figure 7. Its parallel efficiency from 768 to 8,192
nodes is ∼68%.

D. Micro-benchmarks

As part of this effort to gather performance characteristics
of Trinity, a number of micro-benchmarks [2] were run.
Benchmark performance data from Pynamic, ZiaTest, OMB,
SMB, mdtest, IOR, PSNAP, and mpimemu have been very
useful in providing a deeper understanding of the system and
factors affecting performance of applications. This section
provides a short summary of a few of the micro-benchmarks
run during Trinity acceptance.

1) HPCG: The HPCG benchmark was run on Trinity in
the fall of 2016. The Intel version 2.4 of the benchmark was
used and no changes were made to the code. The runs were
scaled up to 8,704 nodes using 4 MPI ranks per node and
34 OpenMP threads per rank. Local domain dimensions of
160×160×160 (Global nx:ny:nz=5120:5120:5440)
were set using the HPCG command line options --nx,
--ny, --nz, and the execution time was set to 4,000 sec-
onds using the command line option --t. To ensure optimal
placement of ranks and threads on the cores, the environment
variable KMP_AFFINITY was set to compact and the
aprun command line option -cc depth was used. The
best GFLOP/s rating reported was 343,071.

2) ZiaTest: ZiaTest, through 7 well-defined steps, per-
forms a new, proposed benchmark method for MPI startup

Table XIII
THIS TABLE PROVIDES THE PHASE 2 MPIMEMU BENCHMARK RESULTS.

No. Nodes Used on Phase 2 1,024 2,048 8,192 8,792

Avg. Memory Used per Node 2.79 GB 3.55 GB 7.76 GB 8.34 GB

that intends to provide a realistic assessment of launch and
wireup requirements. Additionally, it analyzes, in a specified
pattern, the environment launch system and the interconnect
subsystem. Details on how the test is designed and tar file
with the benchmark can be obtained from [2]. Ziatest was
run on the full scale of Trinity Phase 2 and measured it a
launch time of 58 seconds with 68 MPI tasks per node.

3) mpimemu: Benchmark mpimemu helps measure ap-
proximate MPI library memory usage as a function of
scale. It samples /proc/meminfo at the node level and
/proc/self/status at the process level and outputs the
min., max., and avg. values for a specified period of time.
More information is provided by NERSC [2]. Mpimemu
was run on Phase 2 and Table XIII shows the MPI library
memory used with 68 MPI tasks per node 2 at different node
counts. For smaller scales, the memory used was found to
be less than 2% of the available 96 GB DDR4 per node.

4) PSNAP: PSNAP is a System Noise Activity Program
from the Performance and Architecture Laboratory at Los
Alamos National Laboratory. It consists of a spin loop that
is calibrated to take a given amount of time (typically 1
ms). This loop is repeated for a number of iterations. The
actual time each iteration takes is recorded. Analysis of those
times allows one to quantify operating system interference
or noise. Details on how the test is designed and tar file with
the benchmark can be obtained from NERSC [2]. PSNAP
was intended to run on the entire system and was executed
on all the available Phase 2 nodes with 68 MPI tasks per
node. The maximum percentage slowdown at a core was
measured to be 0.244%.

5) STREAM: STREAM is a simple, synthetic benchmark
designed to measure sustainable memory bandwidth (in
MB/s) and a corresponding computation rate for four simple
vector kernels. The version used for the Trinity benchmark is
the OpenMP-enabled version of STREAM and can be down-
loaded from [2]. The measured STREAM Triad performance
for DDR on the KNL node was measured at 90.237 GB/s.

6) OSU MPI Message Benchmarks: The OSU Micro-
Benchmark suite is a collection of independent MPI mes-
sage passing performance micro-benchmarks developed and
written at Ohio State University. It includes traditional
benchmarks and performance measures such as latency,
bandwidth, and message rate.

Point-to-point bandwidth, latency, and message rate
benchmarks were run. Figure 8 shows the uni- and bi-
directional bandwidth between a pair of tasks on two nodes
for Phase 1 and Phase 2. Single rank bandwidth is lower due
to increased latency from the PCIe interface to memory on

Figure 8. OMB node-to-node MPI bandwidth.

Figure 9. MPI Allreduce latency on 1,024 nodes.

KNL. Latency is increased compared to HSW mostly due to
the slower scalar processor on KNL. Figure 9 shows the MPI
collective Allreduce latency as function of message size
on a run using 69,632 MPI tasks on 1,024 nodes of Phase
2. The 8 byte latency on 1,024 nodes (69,632 MPI tasks)
was measured to be 246 microseconds and it is considerably
higher than the 28 microseconds reported for Phase 1 [1]
when run on close to 9,390 (300,480 MPI tasks) Haswell
nodes.

IV. CONCLUSIONS

This paper documents the year that ACES and Cray
performance teams spent optimizing and running the various
Acceptance applications for Phase 2. This paper’s goal is
to disseminate the plethora of information collected that
is relevant to the broader community. A list of observed
trends from the work performed on the CI, SSP, and micro-
benchmark applications to achieve their desired performance
is provided below.

∙ KNL’s quad/cache mode is a good-performing, general-
purpose mode for applications who have not yet directly

addressed the MCDRAM/DDR4 memory hierarchy
present. For example, “early” Qbox testing focused
on the different KNL modes utilized a 2 node test
case and came to a similar conclusion. Specifically,
the wall time for this test case, in seconds, was 84.8
for snc2/cache, 75.5 for snc4/cache, 56.2 for quad/flat,
35.9 for snc2/flat, 31.7 for quad/cache, and 31.3 for
quad/equal.

∙ KNL’s quad/flat mode is an excellent mode to use if the
entire simulation will fit in MCDRAM. In this scenario,
it will be as performant as possible and it will have less
run-to-run variation than quad/cache.

∙ The optimal compiler for KNL varies between Intel and
Cray and is dependent upon the application. It should
be noted that Intel recommends using version 17 (or
later) of their compiler suite for KNL. All applications
discussed herein focused on version 16 since 17 was
not released when the acceptance effort began.

∙ Static linking, more often than not, achieves better
performance than dynamic linking. In some cases, e.g.,
Qbox in Table VII, it is much better performance.

∙ Huge pages typically provides a performance increase
and should be investigated for each application.

∙ Grid ordering improves performance for many ap-
plications and should also be investigated for each
application, e.g., miniGhost in Table XII.

∙ Hybrid parallelism can improve performance over MPI
everywhere on KNL, however Cray’s MPICH imple-
mentation on Trinity scales remarkably well and can be
used in the interim while developing hybrid parallelism
within an application. It is important to closely monitor
application communication patterns as they begin to
scale up to ensure that there are a minimum number
of point-to-point connections made to minimize MPI
buffers; this is alleviated with hybrid parallelism.

∙ Core specialization, although not mentioned earlier,
was used for the bulk of all simulations. Core spe-
cialization pins the OS to specific and, preferably,
unused cores to minimize OS noise and interference
with running applications. For these cases, enabling this
increased performance, decreased run-to-run variability,
or both. This option is enabled by the Cray aprun
command line argument --specialized-cpus, or
its shortened version -r.

ACKNOWLEDGMENTS

The authors would like to thank the entire Trinity Ac-
ceptance Team from ACES and Cray for their help and
support in making this work possible through supporting
late-night dedicated machine access, troubleshooting awk-
ward behavior, and providing forward-thinking feedback.
The authors are also grateful to Micheal Glass, Stephen
Kennon, Paul Lin, Simon Hammond, Greg Sjaardema,
David Glaze, Kendall Pierson, Mark Pagel, Mark Hoemmen,

Michael Heroux, and Robert Hoekstra for their assistance
with investigating, and developing eventual solutions for, the
Nalu/MPI OOM issue. Additionally, the authors are thankful
to Douglas Doerfler, Katerina Antypas, and Brian Austin
from NERSC for their collaboration.

REFERENCES

[1] M. Rajan, N. Wichmann, R. Baker, E. W. Draeger, S. Domino,
C. Nuss, P. Carrier, R. Olson, S. Anderson, M. Davis, and
A. Agelastos, “Performance on Trinity (a Cray XC40) with
Acceptance Applications and Benchmarks,” in Proc. Cray
User’s Group, 2016.

[2] “NERSC-8 / Trinity Benchmarks.” [On-
line]. Available: https://www.nersc.gov/users/
computational-systems/cori/nersc-8-procurement/
trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/

[3] “CrayDoc 4.5.” [Online]. Available: http://docs.cray.com/
relnotes/

[4] D. Doerfler, M. Rajan, C. Nuss, C. Wright, and T. Spelce,
“Application-Driven Acceptance of Cielo, an XE6 Petascale
Capability Platform,” in Proc. Cray User’s Group, 2011.

[5] M. Rajan, C. T. Vaughan, D. W. Doerfler, R. F. Barrett, P. T.
Lin, K. T. Pedretti, and K. Scott Hemmert, “Application-
driven analysis of two generations of capability computing:
the transition to multicore processors,” Concurrency and
Computation: Practice and Experience, vol. 24, no. 18, pp.
2404–2420, 2012. [Online]. Available: http://dx.doi.org/10.
1002/cpe.2830

[6] Domino, S., “Sierra Low Mach Module: Nalu Theory Manual
1.0,” Sandia National Laboratories, Albuquerque, New Mex-
ico 87185 and Livermore, California 94550, Technical report
SAND2015-3107W, 2015.

[7] “NaluCFD/Nalu: a generalized unstructured massively
parallel low Mach flow code designed to support a
variety of energy applications of interest (most notably Wind
ECP).” [Online]. Available: https://github.com/nalucfd/nalu

[8] “NaluRtest/nightly/milestoneRun at master.” [On-
line]. Available: https://github.com/NaluCFD/NaluRtest/tree/
master/nightly/milestoneRun

[9] A. M. Agelastos and P. T. Lin, “Simulation Information
Regarding Sandia National Laboratories’ Trinity Capabil-
ity Improvement Metric,” Sandia National Laboratories, Al-
buquerque, New Mexico 87185 and Livermore, California
94550, Technical report SAND2013-8748, October 2013.

[10] R. S. Baker and K. R. Koch, “An Sn Algorithm for the
Massively Parallel CM-200 Computer,” Nuclear Science and
Engineering, vol. 128, no. 3, pp. 312–320, Jan 1998.

[11] F. Gygi, “Architecture of Qbox: A scalable first-principles
molecular dynamics code,” IBM Journal of Research and
Development, vol. 52, no. 1.2, pp. 137–144, Jan 2008.

[12] “Qbox code.” [Online]. Available: http://qboxcode.org

[13] “SSP.” [Online]. Available: https://www.nersc.gov/
users/computational-systems/cori/nersc-8-procurement/
trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/ssp/

https://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/
https://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/
https://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/
http://docs.cray.com/relnotes/
http://docs.cray.com/relnotes/
http://dx.doi.org/10.1002/cpe.2830
http://dx.doi.org/10.1002/cpe.2830
https://github.com/nalucfd/nalu
https://github.com/NaluCFD/NaluRtest/tree/master/nightly/milestoneRun
https://github.com/NaluCFD/NaluRtest/tree/master/nightly/milestoneRun
http://qboxcode.org
https://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/ssp/
https://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/ssp/
https://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/ssp/

	I Introduction
	II Trinity Architecture
	III Acceptance Tests' Performance Results
	III-A ASC Application Capability Improvement (CI)
	III-A1 SNL's Nalu
	III-A2 LANL's PARTISN
	III-A3 LLNL's Qbox
	III-A4 Phase 2 CI Performance Summary

	III-B Sustained System Performance (SSP) Suite
	III-B1 miniFE
	III-B2 miniGhost
	III-B3 AMG
	III-B4 UMT
	III-B5 SNAP
	III-B6 miniDFT
	III-B7 GTC
	III-B8 MILC
	III-B9 Phase 2 SSP Performance Summary

	III-C Mini Apps Run at Extra-Large Scale
	III-C1 miniFE
	III-C2 miniGhost
	III-C3 AMG
	III-C4 UMT
	III-C5 SNAP

	III-D Micro-benchmarks
	III-D1 HPCG
	III-D2 ZiaTest
	III-D3 mpimemu
	III-D4 PSNAP
	III-D5 STREAM
	III-D6 OSU MPI Message Benchmarks

	IV Conclusions
	Acknowledgments
	References

