
Lustre Lockahead: Early Experience and
Performance using Optimized Locking

Michael Moore, Patrick Farrell, Bob Cernohous
Cray, Inc.

St. Paul, MN, USA
mmoore,paf,bcernohous@cray.com

Abstract—Recent Cray-authored Lustre modifications known
as Lustre Lockahead show significantly improved write perfor-
mance for collective, shared-file I/O workloads. Initial tests show
write performance improvements of more than 200% for small
transfer sizes and over 100% for larger transfer sizes compared
to traditional Lustre locking. Standard Lustre shared-file locking
mechanisms limit scaling of shared file I/O performance on
modern high performance Lustre servers. The new Lockahead
feature provides a mechanism for applications (or libraries) with
knowledge of their I/O patterns to overcome this limitation by
explicitly requesting locks. MPI-IO is able to use this feature
to dramatically improve shared file collective I/O performance,
achieving more than 80% of file per process performance.
This paper discusses our early experience using Lockahead
with applications. We also present application and synthetic
performance results and discuss performance considerations for
applications that benefit from Lockahead.

Keywords-File systems; Lustre;

I. INTRODUCTION

POSIX I/O file access behavior is usually categorized as file-
per-process or single-shared-file. Historically, file-per-process
access has provided higher throughput than single-shared-
file access due to required file system overhead ensuring
consistency during shared write accesses. However, optimal
I/O throughput is never the only, and rarely the primary,
consideration when writing or using an application. Despite
the performance downside, shared files are widely used for a
variety of data management and ease of use reasons. To avoid
long I/O time caused by shared file performance an application
may reduce data output, checkpoint frequency, or number of
jobs.

Shared file performance characterization is largely specific
to each file system implementation and I/O library. This
work focuses on modifications to the Lustre file system for
applications using collective MPI-IO operations. A design and
implementation in Lustre and Cray MPI libraries to improve
shared file write performance by introducing a new Lustre
locking scheme is described in this paper. Given MPI-IO
allows requesting different file system lock modes via envi-
ronment variables this work provides a path for applications to
improve performance without application code modifications.
Code changes within Lustre and MPICH/ROMIO to support

This paper has been submitted as an article in a special issue of Concurrency
and Computation Practice and Experience on the Cray User Group 2017

Lustre Lockahead have been contributed back to the upstream
communities [1], [2].

This paper first describes application I/O behavior and
standard libraries used for shared file access. The current
Lustre shared file locking implementation is also described
to motivate the need for an improved locking mechanism.
Second, the implementation of Lustre Lockahead for collec-
tive MPI-IO operations is described for both the Lustre file
system and the collective MPI-IO library. Next, comparative
I/O performance of current file-per-process, independent and
collective shared file I/O is presented to evaluate the benefit of
this new locking method for Lustre. Finally, we describe early
experience using Lustre Lockahead for an application with
significant single-shared-file write performance requirements
negatively impacting application walltime. Using that experi-
ence we discuss evaluating and tuning other applications using
Lockahead to improve I/O performance.

A. Shared File Access Behavior

To understand the performance challenges of current single-
shared-file performance and I/O workloads that may benefit
from Lustre Lockahead a brief description of shared file
access behavior within POSIX and MPI-IO is warranted.
Although reading shared files is an important component of
some workloads it is not specifically addressed in this paper.
Many file system implementations, including Lustre, support
multiple simultaneous readers.

Single-shared-file application write behavior is typically
characterized as either

1) A single rank writing data to a shared file that all ranks
may subsequently read

2) All ranks are responsible for writing data to non-
overlapping segments within the shared file

Typically, a single rank writing data is used for small
write operations that are not significant contributors to overall
I/O time. All ranks in the application writing data to non-
overlapping segments, as depicted in figure 1 comprises the
bulk of shared file write transfers and the source of I/O
performance limitations as described in section II-A.

1) POSIX and independent MPI-IO: Applications using
standard POSIX (i.e. write) or independent MPI-IO calls
(i.e. MPI_File_write) will generate I/O calls to the un-
derlying file system for each application call on the executing

1

0 EOF

Logical File

Layout

OST 0

Lustre

Layout

Application

1 MB block
 of data

1 MB
 Lustre Stripe POSIX Write

Logical placement

within file

OST Object

OST 1 OST 2 OST 3 OST 4 OST 5

Rank originating MPI-IO write

Fig. 1. POSIX and Independent MPI-IO shared file access pattern

processing elements (PE) 1. Access using these interfaces
typically leads to significant contention as individual ranks
attempt to write segments that are adjacent, although non-
overlapping as depicted in figure 1. In specific cases, where
guarantees of non-overlapping segments are present for a
specific file, the optimal and safe locking behavior would be
no locks at all.

2) Collective MPI-IO: In order to address several is-
sues with shared file access, one being artificial write con-
tention, many applications use MPI-IO collective calls (i.e.
MPI_File_write_at_all). Collective MPI-IO calls al-
low the MPI library to organize write requests into more
optimal requests to the underlying file system using a scheme
known as collective buffering. A full review of previous work
relating to MPI-IO collective operations is beyond the scope
of this paper but many issues are highlighted in [3], [4], [5].
Within the context of locking for large, strided write accesses
we focus on the collective buffering feature of collective
MPI-IO operations. Collective buffering allows a specific set
of ranks (aggregators) to be responsible for performing I/O
requests to the underlying POSIX file system for a specific
set of data as depicted in figure 2. The benefit of assigning
specific ranks to specific sets of segments within a file, from
a performance perspective, is allowing a single aggregator to
be responsible for all data on a single OST. If the number of
aggregators matches the number of OSTs in the file system, the
I/O pattern to the underlying POSIX file system is equivalent
to a file-per-process workload with a single file per OST 2.

3) Lustre Group Locking: A alternate locking method exists
in Lustre currently, known as Group Locking [6], which re-
quests Lustre to no longer acquire write locks. By enabling this
locking mode on a file the application assumes responsibility
for maintaining consistency of the file since the file system is

1For a single or multiple PE on a single compute node any file system
client-side caching behaviors are still present

2Although we’re accessing a shared file, each lock requested by a Lustre
client is OST-specific so only one aggregator is requesting locks per OST
using the current locking method

0 EOF

Logical File

Layout

OST 0

Lustre

Layout

Application

MPI-IO Write
1 MB block
 of data

1 MB
 Lustre Stripe

POSIX Write

Logical placement

within file

OST Object

Fig. 2. MPI-IO Collective Buffering shared file access pattern

no longer providing those guarantees. Although this technique
addresses all write locking performance concerns it is not
possible for most applications to use since expected POSIX
consistency is violated. For this reason, collective MPI-IO
operations do not support using group locks in the presence
of independent I/O. Ensuring the consistency expected by
applications accessing a POSIX file system is the reason an
additional locking method that addresses both performance
and consistency was pursued.

B. Lustre Shared File Access Constraints

Lustre is a high performance network file system which
presents a (very nearly) POSIX compliant interface to the
clients. As such, it faces significant difficulties in maintaining
POSIX semantics around file updates from multiple clients.
Unlike the NFS close-to-open consistency model [7], the
POSIX consistency model requires that as soon as any I/O
operation completes from the perspective of user space, any
operations started after that must see the full results of that
operation.

Lustre implements this through a distributed locking model
under which a client doing an operation on a file is issued a
lock on an appropriate region of the file, and when a different
client performs a conflicting operation, the existing lock is
canceled. As part of lock cancellation, the client holding the
lock invalidates any read data, and pushes to the server all
writes covered by the lock.

This enables local caching while maintaining POSIX se-
mantics, but it has costs. In particular, only one client can
hold a write lock on a particular range of a file at a time. For
complex I/O patterns like strided I/O, this poses a challenge.
In the case of Lustre and MPI I/O, the cost of dealing with
this pattern can be significant. The next section will explain
in detail the existing Lustre data locking, what problems it
causes, and how Lockahead can use knowledge of the I/O
pattern to alleviate this.

2

II. LUSTRE LOCKAHEAD

A. Lustre Locking Behavior

Lustre’s distributed locking (the locking which mediates
conflicts between clients) is called the Lustre Distributed Lock
Manager (LDLM). LDLM locking is the key to how Lustre
implements a single globally visible POSIX file system with
standard semantics while allowing updates from many clients
at once. LDLM has been described extensively elsewhere so
we will limit ourselves to very specific aspects of its behavior
[8]. It is enough to know that LDLM locks, their conflicts, and
cancellation behavior serve to implement a single consistent
view of files being modified by multiple clients.

Two general notes regarding the following description
1) Where not otherwise specified, we are talking about

write locks, which cannot overlap.
2) Where not otherwise specified, this discussion assumes

a singly striped file. The issues discussed are per stripe,
but the language required to explain them is greatly
simplified if we limit ourselves to one stripe at a time.

When a client accesses a file, it looks for an LDLM lock
on the part of the file it wants to access. If it does not already
have such a lock, it sends a request to the OST (Object Server
Target, a Lustre data target) which contains that part of the
file. (If the region of the file spans multiple OSTs due to
striping, the client will request locks from each OST.) The
client requests a lock on only the byte range which it is actively
trying to read or write. The client is guaranteed to get a lock on
at least this byte range, because this is necessary to complete
the I/O request. Once the client has received the required lock,
it performs the actual I/O. Notice that a lock request adds a
network round trip delay to that I/O.

Returning to the lock request, the server can return a lock
on a larger byte range than the client requested, and generally
grants the largest lock possible. If there are no conflicting
locks, this will be a lock on the whole file. In general this
is excellent behavior, because a client will usually continue
accessing other areas of the file, and if the required lock is
already available, the lock request can be avoided.

This behavior is problematic in the case of multiple writers
to a single file. Multiple writers to a single file generally use
the strided pattern where writers alternate blocks of the file.
In a simple two writer example, writer one would write block
zero, then block two, etc., while writer two would write block
one, block three, etc. Critically, in this pattern, different writers
never write to the same block/byte range of a file, and so they
should be able to proceed in parallel. Unfortunately, the default
Lustre locking optimization behavior prevents this.

Each write operation requests a lock on only the bytes
necessary to complete that operation, but when the first write
lock request is made, there are no locks on the file. Therefore,
the server extends the lock to cover the whole file. Then
the second write lock request arrives, and it encounters a
conflicting lock. The server must then contact the holder of
that lock and call back (i.e. cancel) that lock. Once that
lock is canceled, the server processes the second lock request

C1: Request Lock (0)

O1: Grant Lock (C1/0:EOF)

C1: Write Stripe (0)

C2: Request Lock (1)

O1: Revoke Lock (C1/0:EOF)

O1: Grant Lock (C2/1:EOF)

OST: operation

(client / block start : block end)

Client: operation (block)

C2: Write Stripe (1)

C1: Request Lock (2)

O1: Revoke Lock (C2/1:EOF)

O1: Grant Lock (C1/2:EOF)

C1: Write Stripe (2)

End of File (EOF)

Fig. 3. Default Lustre locking shared file lock conflicts

and sees that there are no locks on the file. It then grants
a full file lock to the client which made the second write
request. As illustrated in figure 3 this continues throughout
write operations, not only serializing the clients but also adding
significant latency. This is so severe that two or more writers
tend to perform worse than one.

The obvious solution is to disable lock expansion, which
allows parallelism between multiple clients. However, this has
the effect of adding the extra round trip time for a lock request
to every write operation. Testing shows this to be worse than
the status quo [9].

This means there are in effect two problems to be solved:
1) Serialization due to false lock conflicts.
2) The latency overhead of the lock requests required to

perform our I/O.
Lockahead solves the first by allowing user space to request
locks on specific extents separately from performing I/O (The
server is not allowed to expand these locks). If an application
(or library such as MPI I/O) knows the I/O pattern it will use,
it can use this to avoid false conflicts by requesting exactly
the locks it needs.

Lockahead solves the second by issuing those requests asyn-
chronously and in parallel, using the same network daemons
which handle most Lustre network operations. This means in
effect that the round-trip delays for all of the lock requests
can be overlapped, making for a total delay comparable to the
time for one request.

Implementing this in Lustre required creating a user space
interface for the LDLM lock request mechanism, separate
from the requests automatically created as part of I/O. It
also required adding an LDLM level flag to tell the server
not to expand the lock beyond the requested extent. Creating
the possibility of locks not explicitly associated with I/O

3

had interesting implications for the methods Lustre uses to
determine file size, but a detailed discussion of those issues is
out of scope for this paper.

For those wishing to know more, internal implementation
details are available in the references cited immediately below.
Of particular interest are the changes required to handle file
size efficiently, referenced in those presentations, and found in
ofd_dlm.c in the Lustre source [9] , [10], [11]. The code
itself is available [12].

B. User space Interface and MPI-IO

The user space interface for Lockahead is either, in current
Cray Lustre clients, a dedicated ioctl, or in Lustre 2.10 (release
estimated in summer 2017), the ladvise interface. In either
case, the interface requires a description of the locks to be
requested, in to a structure defined by the Lustre headers. The
description of a lock is three parts:

1) Lock mode (read or write)
2) Start (file offset, bytes)
3) End (file offset, bytes)
All of these should be self-explanatory. User space provides

a count and an array of these descriptions, then Lustre makes
lock requests as specified in the descriptions. The result of
each request is stored in a location in the description structure.
Note that if a request results in an actual lock request to the
server, we cannot provide the status through this interface.
This is because those requests are made asynchronously, and
waiting for the results would defeat the utility of this interface
3.

MPI-IO, as previously described, collects the data to be
written to the file system and only a few aggregators will make
the POSIX calls to write the data. MPI-IO uses information
from the file system to setup a non-overlapping I/O pattern
so that each aggregator writes to different sections of the
file. For Lustre, it’s a simple algorithmic assignment –with
N aggregators each aggregator n = 0..N-1 starts at the n stripe
and locks every Nth stripe from there.

With this pattern in Lustre, each aggregator optimally writes
to different stripes and different OSTs when possible. MPI-IO
expects that this I/O pattern will enable the aggregators to be
able to proceed with parallel non-conflicting writes. But as
previously described, Lustre servers often return locks larger
than the requested byte range which then cause contention and
must be canceled for the next aggregator’s lock requests.

After all aggregator locks are issued and resolved, and the
data is written, an analysis of the Lustre file locks remain-
ing would show the expected ideal pattern where individual
aggregators lock non-overlapping stripes. But creating this
pattern of locks was a slow, often serialized and contentious
process. With Lustre Lockahead, MPI-IO can create this
pattern by request using the calculated offsets and lengths
for each extent that each aggregator expects to write. MPI-
IO collective aggregators are guaranteed not to write to any

3The best simple example of both interfaces are the unit tests written for
them [13], [14]

other aggregator’s locked extents. Ideally this eliminates all
lock contention and lock canceling.

There is a limitation to using Lustre Lockahead in MPI-
IO. Lustre Lockahead is implemented as an array of byte
offsets and lengths called extents. MPI-IO has to predict how
many extents and ranges to lock ahead of the writes. Currently
MPI-IO uses Lockahead assuming that the application will
write from the beginning of the file and proceed in a mostly
sequential pattern through the file. So initially, for N aggrega-
tors, MPI-IO starts locking stripes 0 through N up through a
configurable limit which currently defaults to 500. Aggregator
0 locks every Nth stripe from 0 to 499. Aggregator N locks
every Nth stripe from N to N+499.

If MPI-IO predicts the wrong range of extents and a write
occurs before or after the locked extents, then a new range
of extents must be locked and the overhead of requesting the
unused locks is potentially detrimental to overall performance.
As a result, an application that does I/O to widely scattered
or at random offsets is unlikely to benefit as much from
Lockahead.

III. I/O PERFORMANCE

A. Test Environment

Tests were performed on an XC30 with 252 compute nodes
connected to a 12 SSU Sonexion 2000 which contains 24
OSSes and OSTs with approximately 1.4 PiB in capacity. The
XC compute node image was based on CLE 5.2 UP04 but
included a custom Lustre client, version 2.7, in order to support
the Lockahead. Lustre client version 2.7 is available in CLE
6.0. The Sonexion 2000 was running NEO 2.0 SU23 with a
special patch to address a specific issue related to Lockahead
for large aggregator-per-OST tests. Cray MPT version 7.6.0
pre-release was used in testing. The minimum required Cray
software versions to support Lustre Lockahead are CLE 6.0
with Lustre Client 2.7.1 and Cray MPT 7.4.0. The upcoming
release of NEO 2.0 SU24 is expected to contain the patch used
in testing.

The system used for testing is primarily sized for I/O testing.
For that reason it has an atypical node memory to storage
ratio compared to many customer environments. The compute
nodes are Ivy Bridge processors with 64 GB of memory per
compute node As mentioned above, the file system under test
is a 12 SSU Sonexion 2000. This provides a compute node
to OST ratio of 9.3 : 1 or, using another metric, expected file
system throughput allows all nodes to write memory to stable
storage in under 3 minutes. There are, as designed, adequate
compute nodes to achieve maximum file system performance
but this can provide a skewed view of typical application
performance. For synthetic I/O tests all OSTs are used. For
application performance measurements the number of SSUs
is varied to provide a range of compute to storage resource
ratios.

B. IOR

IOR was used as a synthetic benchmark to measure I/O
performance. A fixed amount of data is written for each test

4

for a single iteration. File-per-process (FPP) tests use balanced
file counts per OST and the Lustre stripe size is 1 MiB and
file stripe count is 1. All shared file tests are striped across
all OSTs (24) and the stripe size is set to the transfer size.
Additionally, shared file tests set the IOR block size equal
to the IOR transfer size to more accurately simulate strided
access patterns.

 0

 20

 40

 60

 80

 100

1 4 16 64 256

G
B

/s

Transfer Size MiB

IOR Write Performance of File-Per-Process (FPP) and Single-Shared-File (SSF)
8 ranks per OST, 24 OSTs, 1 PPN

FPP, POSIX
FPP, MPI-IO
SSF, POSIX

SSF, MPI-IO, Indep.
SSF, MPI-IO, Coll., Default
SSF, MPI-IO, Coll., Group

Fig. 4. Comparison of existing file-per-process and shared file performance

To begin, we illustrate the current performance of typical
file-per-process and shared file I/O performance in figure 4.
The overhead imposed for POSIX consistency on shared
writes, in both shared POSIX and independent MPI-IO tests,
is significant. The gap between file-per-process and shared file
collective MPI-IO is the challenge that motivated the need for
strided locking as implemented in Lockahead.

Collective MPI-IO tests in figure 4 used the same to-
tal number of ranks as other tests but only used a single
aggregator per OST since that is the standard number of
aggregators used for collective MPI-IO today. Collective MPI-
IO performance is consistent regardless of the transfer size
which illustrates that large transfer sizes are constrained by the
single aggregator, relative to independent I/O. Smaller transfer
sizes tend to benefit from the reduced lock contention provided
by collective MPI-IO. However, for these specific tests, shared
file performance is typically 20% and not better than 65% of
file per process performance 4.

As described in section I-A1 and section II-A, POSIX and
independent MPI-IO, in the context of Lustre, are problematic
due to multiple writers per OST causing false lock sharing.
Figure 5 illustrates the limitated performance for file-per-
process IOR tests with a single writer per OST and the similar
performance achieved by POSIX and independent MPI-IO
IOR tests when lock conflicts are avoided by a single rank
accessing each OST. Single-shared-file tests are within 10%
of POSIX and MPI-IO file-per-process performance excluding
the anomaly of POSIX single-shared-file 64 MB transfers.
However, collective MPI-IO performance is significantly lower
than file-per-process and independent single-shared-file perfor-

4These tests do not represent optimal shared file performance, rather, a
comparable test to illustrate factors influencing shared file performance

 12

 14

 16

 18

 20

 22

 24

 26

 28

1 4 16 64 256

G
B

/s

Transfer Size MiB

IOR Write Performance Single Rank per OST, 24 OSTs, 1 PPN

FPP, POSIX
FPP, MPI-IO
SSF, POSIX

SSF, MPI-IO, Indep.
SSF, MPI-IO, Coll., Default Lock

SSF, MPI-IO, Coll., Lockahead

Fig. 5. Comparison of single writer per OST file-per-process and single-
shared-file performance

mance due to the limited number of ranks performing MPI-IO
collective buffering and ranks issuing collective MPI-IO calls.
A total of one rank per OST for collective MPI-IO workloads
is not a meaningful workload but is intended to illustrate the
role of locking and lock expansion relative to file-per-process
workloads.

The collective MPI-IO write performance in figure 6 depicts
a typical single-shared-file workload –192 compute nodes with
4 processes per node (PPN). The default locking method shows
that for small, ≤ 4MB transfer sizes, using a single aggregator
avoids lock contention that can limit performance. Transfer
sizes ≥ 16MB achieve increased performance with multiple
aggregators per OST due to the larger Lustre stripe size and
MPI-IO aggregators issuing striped sizes write requests. The
overhead of lock contention is mitigated by increasing the size
of the locks.

 0

 20

 40

 60

 80

 100

1 4 16 64 256

G
B

/s

Transfer Size MiB

IOR MPI-IO Write Performance 1 and 8 Aggregators per OST
24 OSTs, 192 nodes, 4 PPN

Default, 1 aggr.
Default, 8 aggr.

Group, 1 aggr.
Group, 8 aggr.

Lockahead, 1 aggr.
Lockahead, 8 aggr.

Fig. 6. Comparison of MPI-IO performance for Lustre locking schemes

As an evaluation of the Lustre Lockahead implementa-
tion through MPI-IO figure 6 shows that Lustre Lockahead
achieves similar performance to group locking, where no write
locks are required, see section I-A3 for additional details.
Lockahead with collective MPI-IO is able to asynchronously
acquire the necessary write locks, prior to when the write
is issued, to avoid both lock acquisition latency and lock

5

contention present in default Lustre locking.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 4 16 64 256

G
B

/s

Transfer Size MiB

IOR HDF5 Write Performance 192 nodes, 24 OSTs, 8 aggregators per OST

Default, 1 PPN
Default, 16 PPN

Lockahead, 1 PPN
Lockahead, 16 PPN

Fig. 7. Comparison of HDF5 Write Performance using Default and
Lockahead Locking Schemes

The comparative performance of default and Lockahead
locking in Lustre for a higher-level I/O library is shown in
figure 7. As mentioned, HDF5 requires small, independent
writes so group locking is possible. The IOR HDF5 results
include tests using one and 16 processes per node (PPN) with
a fixed count of 192 nodes which illustrates that collective
MPI-IO with collective buffering is able to achieve higher I/O
throughput when more processes are making MPI-IO calls for
a given number of aggregators5. Since the Lustre stripe size
is modified to match the transfer size the independent effect
of transfer size and Lustre stripe size cannot be inferred from
these tests.

Synthetic I/O benchmarks demonstrate the improvement
Lockahead can provide single-shared-file I/O write perfor-
mance compared to default locking. Next, we evaluate a
candidate application and describe our early experience using
Lockahead.

IV. APPLICATION PERFORMANCE EARLY EXPERIENCE

Selecting an application to use for evaluating Lockahead
required using prior knowledge of an application’s I/O work-
load. Given previous investigations into I/O performance, The
Weather Research & Forecasting Model, WRF, was selected as
the application for early experience testing[15], [16]. Study of
a specific weather system that has significant I/O requirements
was selected.

A. WRF

1) I/O Workload: WRF was configured to use Parallel
NetCDF (PNetCDF) [17] for relevant input and output files.
The application testing focused on the write time of forecast
history (auxhist) and restart (wrfout) files. The communi-
cation, computation, and file read time are collectively referred
to as other in subsequent figures. The use of PnetCDF allows
testing Lockahead performance only modifying the MPI-IO
hints specified in the job script.

5A maximum of one rank per node is used as an MPI-IO aggregator

This particular WRF workflow, from the Arctic Region
Supercomputing Center benchmark suite [18] accesses a 77
GB input file and generates a total of 11 history files of
28 GB each and 10 restart files of 81 GB each. Depending
on the I/O performance the application walltime is between
15 and 60 minutes. The I/O requirements for a WRF work
flow is dependent on the specific data set and data output
requirements; this particular work flow is intentionally I/O
intensive but is not performing an unrealistically excessive
amount of I/O.

2) Application Environment Changes: Minimal changes
were required to specify the Lustre locking mode and number
of aggregators per OST to use. MPI-IO hints were specified
for write locking mode and aggregators per OST. The number
of OSTs to use for a given test were specified by setting Lustre
striping parameters on the output in the job script. Addition-
ally, a Lustre pool was assigned to the directory matching the
desired number of OSTs to ensure the pairs of OSTs were
selected from SSUs. For that reason, the striping factor was
not specified in the MPI-IO hints and the Cray MPI library
selected striping attributes based on the directory striping in-
formation. The total number of requested aggregator ranks for
a given file is striping factor ∗ cray cb nodes multiplier
and, by default, MPICH attempts to scatter aggregator ranks
when selecting placement. The environment variable used
to specify MPI-IO hints was MPICH MPIIO HINTS. Each
output file expression for auxhist and wrfout specified
the following two attributes:
• cray_cb_write_lock_mode
• cray_cb_nodes_multiplier

Application runs depicted in the figures use one of three
cray_cb_write_lock_mode values: ”0” for default lock-
ing, ”1” for group locking, or ”2” for Lockahead lock-
ing. The string LOCKMODE is replaced with the appropri-
ate integer value for the environment variable . The string
AGGREGATOR_MULTIPLE is replaced with the integer of
the desired number of aggregator ranks per OST. The general
format of the environment variable used to specify MPI-IO
hints in the job script is specified in listing 1.

s e t e n v MPICH MPIIO HINTS ” w r f o u t ∗ : c r a y c b w r i t e l o c k m o d e =
LOCKMODE: c r a y c b n o d e s m u l t i p l i e r =AGGREGATOR MULTIPLE,
a u x h i s t ∗ : c r a y c b w r i t e l o c k m o d e =LOCKMODE:
c r a y c b n o d e s m u l t i p l i e r =AGGREGATOR MULTIPLE”

Listing 1. Example MPICH MPIIO HINTS environment variable

3) Application Runtime: The application run time is mea-
sured using the wall time as the total run time. The time
spent for writing each copy of the auxhist and wrfout
files is combined in the following figures. The remainder of
the walltime (compute, communication, I/O reading) is given
in the other segment. Across all tests, regardless of Lustre
locking scheme, the other time is relatively constant as
illustrated in figure 8. However, the wrfout and auxhist
time is relatively equal across all stripe counts using Lustre

6

Lockahead which indicates that, in this system, ≥ 4 OSTs
performs similarly to using all OSTs. In the case of default
locking, there are incremental improvements by striping the
single-shared-file output data over larger stripe counts. Shifting
the dominant time from I/O to computation or communication
allows for future application walltime reductions as other
system components, such as processors or memory, improve
in performance.

 0

 500

 1000

 1500

 2000

 2500

2 4 8 12 16 20 24 2 4 8 12 16 20 24

W
a
llt

im
e
 (

s
)

WRF Application Runtime Comparison, Optimal Aggregator Count

Number of OSTs
Default Locking

Number of OSTs
Lockahead Locking

auxhist
wrfout
other

Fig. 8. Comparison of WRF application run time using optimal aggregators
per OST

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

2 4 8 12162024 2 4 8 12162024 2 4 8 12162024 2 4 8 12162024

W
a
llt

im
e
 (

s
)

WRF Application Runtime Comparison, Lustre Lockahead

Number of OSTs Number of OSTs Number of OSTs Number of OSTs
1 Aggr. Per OST 4 Aggr. Per OST 8 Aggr. Per OST 16 Aggr. Per OST

auxhist
wrfout
other

Fig. 9. WRF run time evaluating effect of aggregators per OST using Lustre
Lockahead

Figure 9 depicts the performance for a range of aggregator
counts and OSTs to further investigate the effect of changing
aggregators per OST. Although the application other time
dominates overall run time, once an adequate number of
aggregators were used (8) the addition of more aggregators
per OST caused no reduced performance as would be typical
of default locking.

For this specific application, when using 4 OSTs, the single-
shared-file write I/O time using Lockahead is 20% of the time
using default locking (150 seconds compared to 743 seconds).
Assuming a standard computation to storage ratio, such as
192 nodes to 4 OSTs, and a similar weather system study, a
significant improvement of application walltime and storage
throughput utilization would be expected. In the next section

we discuss evaluating an application for use with Lockahead
and some of the possible parameters for optimizing Lockahead
for collective MPI-IO write workloads.

V. EVALUATING LOCKAHEAD FOR APPLICATION I/O
IMPROVEMENTS

In addition to the basic collective MPI-IO write opera-
tions and environment variable requirements to enable Lustre
Lockahead there are several factors that determine if a given
application using a given file system will experience decreased
application walltime. In this section we discuss evaluating
an application’s potential single-shared-file write performance
improvement for collective MPI-IO write operations and tun-
ing options to maximize single-shared-file write performance
with Lockahead.

A. Evaluating Potential Application Performance Improve-
ment

Potential improvement in throughput and application wall-
time using Lockahead for collective MPI-IO writes is deter-
mined by the number of ranks performing collective writes, the
number of ranks used as aggregators per OST, the total number
of collective writes, the size of collective writes and the
number of system writes or Lustre stripe size. If performing
application tests with Lockahead to determine application
walltime improvement is not possible, running the application
using default locking with Cray MPI-IO statistics and timers
enabled can provide an indication of potential improvement.

Adding the appropriate environment variables to the appli-
cation’s job script will enable collection and output of the
MPI-IO statistics. The MPI-IO statistic related environment
variables used in tests for this paper, and recommended for
investigation of MPI-IO behavior are given in listing 2.

e x p o r t MPICH MPIIO HINTS DISPLAY=1
e x p o r t MPICH MPIIO AGGREGATOR PLACEMENT DISPLAY=1
e x p o r t MPICH MPIIO STATS=1
e x p o r t MPICH MPIIO TIMERS=1

Listing 2. MPI-IO statistic reporting environment variables

+−−+
| MPIIO w r i t e a c c e s s p a t t e r n s f o r IOR HDF5
| i n d e p e n d e n t w r i t e s = 85
| c o l l e c t i v e w r i t e s = 196608
| i n d e p e n d e n t w r i t e r s = 84
| a g g r e g a t o r s = 192
| s t r i p e c o u n t = 24
| s t r i p e s i z e = 16777216
| sys tem w r i t e s = 196757
| s t r i p e s i z e d w r i t e s = 196544
| a g g r e g a t o r s a c t i v e = 0 ,0 ,0 ,196608 (1 , <=96 , >96 ,192)
| t o t a l b y t e s f o r w r i t e s = 3145728 MiB = 3072 GiB
| ave sys tem w r i t e s i z e = 16764511
| read−modify−w r i t e c o u n t = 0
| read−modify−w r i t e b y t e s = 0
| number o f w r i t e gaps = 18
| ave w r i t e gap s i z e = 642300800454

+−−+

Listing 3. Example IOR HDF5 write access pattern using default locking

7

+−−+
| MPIIO w r i t e a c c e s s p a t t e r n s f o r wr fou t d01
| i n d e p e n d e n t w r i t e s = 2
| c o l l e c t i v e w r i t e s = 638400
| i n d e p e n d e n t w r i t e r s = 1
| a g g r e g a t o r s = 64
| s t r i p e c o u n t = 4
| s t r i p e s i z e = 1048576
| sys tem w r i t e s = 82334
| s t r i p e s i z e d w r i t e s = 82091
| a g g r e g a t o r s a c t i v e = 177840 ,0 ,0 ,460560 (1 , <=32 , >32 ,64)
| t o t a l b y t e s f o r w r i t e s = 82192 MiB = 80 GiB
| ave sys tem w r i t e s i z e = 1046770
| read−modify−w r i t e c o u n t = 0
| read−modify−w r i t e b y t e s = 0
| number o f w r i t e gaps = 2
| ave w r i t e gap s i z e = 524284
| l o c k ahead e x t e n t c o u n t = 96000
| l o c k ahead w r i t e h i t s = 82204
| l o c k ahead w r i t e m i s s e s = 128

+−−+

Listing 4. Example WRF pNetCDF write access pattern

1) MPI-IO Access Pattern Statistics: MPI-IO stats and
timer output are written to the job’s standard error for each
accessed file. Initially, the write access pattern details can
be used to validate the intended MPI-IO hints were used.
Listing 3 was created by an IOR HDF5 write test using a
16 MiB stripe size, 24 OSTs, and 8 aggregators per OST.
Inspecting the attributes aggregators, stripe count,
and stripe size confirms that 192 aggregators 8 ∗ 24, 24
OSTs, and a 16 MiB Lustre stripe size were used.

Assuming the expected Lustre striping and aggregator at-
tributes are present, two other statistics provide an indica-
tion of the application’s potential collective MPI-IO write
performance improvement using Lustre Lockahead. First, the
number of collective writes represent the number of
MPI-IO writes that will be sent to aggregators which could
benefit from Lockahead. The independent write calls do not
benefit from Lockahead and can negatively impact collective
writes due to cancellation of Lockahead locks. Listing 3
represents a typical number of independent writes for an
HDF5 file. I/O libraries using MPI-IO typically have a small
number of independent writes near file open or close and cause
minimal lock cancellations.

Second, the aggregators active field shows how
many aggregators are active using 4 ”buckets”; 1 aggregator,
> 1 and ≤ 50% of aggregators, > 50% and < all aggregators
or all aggregators were active issuing I/O requests. A higher
count of more aggregators active indicate that adequate data
is available to write to the file system and aggregators are
active writing the data. For IOR, all aggregators are typically
active since the ranks are only issuing I/O. Applications will
report less idealized aggregator active statistics such
as listing 4 collected from a WRF test in section IV. Early
experience evaluating applications for use with Lockahead
indicates that a good candidate application will have some
counts in the all aggregators bucket.

Finally, although it requires enabling Lockahead, the statis-
tics section includes counters specific to Lockahead behavior.
The counters for lock ahead write hits and lock

+−−+
| MPIIO w r i t e by phases , w r i t e r s only , f o r wr fou t d01
| min max ave
| −−−−−−−−−− −−−−−−−−−− −−−−−−−−−−
| f i l e w r i t e t ime = 50 .28 71 .02 61 .69
|
| t ime s c a l e : 1 = 2∗∗9 c l o c k t i c k s min max ave
| −−−−−−−−−− −−−−−−−−−− −−−−−−−−−−−−−
| t o t a l = 621076237
|
| i m b a l a n c e = 13702 17650 15896 0%
| l o c a l compute = 2904270 3954987 3344989 0%
| w a i t f o r c o l l = 27883170 38036293 33823494 5%
| c o l l e c t i v e = 216151 311404 265380 0%
| exchange / w r i t e = 432356 484632 463949 0%
| d a t a send = 52859942 101826753 75238921 12%
| f i l e w r i t e = 265243604 374646356 325433382 52%
| o t h e r = 154855180 212509150 181886450 29%
|
| d a t a send BW (MiB / s) = 80 .916
| raw w r i t e BW (MiB / s) = 1332 .366
| n e t w r i t e BW (MiB / s) = 698 .137

+−−+

Listing 5. WRF wrfout timer statistics for writers using default Lustre locking

+−−+
| MPIIO w r i t e by phases , w r i t e r s only , f o r wr fou t d01
| min max ave
| −−−−−−−−−− −−−−−−−−−− −−−−−−−−−−
| f i l e w r i t e t ime = 2 . 9 0 6 . 3 1 4 . 7 2
|
| t ime s c a l e : 1 = 2∗∗7 c l o c k t i c k s min max ave
| −−−−−−−−−− −−−−−−−−−− −−−−−−−−−−−−−
| t o t a l = 874687367
|
| i m b a l a n c e = 52981 69529 62477 0%
| l o c a l compute = 11564823 15692947 13303061 1%
| w a i t f o r c o l l = 13154931 21812791 19040471 2%
| c o l l e c t i v e = 866203 1252425 1064713 0%
| exchange / w r i t e = 1748750 1934323 1870153 0%
| d a t a send = 69631810 145128634 97582694 11%
| l o c k mode = 294934 423117 365912 0%
| f i l e w r i t e = 61251755 133053597 99598729 11%
| o t h e r = 524346902 724441695 635362122 72%
|
| d a t a send BW (MiB / s) = 249 .554
| raw w r i t e BW (MiB / s) = 17413 .726
| n e t w r i t e BW (MiB / s) = 1982 .863

+−−+

Listing 6. WRF timer statistics for writers using Lustre Lockahead

ahead write misses give a direct indication of how
effective Lockahead was in acquiring locks for writes prior
to when they were necessary for writes.

2) MPI-IO Timer Statistics: Additional MPI-IO statistics,
enabled using MPICH_MPIIO_TIMERS, were added in Cray
MPT 7.5.1. The timer statistics provide detail on how time
is spent by MPI-IO ranks and MPI-IO aggregators in the
various phases of MPI-IO library activities. For each file
accessed a section of statistics is generated for reads and
writes for all ranks and only writers (aggregators), list-
ing 5. For our purposes we focus on the percentage of time
spent between phases in the MPIIO write by phases,
writers only statistics.

In listing 5, where default locking is used, a majority of
the aggregator’s time was spent performing file writes (52%)
while only 11% of time was needed for sending data to
other aggregators for collective buffering. The imbalance in
time between data send and file write indicate that
improving file write performance could yield reduced time for
collective MPI-IO writes (and reduced application walltime).
The same statistics collected using Lockahead show an even
percentage of time (11%) for data send and file write.

MPI-IO statistics and timers provide an indication if an
application can benefit from improved I/O throughput using
Lockahead. An application using collective MPI-IO may not

8

write enough data to each OST, frequently issue independent
writes, or have several other behaviors that limit the actual
improvement from Lockahead. Beyond the I/O performance
improvement, it’s equally important to evaluate the amount
of time spent performing I/O relative to total application
walltime. As seen in section IV Lockahead greatly improved
the MPI-IO write portion of the application, reducing write
time to 20% of write time using default locking, but, the
computation and communication portion of the application
remained constant.

B. Lustre Lockahead Tuning

The synthetic benchmark results in section III and ap-
plication early experience in section IV evaluated the most
important tunings for an application with Lustre Lockahead.
The two major parameters are stripe count and number of
aggregators per stripe.

As depicted in figure 9, achieving optimal throughput re-
quires specifying adequate aggregators per OST. The optimal
number of aggregators is dependent on the performance of
the Lustre OSTs. For example, a Sonexion 1600 OST requires
fewer aggregators than a Sonexion 2000 OST. There is little
to no negative impact on I/O performance by using too many
aggregators per OST, however, there is also no benefit.

The minimum necessary stripe count is also an important
tunable for an application to specify. Figure 9 illustrates there
is no benefit to striping shared files beyond 4 OSTs. Although
there is no observed negative performance impact when using
more stripes on a dedicated system that may not hold true on
a shared system where other jobs are accessing other OSTs.

VI. CONCLUSION

The current locking methods available in Lustre limit single-
shared-file performance relative to file-per-process perfor-
mance and the capabilities of the underlying storage system. A
new locking scheme for Lustre was described and the Lustre
and Cray MPI-IO implementations were evaluated using syn-
thetic benchmarks and a real application. Synthetic benchmark
tests showed optimal single-shared-file performance within
10% of optimal file-per-process performance. Additionally,
single-shared-file performance using Lockahead was equiv-
alent to performance of single-shared-files using no write
locks (group locking). The importance of selecting Lustre
stripe count and aggregators per OST parameters in achieving
optimal write performance with Lockahead was discussed.
Finally, several values from MPI-IO statistic and timer output
were used to evaluate an application’s potential benefit from
Lockahead for single-shared-file output.

An application is able to gain benefits from Lockahead
by specifying MPI-IO hints through an environment variable
without other application changes. Any application using col-
lective MPI-IO, either directly or through an I/O library, can
leverage Lockahead in place of default locking. Generally,
if an application is spending a significant amount of time
performing single-shared-file writes it will likely benefit from
using Lockahead. However, the gains a specific application

will experience are dependent on a variety of application I/O
factors in addition to file system characteristics.

ACKNOWLEDGMENT

In memory of David Charles Knaak, a long time Cray
MPI-IO designer and engineer. His design for strided locking
was the basis and inspiration for what has now evolved into
Lustre Lockahead.

We would like to acknowledge the contributions to this
work of the following people
Bob Fielder for his manuscript input and WRF application
support including identifying and staging data sets, configuring
and sizing jobs on the test system used for data collection in
this paper, and explanations of WRF behavior.

Joe Glenski for his valuable feedback throughout the
process from proposal to presentation.

Peter Johnsen for his WRF application support including
early staging data sets, configuring and sizing jobs prior
to data collection for this paper, and explanations of WRF
behavior.

Norm Troullier for his valuable feedback on the manuscript.

Richard Walsh for his valuable feedback on the abstract
and manuscript.

9

REFERENCES

[1] (2017) Lustre. [Online]. Available: http://lustre.org/
[2] (2017) Mpich — high-performance portable mpi. [Online]. Available:

http://www.mpich.org/
[3] R. Thakur, W. Gropp, and E. Lusk, “Data sieving and collective i/o in

ROMIO,” in Proceedings of the The 7th Symposium on the Frontiers of
Massively Parallel Computation, ser. FRONTIERS ’99. Washington,
DC, USA: IEEE Computer Society, 1999, pp. 182–.

[4] K. Coloma, A. Ching, A. Choudhary, W. k. Liao, R. Ross, R. Thakur,
and L. Ward, “A new flexible MPI collective i/o implementation,” in
2006 IEEE International Conference on Cluster Computing, Sept 2006,
pp. 1–10.

[5] R. Latham, R. Ross, and R. Thakur, The Impact of File Systems on MPI-
IO Scalability. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004,
pp. 87–96.

[6] (2006) [lustre-devel] group locks design docu-
ment. [Online]. Available: https://thr3ads.net/lustre-devel/2006/05/
2056557-Group-locks-design-document

[7] (2001) Close-to-open cache consistency in the linux NFS client - draft.
[Online]. Available: http://www.citi.umich.edu/projects/nfs-perf/results/
cel/dnlc.html

[8] F. Wang, S. Oral, G. Shipman, O. Drokin, T. Wang, and I. Huang, “Un-
derstanding Lustre Filesystem Internals,” Oak Ridge National Lab., Na-
tional Center for Computational Sciences, Technical Report ORNL/TM-
2009/117, 2009.

[9] (2015) Shared file performance improvements LDLM lock ahead.
[Online]. Available: http://cdn.opensfs.org/wp-content/uploads/2015/04/
Shared-File-Performance-in-Lustre Farrell.pdf

[10] (2015) Shared file performance in Lustre: Challenges and solutions.
[Online]. Available: http://youtu.be/ITfZfV5QzIs

[11] (2015) Shared file performance improvements LDLM lock ahead
deep dive. [Online]. Available: http://wiki.lustre.org/images/2/2d/Lock
Ahead - Technical Discussion.pptx

[12] (2017) Lu-6179 llite: Implement ladvise lockahead. [Online]. Available:
https://review.whamcloud.com/#/c/13564/

[13] (2017). [Online]. Available: https://review.whamcloud.com/#/c/13564/
24/lustre/tests/lock\ ahead\ test.c

[14] (2017). [Online]. Available: https://review.whamcloud.com/#/c/13564/
56/lustre/tests/lockahead\ test.c

[15] T. Balle and P. Johnsen, “Improving i/o performance of the weather
research and forecast (WRF) model,” presented at CUG 2016, 2016.

[16] (2017) The weather research & forecasting model. [Online]. Available:
http://http://www.wrf-model.org/index.php

[17] (2017) Parallel netCDF. [Online]. Available: http://cucis.ece.
northwestern.edu/projects/PnetCDF/

[18] ARSC WRF benchmark suite. [Online]. Available: http://http://weather.
arsc.edu/BenchmarkSuite/

10

