
Toward Interactive Supercomputing at NERSC with Jupyter

Rollin Thomas, Shane Canon, Shreyas Cholia, Lisa Gerhardt, and Evan Racah
National Energy Research Scientific Computing Center, Lawrence Berkeley National Laboratory

Abstract—Extracting scientific insights from data increasingly
demands a richer, more interactive experience than traditional
high-performance computing systems historically have pro-
vided. We present our efforts to date to leverage Jupyter
for interactive data-intensive supercomputing on the Cray
XC40 Cori system at the National Energy Research Scientific
Computing Center (NERSC). Jupyter is a flexible, popular
literate-computing web application for creating “notebooks”
containing code, equations, visualization, and text. We explain
the motivation for interactive supercomputing, describe our
implementation strategy, and outline lessons learned along
the way. Our deployment will allow users access to software
packages and specialized kernels for scalable analytics with
Spark, real-time data visualization with yt, complex analytics
workflows with Dask and IPyParallel, and much more. We
anticipate that many users may come to rely exclusively on
Jupyter at NERSC, leaving behind the traditional login shell.

1. Introduction

Across nearly all scientific disciplines, researchers face
an explosion in data volume and velocity. This growth is
largely driven by technological advances that allow for faster
sampling rates and higher resolution in scientific detector
instrumentation, higher densities of detectors, reliable high-
capacity storage, and high-bandwidth networking for data
transfer.

Modern large-scale scientific experiments and simula-
tion codes produce vast amounts of data that far exceeds
the capacity of clusters and desktops typically close at
hand to the user-scientist. Just moving such data sets to
compute resources at a user’s home institution from the
lab or experiment site may be impractical, necessitating
remote-controlled data analytics and visualization capabil-
ities. These capabilities are centralized at high performance
computing (HPC) centers like the National Energy Research
Scientific Computing Center (NERSC)1.

HPC systems and supercomputers are usually shared
among a large number of users and this necessitates asyn-
chronous batch scheduling to manage access to compute
resources. Yet scientific insights often spring from interac-
tive, iterative exploration and analysis. A bridge between
these two modes of scientific computing is needed, enabling
“human in the loop” interactive exploration at Big Data
scales (thousands of cores and tens to hundreds of terabytes).

1. http://www.nersc.gov/

In this paper we outline our efforts to bridge the gap
between exploratory data analysis and HPC. Specifically,
we are working to leverage the Jupyter project2 to en-
able interactive data-intensive supercomputing on NERSC’s
Cray XC40 “Cori” system. We explain the motivation be-
hind interactive supercomputing, describe our implementa-
tion strategy and the process behind the development of that
strategy, and outline lessons learned along the way. These
findings should generalize to other supercomputing centers
and serve to further socialize interactive supercomputing
among users, support staff, and vendors.

Our work is part of a much larger effort to make interac-
tive supercomputing a reality at a number of supercomputing
sites. Experiences shared with us by staff at those sites and
the cooperation of Jupyter developers have been instrumen-
tal in our progress. We hope that our contribution provides
valuable insight and experiences in kind.

The outline of this paper is as follows. In Section 2 we
provide a brief background on Jupyter to orient the reader.
Section 3 describes our initial deployment of Jupyter as a
science gateway application. The subsequent expansion of
Jupyter to a dedicated node on Cori is described in Section 4.
Work in progress to support Jupyter on Cori compute nodes
appears in Section 5. In Section 6 we discuss the strategy we
developed over the course of our experiments with Jupyter,
lessons learned, and perspectives on serving the full range
of Jupyter user needs at NERSC. Section 7 concludes the
paper, describing our vision of Jupyter as an integral part of
how users interact with HPC at NERSC.

2. Background: Jupyter

Project Jupyter [2] evolved from the IPython project.
IPython itself began as an enhanced interactive Python
shell including advanced features like language introspec-
tion, syntax highlighting, history, tab-completion, access to
documentation and much more [3]. Over time, alternatives to
the IPython terminal application were developed, including
a graphical user interface based on Qt, and finally a web
application framework. These interfaces are centered around
the concept of a notebook document.

Notebooks are documents that contain both computer
code and rich text elements (paragraphs, equations, fig-
ures, widgets, links). They are human-readable documents
containing analysis descriptions and results but are also
executable documents for data analysis. Notebooks can be

2. http://jupyter.org/

http://www.nersc.gov/
http://jupyter.org/


Figure 1. Science gateway application deployment for Jupyter at NERSC.
JupyterHub, spawned notebook server processes and kernels all run in a
Docker container. The Docker container is hosted on a science gateway
“edge service” node at NERSC. Authentication to JupyterHub is handled
via LDAP. Part of the NERSC Global File system is exposed to users via
the notebook server. Notebook documents themselves are hosted by default
in the user’s global home directory.

shared between researchers, or even converted into static
HTML documents. As such they are a powerful tool for
reproducible research and teaching.

A notebook is associated with one or more computa-
tional engines called kernels. These kernels execute code
passed to them from a notebook process. When the Jupyter
project was spun off from IPython, IPython itself became
one of many kernels. A large number of kernels for a
number of languages and programming environments have
been developed to work with Jupyter.3

On a laptop or single-user workstation, a user typically
starts up the Jupyter notebook server application from the
command line and users a web browser on the same system
to author notebooks. JupyterHub [4] is a web application
that enables a multi-user “hub” for spawning, managing, and
proxying multiple instances of single-user Jupyter notebook
servers.

At NERSC, JupyterHub itself is run as a science gate-
way application. The hub itself runs as a web server pro-
cess inside a Docker container. This Docker container runs
on an edge services node (a node that provides external
services but lives within the NERSC network, and has
high-bandwidth connectivity to the HPC system). Users
authenticate to JupyterHub using their NERSC credentials.
Depending on the exact configuration, notebook and kernel
processes may be spawned within the Docker container, or
on an external server. Much of our work has centered on
mechanisms for spawning notebook and kernel processes
remotely without needing to invoke escalated privileges (e.g.
running processes as the super-user).

3. Jupyter as Science Gateway Application

Jupyter was first deployed in late 2015 and announced
to users for general usage in early 2016. Our initial deploy-

3. https://github.com/jupyter/jupyter/wiki/Jupyter-kernels

ment, leveraging existing NERSC science gateway infras-
tructure (edge services hosting web portals, web applica-
tions, REST APIs and data for science users) is depicted in
Figure 1.

In this configuration, the user authenticates via the
JupyterHub web application running in a Docker4 container
on a science gateway node. Docker is an elegant solution
for hosting Jupyter, as it provides portability and scalability.
In addition, we have come to manage our Jupyter images
using Dockerfiles, which provide self-documentation and
versioning. The Rancher5 system for container management
and deployment has proved very useful for monitoring and
orchestrating container resources at NERSC in general, and
we plan to control all Jupyter image deployments through
Rancher going forward.

NERSC user credentials are verified via LDAP. Upon
successful authentication the notebook server process is
launched and this process communicates with the user’s
web browser via websocket connections. The user selects
a kernel to launch from a pre-defined list. The notebook
and kernel interact via a ZeroMQ6 message queue. Jupyter-
Hub, per-user notebook servers, and spawned kernels are
all limited to run in the Docker container. In this mode, we
were able to run JupyterHub without any major code mod-
ifications or extensions. Local customizations included the
ability to traverse the entire file system (while automatically
defaulting to the user’s home directory), and support for
multiple kernels (Python 2, Python 3, R, and deep learning
libraries). We also provided users with a mechanism to run
their own custom kernels.

This configuration allowed us to run an initial Jupyter
service at NERSC with limited access to center re-
sources. Users access data on the NERSC Global File
system, in particular their home directories and the shared
/global/project file systems. Notebook documents by
default are created in the user’s home directory.

Within six months of activating the service around 100
NERSC users had already tried Jupyter. Several projects
came to rely on Jupyter very quickly for data analysis.
These include projects like OpenMSI [5] and the LUX
experiment [1]. But as expected, users began to push the
boundaries of what was feasible for them to do with Jupyter
as a science gateway application, and they began to ask for
tighter integration with NERSC’s HPC and massive storage
resources.

One issue is that while Jupyter, as a science gateway
node, mounted the GPFS file systems, it had no access to
Lustre scratch file systems on the Cray systems. This is
problematic for users who may, for instance, write large
simulation data sets to Lustre scratch where they have a
much bigger quota than on the GPFS file systems. Users
would have to move data across file systems just to access
it from Jupyter. This was a time consuming, inefficient, and
frustrating process.

4. https://www.docker.com/
5. http://rancher.com/
6. http://zeromq.org/

https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
https://www.docker.com/
http://rancher.com/
http://zeromq.org/


Figure 2. Cori data analytics node deployment for Jupyter at NERSC.
In contrast to Figure 1 only the multi-user hub application runs inside
a Docker container on a science gateway node. After authenticating to
JupyterHub, users’ Grid Certificates are retrieved and used to establish
a GSI-enabled ssh tunnel to the Cori data analytics node, essentially a
repurposed “login” node. Notebooks and kernels spawn on the Cori node.
In addition to the global file system, Lustre scratch, batch queues and Cori’s
software environment are made accessible from Jupyter.

We also found that users often expected to have a soft-
ware environment matching what Cori provides at the shell
login, and they were often astonished to find that Python
packages they could easily use on Cori were not present
in Jupyter. This is because the Python stack being accessed
by Jupyter is installed into the Docker container. Part of
the problem is that users did not appreciate the distinction,
but it also meant that other software components they could
access (e.g. applications they had built on Cori) would not
run due to dynamic linking problems.

Given these barriers, our desire to expand the service,
and offer better hardware for running Jupyter, we began to
investigate using Cori for running Jupyter.

4. Jupyter as Cori Data Analytics Application

Migrating or extending the existing Jupyter service from
a smaller-scale science gateway node onto the Cray system
provides tighter integration between Jupyter, Cori’s various
data-friendly features, and storage systems. Cori has been
designed with an eye toward data-friendly policies like real-
time, interactive, serial, and shared queues; enhanced exter-
nal network connectivity for compute nodes; accelerated I/O
via a burst buffer; and visualization, analytics, and complex
work-flow orchestration through a pool of large memory
repurposed login nodes. One such specialized node is a
“data analytics” node set aside for running interactive data
analysis and visualization tools just like Jupyter. This node
has more than 500 GB of RAM (a significant upgrade over
the 64 GB science gateway node) as well as direct access
to Cori resources including networking and storage.

Figure 2 depicts how we run Jupyter on the Cori data
analytics node. In Section 3 we described a setup where
all Jupyter components were confined to the same Docker
container. Here, only the multi-user hub application is run-
ning in a Docker container. The hub still manages user

authentication via LDAP. The key difference is that single-
user notebooks are spawned remotely on the data analytics
node.

To enable remote spawning, we have developed a custom
authenticator for JupyterHub called GSIAuthenticator7

(GSI: Grid Security Infrastructure) that allows users to
acquire a grid certificate upon login. A custom spawner that
we also developed called SSHSpawner8 spins up a Jupyter
notebook on Cori via GSISSH9 (a modified SSH that adds
the ability to perform X.509 proxy credential authentica-
tion and delegation). Once launched, the Jupyter notebook
connects back to the hub over a websocket. The hub then
proxies all future user requests to the Cori node via this
websocket connection. Users interact with their notebooks
running on Cori, launching pre-installed or custom kernels
to analyze and visualize their data.

This configuration addresses many of the shortcomings
of the preceding iteration. Cori’s Lustre scratch file system
is available to Jupyter naturally. The Cori software environ-
ment available at the shell login and from Jupyter are the
same. In fact, Jupyter on Cori is installed as part of the
Anaconda Python distribution available to users from the
login shell. This makes management of custom kernels and
user-managed software much more straightforward.

To expose some level of batch queue functionality
through Jupyter, we developed a set of “magic commands”
that allow users to interact with the Slurm workload manager
on Cori. Magic commands are a construct in Jupyter/IPython
that enable extra-language functionality. In the case of
Slurm magic10 we provide a thin wrapper around the Slurm
command-line API.

For instance, to query for a list of all running jobs, a user
types %squeue just as they would at the command line. The
difference here is that what is returned is a first class Python
object (a Pandas dataframe) that they can manipulate. Batch
jobs can even be submitted via the %sbatch command
(taking the path to a batch script as argument) or via the
%%sbatch “cell magic” — where the contents of the batch
script are provided in the the Jupyter code cell itself.

A number of notebooks used in user training events,
including some kindly contributed by users, are published
via GitHub.11 User-contributed notebooks include one used
to calibrate the LUX detector, and another demonstrating
the use of a database at NERSC to render photometry sim-
ulations of Large Synoptic Survey Telescope12 observations.

Jupyter on the Cori data analytics node is again a very
popular service, almost too popular. As with Jupyter on the
science gateway we periodically have to remind users that
they are sharing a single node — even though the amount
of memory and CPU power is much greater. The next step
is expanding the service to the compute resources available
on Cori.

7. https://github.com/NERSC/gsiauthenticator
8. https://github.com/NERSC/sshspawner
9. http://toolkit.globus.org/toolkit/docs/5.0/5.0.4/security/openssh/pi/
10. https://github.com/NERSC/slurm-magic
11. https://github.com/NERSC/new-user-training-notebooks
12. https://www.lsst.org/

https://github.com/NERSC/gsiauthenticator
https://github.com/NERSC/sshspawner
http://toolkit.globus.org/toolkit/docs/5.0/5.0.4/security/openssh/pi/
https://github.com/NERSC/slurm-magic
https://github.com/NERSC/new-user-training-notebooks
https://www.lsst.org/


5. Toward Jupyter on Cori Compute Nodes

Because it provides some form of interaction with HPC
resources, a unified software environment, and exposes the
Cori scratch file system, the data analytics node solution
provides users with a bit more “power” than the science
gateway node can. However, it is still just one node, and
as the number of users grows we expect it to be unable to
keep up with demand. The obvious next step is to identify
and implement methods for launching Jupyter processes on
Cori compute nodes. But launching Jupyter processes on
compute nodes presents a number of challenges.

One issue is that access to the compute nodes is managed
through a workload manager or batch scheduler. Certainly
users can make reservation requests that set aside nodes
specifically for their exclusive use ahead of time. This is
a useful approach for teaching settings where Jupyter note-
books are used for education and training. To be able to run
Jupyter on demand, it is clear the easiest solution would be a
set of dedicated nodes or an overhead of floating idle nodes
that could be called upon to run Jupyter at user request. The
issue with this approach is that full system utilization is a
very high priority for most HPC systems. On Cori we are
able to offer reservation-based requests for running Jupyter,
but also have 192 Haswell and 192 KNL nodes dedicated for
interactive use cases enabled by Slurm’s quality of service
(QOS) feature. For reservation-based requests, we are con-
sidering a streamlined self-service reservation interface that
would allow users to schedule reservations without NERSC
staff intervention within reasonable resource limits.

Our effort is not the first to try running Jupyter note-
books and kernels on batch systems. Previous work has
been consolidated and released in the form of JupyterHub-
affiliated projects that help address some of our needs.
These include the BatchSpawner13 and WrapSpawner14

packages. BatchSpawner extends Jupyter’s Spawner for
batch queue systems and implements spawners for Torque,
Slurm, SGE, and HTCondor. To launch Jupyter on Cori
compute, a SlurmSpawner spawner instance is used to map
requests for resources into a batch script to run the Jupyter
single-user server. After ths script is submitted Slurm is
polled to detect when the job has started. The node address
is returned to JupyterHub and forwarded to the user who
then automatically connects to the server running on the
compute node.

To request resources for jobs, users need an interface
built into Jupyter. For our prototype implementation we used
the ProfilesSpawner class (part of the WrapSpawner
package) to present a list of pre-defined sets of resources
for jobs, defined in a configuration file. For instance, a user
could request a single-node Cori job with a time limit of 30
minutes, or a three-node job with a notebook and two kernel
processes for an hour. The concept behind WrapSpawner
and ProfilesSpawner is that they “wrap” Spawner in-
terfaces so they can be chosen at runtime. This behavior

13. https://github.com/jupyterhub/batchspawner
14. https://github.com/jupyterhub/wrapspawner

allowed us to present not just SlurmSpawner configurations
for running Jupyter on Cori compute nodes, but also our
SSHSpawner configuration for running Jupyter on the data
analytics node, and even the science gateway configuration,
under the same interface.

A final, major issue for running Jupyter on Cori compute
nodes is that network access to those nodes from outside
Cori is restricted. The current prototype implementation,
sufficient for concept testing and early demonstrations, relies
on a choreographed sequence of SSH tunnels, authentication
forwarding, and scripts. In terms of performance and reli-
ability it is highly suboptimal. A much better solution is
available through software defined networking (SDN) [6].

Under the SDN scenario, we will be able to launch the
job and then request a public IP that is routed to the head
compute node. This address can then be communicated back
to JupyterHub so it can appropriately route the connection
the notebook. This capability is under development but an
early prototype exists. Directly connecting to the head node
will eliminate much of the latency of brokering connections
through GSISSH and SSH tunnels. Initial tests using SDN to
launch Jupyter on the Cray testbed at NERSC are promising.
We expect to be able to move this to production on Cori by
the end of summer 2017.

Figure 3 illustrates our vision for Jupyter on Cori. By ex-
tending the spawner infrastructure and using SDN we will be
able to power Jupyter notebooks on the data analytics node
and Jupyter notebooks on Cori compute nodes through a
single platform. Within compute nodes many configurations
for notebook-based workflows are possible. Users will no
longer need to share compute resources to run Jupyter if
they need all the cores or memory available on a node for
their analysis tasks. Multi-node jobs involving schedulers
and workers (for Spark and Dask) are possible.

The prototype setup has been used to run multi-node
Spark jobs and visualization of N-body data sets using yt.15

With yt we have even been able to leverage the use of
IPyParallel with the Python mpi4py back-end. We are not
yet able to scale these jobs reliably past about the 10-node
level without SDN.

6. Discussion

In this section we reflect on the strategy developed over
the course of our experiments with Jupyter on Cori and at
NERSC. We also discuss best practices we have learned
along the way. We believe this practical information should
be useful to staff at other institutions who may be interested
in running Jupyter on HPC systems.

Over time we have developed a strategy consisting of
the following components:

• Using Docker to containerize components, Docker-
files to manage construction of images, and Rancher
for orchestration. While not all configurations of
Jupyter at NERSC fit entirely into Docker con-
tainers, the benefits that come with containerization

15. http://yt-project.org/

https://github.com/jupyterhub/batchspawner
https://github.com/jupyterhub/wrapspawner
http://yt-project.org/


Figure 3. Plan for Jupyter on Cori at NERSC. As in Figure 2, the multi-user
hub application runs in a Docker container on a science gateway node. The
data analytics (repurposed login) node configuration currently in production
appears at the top of the figure in green. The gold boxes below represent
two potential configurations of Jupyter processes running on Cori compute
nodes. In the middle box, a user simply requests a compute node to run a
Jupyter single-user server and kernel process with exclusive use of a Cori
compute node for some period of time. The boxes at the bottom depict
a more involved workflow where a user requests multiple nodes, running
a notebook server process on the “head” node of the job, and possibly
multiple kernels running on the other nodes in the job allocation. Spark,
Dask, and IPyParallel jobs are typical examples of workflows using this
job configuration.

(self-documentation via Dockerfiles, standardization,
flexible deployment, etc.) will make it possible to
scale components of the service given limited staff
resources.

• Capitalizing on the Jupyter ecosystem’s modular
design to customize our deployment to address secu-
rity requirements, address performance issues, and
provide a NERSC-centric user experience. Where
possible we prefer to extend existing components
and contribute them back to the community.

• Communicating and engaging with the Jupyter de-
veloper community through personal contact, work-
shops, email lists and chat. Jupyter is a large and
rapidly evolving system which makes accurate up-
to-date documentation a challenge. Often the best
advice comes directly from interacting with the de-
velopers.

• Proceeding with an incremental deployment strategy.
This has been essential in building up expertise
within the staff regarding Jupyter as we move toward
bigger challenges. As demonstrated in Sections 3
and 4, components from previous deployment phases
can sometimes be re-used or adapted.

• Leveraging SDN for orchestration of remote pro-
cesses on the HPC systems. Experimental efforts
used a series of SSH tunnels to get the system
running on Cori compute as proof-of-principle. More
direct networking connections enabled by SDN will

provide a more elegant and performant approach.

Based on both user feedback and usage metrics, it is
clear that there is substantial demand for interactive services
like Jupyter at NERSC. It is also clear from the same sources
that users have a spectrum of needs, and we imagine that
this holds at other HPC centers as well:

• Those with analysis and visualization workflows that
do not expressly require HPC resources but still
need to explore massive data sets stored at NERSC
may find Jupyter delivered via science gateways to
be ideal. Science gateways are almost completely
independent of the HPC systems at NERSC and so
planned or unplanned outages of the HPC systems
would not affect such users. Managing the entire
Jupyter stack through Docker and Rancher also al-
lows us to scale up (or down) easily in response to
demand.

• Using Jupyter to manage and interact with HPC
work-flows appeals to many users. We envision the
data analytics node being used for interacting with
such work-flows through tools like Slurm magic
commands and analysis/visualization of data stored
on Cori scratch.

• Spawning Jupyter notebooks and kernels on Cori
compute nodes, coupled with interactive QOS, can
give each user their own, isolated “Jupyter node.” A
single data analytics node on Cori is insufficient to
service all NERSC Jupyter users, so development is
currently focused at making this work in a stream-
lined way.

• The largest data analytics jobs will require multiple
nodes running Jupyter components, in a number
of different configurations. Interactive data analytics
powered by Spark or Dask via notebook, one or
more scheduler processes, and a large number of
kernels running will require multi-node allocations.
Alternatively it may be possible to run a notebook
on the data analytics node and connect to a job
running Spark or Dask on the compute nodes. To
enable these work-flows, interactive QOS and SDN
are both indispensable.

Given this broad spectrum of needs it is clear that one
challenge we face will be presenting a sensible and unified
Jupyter-based ecosystem to users that exposes the right re-
sources for the task at hand. To address this challenge we are
developing a new interface, building on WrapSpawner but
exposing more than a simple list of allowed configurations
for a single system. At this point it is not clear how that
can generalize to other HPC centers, since each has its
own queue policies and different types of resources from
what NERSC provides. We suggest that standardized APIs
abstracting HPC center resources, for example NEWT,16

16. https://newt.nersc.gov/

https://newt.nersc.gov/


could have a role in helping to make work like ours more
easily transferable.

7. Conclusion

We have outlined our efforts to date to enable interactive,
exploratory data analysis on supercomputers at NERSC
using Jupyter. We have explained the motivations behind
interactive supercomputing, and presented our implemen-
tation approach and described lessons learned along the
way. Examples of Jupyter notebooks from NERSC user
training events and contributed from actual NERSC users are
available on GitHub for reference. Our experiences, code,
and these materials should be useful in moving forward
interactive supercomputing in the HPC community.

At least at NERSC, we can envision a day when a good
fraction users rely exclusively on Jupyter, or a framework
similar to Jupyter, for large-scale exploratory data analysis.
Many of them may seldom or never use a traditional login
shell.

Acknowledgments

This research used resources of the National Energy
Research Scientific Computing Center, a DOE Office of
Science User Facility supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-
AC02-05CH11231. We thank our colleagues in the Security
and Networking, Infrastructure Services, and Computational
Systems Groups at NERSC for advice and valuable contri-
butions to the infrastructure necessary to run Jupyter. We
are grateful to Andrea Zonca (San Diego Supercomputing
Center), Michael Gilbert (Northern Arizona University), and
Michael Milligan (Minnesota Supercomputing Institute), for
their successive advancements of BatchSpawner and re-
lated packages. We also thank the Jupyter developer commu-
nity for advice, feedback, and collaboration. We thank Evan
Pease from the LUX collaboration and Bryce Kalmbach
from LSST for sharing their notebooks with us. Last but
not least, we thank our users who have helped shape the
trajectory for Jupyter at NERSC.

References

[1] Akerib, D. S., et al., The Large Underground Xenon (LUX) experiment,
Nuclear Instruments and Methods in Physics Research A, Volume 704,
p. 111-126, doi:10.1016/j.nima.2012.11.135

[2] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian
Granger, Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica
Hamrick, Jason Grout, Sylvain Corlay, Paul Ivanov, Damián Avila,
Safia Abdalla, Carol Willing, Jupyter Development Team, Jupyter
Notebooks - a publishing format for reproducible computational work-
flows, Positioning and Power in Academic Publishing: Players, Agents
and Agendas p87-90, doi:10.3233/978-1-61499-649-1-87

[3] Fernando Pérez, Brian E. Granger, IPython: A System for Interactive
Scientific Computing, Computing in Science and Engineering, vol. 9,
no. 3, pp. 21-29, May/June 2007, doi:10.1109/MCSE.2007.53. URL:
http://ipython.org

[4] Jupyterhub, https://jupyterhub.readthedocs.io/

[5] Oliver Rübel, Annette Greiner, Shreyas Cholia, Katherine Louie, E.
Wes Bethel, Trent R. Northen, and Benjamin P. Bowen, "OpenMSI:
A High-Performance Web-Based Platform for Mass Spectrometry
Imaging" Analytical Chemistry 2013 85 (21), 10354-10361, DOI:
10.1021/ac402540a.

[6] Richard S. Canon, Brent R. Draney, Jason R. Lee, David L. Paul,
David E. Skinner, and Tina M. Declerck, "Enabling the Super Facility
with Software Defined Networking", Cray Users Group, 2017


	Introduction
	Background: Jupyter
	Jupyter as Science Gateway Application
	Jupyter as Cori Data Analytics Application
	Toward Jupyter on Cori Compute Nodes
	Discussion
	Conclusion
	References

