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Abstract—The need for scalable, resilient, high performance
storage is greater now than ever, in high performance comput-
ing. Exploratory research at Cray studies aspects of emerging
storage hardware and software design for exascale-class su-
percomputers, analytics frameworks, and commodity clusters.
Our outlook toward object storage and scalable database
technologies is improving as trends, opportunities, and chal-
lenges of transitioning to them also evolve. Cray’s prototype
SAROJA (Scalable And Resilient ObJect storAge) library is
presented as one example of our exploration, highlighting
design principles guided by the I/O semantics of HPC codes and
the characteristics of up-and-coming storage media. SAROJA
is extensible I/O middleware that has been designed ground-
up with object semantics exposed via APIs to applications,
while supporting a variety of pluggable file and object back-
ends. It decouples the metadata and data paths, allowing for
independent implementation, management, and scaling of each.
Initial functional and performance evaluations indicate there
is both promise and plenty of opportunity for advancement.
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I. INTRODUCTION

The need for highly scalable, resilient, and high-
performance I/O and storage has never been greater in high
performance computing. Sites planning for next-generation
supercomputers are increasingly focused on advanced I/O
and storage technologies capable of standing up to chal-
lenging scientific and analytics workflows. To satisfy these
emerging requirements, Cray investigates and experiments
with aspects of storage architecture for highly parallel com-
puter platforms.

Herein we discuss current observations, architectural chal-
lenges, and design philosophies in several related areas:
emerging forms of memory and storage media, upcom-
ing low-latency high-bandwidth fabrics, tiered caching and
movement for increasingly parallel systems, the overlap of
HPC, cluster, and analytics storage, scalable and resilient
object stores, smart metadata for current and future applica-
tion interfaces, and storage software co-development in an
increasingly open-source community.

We also describe a practical example of Cray’s work
in this area, the prototype SAROJA (Scalable And Re-
silient ObJect storAge) library. SAROJA is extensible I/O
middleware used to study key aspects of storage software
design for future storage software paradigms and fast media.
The metadata and data paths are decoupled, allowing for
independent management and scaling of each. Our initial

prototype provides a POSIX or object interface using a
NoSQL database for metadata and an object store for data.

II. TRENDS AND CHALLENGES

The HPC trend toward broad horizontal CPU scaling
shows no sign of abating, presenting new challenges to I/O
and storage designs that necessitate similar parallelism along
with efficient, scalable software. These challenges arise not
only from sheer system size, but from greater CPU channel
and NIC throughput, larger datasets, increased failure proba-
bility with large device counts, and virtualization trends. All
these factors are relevant in commercial and analytics sectors
as well, which may not require extreme node counts but
require increasingly concurrent processing and 24x7 fault
tolerance. Fortunately storage and fabric hardware innova-
tions are setting a brisk pace as well. Solid state storage
devices achieve ever-lower latency and higher throughput
with each generation, and fabrics continue doubling in
speed while providing improved congestion management.
The greatest unmet challenge is to create software adequate
to realize the full potential of recent compute, fabric, and
storage hardware advances.

A. Storage Media

Seek latency of mechanical disk media has been the dom-
inant constraint in I/O subsystem design for decades. Heroic
efforts are undertaken in HPC and analytics applications to
compensate. From the HPC application through the entire
I/O chain, we serialize, buffer, align, and coalesce data from
thousands of clients to avoid inducing random disk seeks.
Despite tuning, disks still typically deliver less than 20%
of their potential streaming bandwidth to applications. In
analytics, one of the core principles driving initial Hadoop
design, was to distribute software specifically to maximize
sequential disk scanning via a share-nothing approach. More
recent analytics, cluster, and multi-tenant HPC environments
thwart any attempt to coordinate I/O to shared storage. The
emergence of flash has allayed many of these concerns.

It is difficult to overstate the impact solid state stor-
age media has had on the computing industry. Wholesale
adoption of flash in mobile and consumer markets, coupled
with moves to flash by webscale cloud and social media
providers, has driven flash vendors to innovate and compete
for volume markets. This has resulted in plentiful flash with
high reliability and performance, impressive density, and



falling prices. Enterprise, HPC, and analytics markets are
now beneficiaries of these sweeping trends. Flash devices
are insensitive to random I/O and actually perform better as
queues fill, operating at 100x lower random read latency and
achieving 10x maximum throughput of streaming disk. They
are available in higher capacity, consume less power, are
lighter, and are insensitive to vibration. While cost/gigabyte
of enterprise flash is still about 20x that of capacity en-
terprise disk, flash cost/gigabyte/second beats random I/O
to disk by orders of magnitude. And as applications of all
types scale horizontally, high thread counts make it nearly
impossible to tune away random I/O. These reasons, coupled
with constant price decreases, indicate a wholesale transition
to all-flash primary storage is likely in all segments of the
supercomputing market shortly after the end of this decade.

Newly emerging non-volatile media types suitable for
storage applications continue to be elusive. Those that are
available are cost-prohibitive, useful only as small caches.
Most promising among them, however, is 3D-Xpoint, born
of a collaboration between Intel and Micron. Both parties
have rights to the medium; Intel will attach it both to
the memory bus for byte-level access granularity, and to
the peripheral bus for block. Public details are limited, as
products are just being readied for market. Intel’s initial
claims of performance touted near DRAM speeds at the
raw media, while industry speculation and recent press from
Micron indicate that complexities of system integration will
likely limit practical speeds to half DRAM or less when
on the memory bus, and similar to industry-leading NVMe
flash devices when on the PCIe bus. Even so, three clear
advantages are apparent: its byte addressability, when on the
memory controller; significantly higher endurance than flash,
though less than DRAM; and consistently lower latency
than flash, which yields maximum I/O rates and throughput
with shallower queues. Sub-DRAM speeds are inadequate
for working storage of most applications, and pricing is
expected to be closer to DRAM than flash. So use cases are
limited as well, initially for indexes, journals, and writeback
caches, next full read-write caches fronting flash, then likely
in-memory databases too large for actual DRAM.

B. Low-Latency High-Bandwidth Fabrics

Latency characteristics of current- and next-generation
fabrics are a fraction of flash latencies, making disaggre-
gation of flash from servers practical with less than 10%
latency penalty. Latencies of typical enterprise SSDs are
several times the single-digit microsecond latencies achiev-
able with NVMe-over-Fabrics. This block sharing technique
is becoming common for virtualization and containerization
environments where fabric-attaching block storage to single
compute nodes is desirable. Flash device throughputs con-
tinue rising, with fastest SSDs reaching parity with volume
fabric bandwidths. For the foreseeable future, throughput
parity with high-end fabrics such as InfiniBand, Omnipath,

and Aries will require greater than 1:1 ratio of flash SSDs
to fabric ports.

Intel Optane NVMe devices based on 3D-Xpoint are
imminent for release to gamers and enthusiasts, with latency
specified at 9us read and 30us write; future devices will
likely be lower. At these storage speeds, the fabric and me-
diating I/O software become significant fractions of device
latency. High-end persistent memory solutions are expected
to again reach throughput parity with fabric ports even as
speeds rise toward 25GB/s unidirectionally. When accessed
remotely, minor fabric congestion issues and inefficient I/O
setup can trap device performance and stall I/O transactions
issued from expectant applications. These exposures are not
as pronounced as those in DRAM-based MPI applications,
but storage systems built from these components require
similar design principles, plus additional fault tolerance and
serviceability requirements expected of networked storage
devices.

C. Scaling and Parallelism

Over the last decade, since the breakdown of Dennard
scaling, HPC systems have relied on massive parallelism
to meet insatiable computational demand presented by sci-
entific applications. A resulting trend toward higher core
counts and threading within CPUs has been coupled with
ever-higher socket counts, resulting in creation of supercom-
puters of unprecedented size and complexity. Early exascale
machines will exceed 128k CPU sockets, each of which
will likely contain over 64 cores, 1TB of internal memory
bandwidth, and 100GB/s of fabric I/O. The I/O and storage
subsystem must be similarly equipped with unprecedented
scale and parallelism.

The currently prevailing storage model for HPC appli-
cation acceleration is the burst buffer, a flash-based file
caching layer intervening between compute nodes and pri-
mary resilient storage, designed to absorb more challenging
I/O volumes and patterns than current disk-based storage
can handle. Previously, spindle count was increased beyond
required capacity to attain bandwidth, while disks were
short-stroked, wasting that capacity to achieve only modest
IOPS improvements. Applications and file systems were
tuned for decades to optimize sequential spindle I/O, further
compensating for this weakest link in the I/O chain. Though
still slightly expensive at HPC scales, flash-based burst
buffers are proving to be an early answer to common limi-
tations of spinning disk in servicing millions of concurrent
I/O threads.

The next generation of HPC systems does not abandon
this caching concept, instead migrating it onto compute
nodes or near-node local switches when flash becomes eco-
nomical enough to wholly replace disk as primary storage.
Compute-node-local flash and/or persistent memory may be
configured to cache up large volumes of data or absorb bursts
of output from processors, later destaging it at throttled rates.



Industry is currently experimenting with various approaches
to exploit these node-local caches in key use cases, via
scalable checkpoint software and advanced client-side file
caching.

Projecting from all solid-state primary storage on planned
pre-exascale systems, the first exascale systems are likely to
require approximately 1k storage nodes with 16k devices,
achieving over 80TB/s throughput. Parallelism of access
from the compute complex, enabled by intervening storage
software, will be crucial in realizing that bandwidth. The
potential for I/O operations in these systems will be in the
billions, limited foremost by software. It should be noted
this is still likely to be an order of magnitude less than on-
or near-node local storage can sustain.

Conversely, analytics use cases require only tens to hun-
dreds of nodes at present. This enables systems to be
economically configured for each specific use case. Yet most
tend to depend on a similar approach: highly parallel share-
nothing I/O to node-local storage. Each analytics system’s
I/O is optimized around specific compute hardware concen-
trations (e.g. nodes full of GPUs), with application frame-
works serving specific use cases. But most share this similar
topology. Hadoop’s original map/reduce model proved use-
ful, and now dominates current analytics framework designs.
Latest trends rely on RAM-heavy nodes, caching to local
temporary flash that is then tiered to external, reliable cold
storage via object interfaces. Machine learning use cases
rely heavily on GPUs, but also generally couple node-local
GPU RAM, CPU RAM, and flash caching, to external cold
storage.

D. Convergence of HPC and Analytics

Complex workflows are emerging wherein customers
would like to use the latest analytics and big data tools to
either pre-process HPC inputs or post-process outputs.

In-situ analysis, visualization, and computational steer-
ing are rudimentary examples of this. Experimentation is
ongoing, running analytics stacks on Cray supercomputers
traditionally reserved for scaled jobs. And it is increasingly
feasible in analytics use cases to exploit the power of a
supercomputer as a co-processor dedicated to detecting un-
foreseen correlations in data, or performing machine learn-
ing operations at great scale. To entertain these interesting
possibilities requires sharing of data between platforms,
which typically requires extract-transform-load job steps in
the workflow, and transferring data from one system to
another.

Often, the data generated by computing systems is the
most expensive asset an organization possesses. Opportuni-
ties exist to employ the latest big data tools in conjunction
with those classically considered for HPC, to accelerate
results and derive new insights from extant data. An op-
portunity to converge analytics with HPC hinges on more
easily sharing an ever-increasing deluge of structured and

unstructured data. HPC users and scientists want to pre-
process data before job submission, analyze output during
long runs, and consider implications after jobs complete.
Applying advanced discovery algorithms to HPC data is
new and fertile ground for analytics, while difficult analytics
workflows are becoming an HPC-scale problem.

Workflows allowing scientists to make discoveries faster,
require not only actively sharing the underlying storage
infrastructure, but also the content. Analytics and HPC
workflows can be linked today, but data must generally be
moved between systems, often by flushing data wholesale
to site-wide storage for later ingestion into each subse-
quent processing pipeline stage. And data generally must
be transformed when moving between systems. Analytics
frameworks now write rich formats like Spark’s Resilient
Distributed Datasets (RDDs)[36]. To facilitate convergence,
such formats must ultimately be rationalized with tradition-
ally HPC scientific formats like HDF5[31] and NetCDF[27].

Converged storage and data formats can enable much
more fine-grained and subtle comparison of data using
analytics tools. If the storage infrastructure is informed of the
data’s structure, correlations can be made without extracting
entire container files, and metadata extracted so analysis
might be conducted without even touching the data itself. To
the extent that common formats can be established, indexing,
synthetic namespaces, alternate presentations of the same
data can be accomplished without the expensive operation
of moving or transforming the data for downstream use.

E. Infrastructure Trends and Challenges

As articulated in the hardware scalability discussion,
machine sizes and component ratios will vary but their
I/O and storage infrastructures often employ similar topolo-
gies across application use cases. A three-tiered persis-
tence model is emerging that serves the latest technologies
to the breadth of most frequently used cluster, analytics,
and HPC applications. Scale-out software-defined storage
architectures are trending in each of these tiers, which
include: a distributed volatile or persistent caching layer on
or close to the compute nodes; a system-wide sharable, byte-
addressable, high-capacity primary storage layer; and a site-
wide bulk get-put cold store. Each must be independently
operable so a system may be configured with a subset. Each
of these layers has unique features, though all must offer
storage-grade resiliency and serviceability options that scale
down as far as they scale up. Storage needs to be available
in small increments, but in large quantity with near-linear
scaling characteristics.

Frequency of failures increases nonlinearly as interde-
pendent component count rises. Yet continuous operation
is an ever-higher priority for customers. With pre-exascale
systems’ Job Meantime To Interruption measured in hours,
steps must be taken in preparation for exascale, to reduce
or eliminate storage-related contributions to system inter-



ruption, data access loss, and data loss. Larger systems are
more difficult to diagnose, necessitating automated recovery
and directed service actions to minimize human error when
administrator intervention is required. Management software
that provides assistance with initial configuration, rolling
upgrades, component presence, consensus, monitoring, au-
tomated recovery, and data redistribution are important to
keeping the computer’s work progressing efficiently.

And to facilitate data convergence, common underlying
infrastructure is necessary. Developing and maintaining scal-
able fault tolerant storage systems is difficult and requires
long-term investment. And sustaining more than one design
for a given tier is generally impractical. Finding the right
software design that enables sharing across all system and
application types, while retaining the unique capabilities
required for each application’s requirements is challenging.
In the exascale time frame it appears that regardless of
system type, we will converge on common site-wide storage
infrastructure based on spinning disk interoperable with the
cloud and tape, a single primary storage infrastructure based
on flash, and unique application-specific layers caching to
node-local flash, persistent memory, and RAM. In this latter
layer, common output formats into common primary storage
is required, if data sharing across domains is to be feasible.

Finally, cloud interoperability is of growing import in
analytics and HPC circles. An ability to replicate data to
the cloud for resiliency or to support bursting is becoming
a core requirement. The site-wide storage tier needs to
be compatible with the cloud, so objects deposited there
from any machine can be moved to the cloud as necessary.
Employing cloud APIs for site-wide cold storage thus makes
sense, so the same access methods may be used regardless
of which application, or where the application is to be run.

F. Application interfaces

Parallel POSIX interface filesystems traditionally used to
access primary HPC storage have had problems providing
adequate metadata and data performance beyond a few thou-
sand clients. And initial exascale node counts are projected
to reach 6-10x that of currently running systems. Metadata
and data coherency requirements of POSIX-compliant file
APIs are unlikely to be practical at exascale client and
server node counts. Yet it is unlikely that existing HPC
applications using POSIX files will be adapted to a different,
more scalable interface.

I/O forwarding schemes have been employed as stopgaps,
fanning out parallel filesystem clients across the fabric
to multiply supportable compute node quantities. However
such approaches add fabric hops, increasing complexity and
latency on both data and metadata paths. They also shift key
client functionality off of compute nodes onto intermediate
I/O forwarding nodes, forwarding simple filesystem API
calls across the fabric that that would have been handled
locally by full filesystem clients. While parallel filesystems

with forwarding can be adequate for less latency sensi-
tive sequential I/O patterns, this approach runs counter to
the small-block random trend in HPC, multi-tenancy, and
analytics application use cases. It also works against I/O
efficiency increases necessary to fully realize the benefits
of flash and persistent memory technologies expected in
exascale systems.

Meanwhile, applications found outside of HPC increas-
ingly use forms of primary storage without POSIX inter-
faces. Often relatively immature, they vary in granularity of
access, performance, security, and scalability. Unfettered by
constraints imposed by POSIX standards, proliferation of
storage interfaces is widespread. In common use amongst
web and analytics developers are a variety of No–SQL and
K/V databases and various object storage systems. There are
no standards, but some commonality and trending APIs set
by convention amongst open-source developer communities
and the marketplace. Little attention is paid to efficient file
I/O beyond serialization of internally represented objects.
However, these forms of storage hold great promise, as
they have many characteristics attractive to developers and
and to storage system designers. Coarse-grained data access
and versioning reduce the amount of serialization typically
required for concurrency control in POSIX storage systems.
Without central brokers for coherency management, storage
services can better be decentralized and scaled across com-
modity hardware.

Analytics frameworks consume domain-specific represen-
tations of data from applications via a layer above primary
storage, expressed through library calls, sometimes into
a distributed caching layer. These interfaces hold great
promise as well, because the internal metadata of rich data
structures describes the relationships between data elements,
which can be relevant in later analysis, correlation, and reuse
of data in unforeseen ways. The trending scientific HDF5
format, and the leading RDD analytics format, might serve
data from a common underlying object and metadata store.
When applications can not only share the capacity of com-
mon storage, but express data in common ways across use
cases, complex data structures and metadata in these systems
can be used to dynamically provide alternative views of
data and to empower complex application workflows via
extensible storage services.

Considering all these trends, challenges, and opportuni-
ties, storage software vendors are challenged to forward a
means of transition that permits existing file-based applica-
tions to operate and scale within reasonable limits of tra-
ditional parallel file systems, while encouraging movement
toward distributed objects. Tunable relaxation of POSIX files
is necessary to ease scaling of file-based applications when
they don’t require the strict temporal or spatial coherency
guarantees of POSIX. Application-level library interfaces
are needed to enable domain-specific data structures to be
expressed into caching infrastructure, and ultimately into



the supporting primary storage system through its object
interface. And it is this common primary storage system
that enables sharing of data structures across platform types
and use cases. An application should be able to store data
via a domain-specific object API such as HDF5, RDDs, or
POSIX files, then access or analyze it via another without
restriction.

G. Evolutionary Steps

Success requires consistent, methodical innovation toward
this aspirational goal, with practically applicable milestones
along an evolutionary path. Backward compatibility must be
preserved to the extent necessary in order to ease transition
of applications from traditional file interfaces to objects, and
from existing storage hardware and software infrastructure
to new. And constraints governing technology evolution and
industry software investment tolerance must be considered.
This is no mean feat.

Initial steps are apparent and tractable to pursue. First,
existing primary storage and parallel POSIX filesystem
technology must be flash-enabled to the extent possible,
while burst buffers are migrated toward persistent memory
or flash file caches on or near compute nodes. I/O for-
warding will remain the interim method of scaling storage
in the HPC context. Traditional parallel filesystems will
be employed tactically to propagate files as block devices
into virtual machines and containers when non-traditional
applications are run self-contained within an HPC context.
Meanwhile analytics frameworks and underlying object stor-
age infrastructures will continue to evolve toward de-facto
interface standards, both for primary storage and for high-
level caching layers.

Second, highly scalable primary object-level interfaces
and the scale-out infrastructure that supports them must
be pursued, considering to-date open-source work in these
areas, requirements of the applications that will consume
them, and requirements of emerging fabric and media tech-
nologies. Applications may consume these presented inter-
faces directly, or middleware caching layers may intervene
to consume them on behalf of that higher level application
software. While a single primary storage interface is de-
sirable, two are more likely: one serving cold bulk storage
needs, and another serving extremely fast byte-level changes
to distributed transactional memories. These will be used
in tandem when appropriate, with tiering software enabling
automated movement and lifecycle management. Candidate
interfaces for cold storage include S3, Swift, and RADOS,
while the leading interface candidate for scalable byte-level
transactional persistent memory is currently that of Intel’s
DAOS.

Third, application-level interfaces that express rich data
structures into the storage must be pursued. These are
rapidly evolving and will continue to do so over time, as
will the caching frameworks that support them above the

primary storage layer. Obviously interfaces relaxed from
POSIX must remain, and will be adapted from existing
mature parallel filesystems to retain the most backward
compatibility possible. However more advanced high-level
data interfaces are required. The leading candidate in the
HPC space is HDF5, and the leading analytics candidate
is RDDs. Care must be taken with the scalable primary
storage interfaces, that they are able to support these high-
level requirements.

And fourth, methods for scalably storing, managing,
querying, and presenting the rich metadata associated with
the applications’ structures must be pursued. Whether stored
data is containerized into some canonical format, laid out in
POSIX directories and files, or expressed in its full internal
richness to an application-level storage API, a manifest or
database of the structures must be maintained to enable
later search and presentation to applications downstream
in the workflow. Scalable NoSQL database technology is
an obvious candidate for housing this metadata, with sev-
eral commercial and open-source technologies available to
choose from. Linkages between the applications used to
store data and such database infrastructure must be carefully
written so as not to impede data flow into the underlying
store, and to keep metadata in sync with changing content.

Over time, Cray and the community will endeavor to
build the infrastructure required to support low- and high-
level objects. Emerging industry and de-facto standards will
be leveraged, as well as open-source software implementa-
tions where viable, propelling high performance computing
toward a climate of scalable workflow convergence. Cray
will rely on its strong community of customers and partner
developers to collaboratively drive application-level code
adaptations, transitioning gradually from classic POSIX in-
terfaces toward emerging commercial and cloud object in-
terfaces that fit. Toward these ends, Cray continues working
in several relevant areas to meet our customers’ immediate
needs. Examples include Lustre stability and performance
enhancements, burst buffer leadership, I/O forwarding with
relaxed POSIX, and investigations into scalable primary
object and metadata infrastructure for cold and flash storage.
SAROJA is an example research effort exploring three areas:
the potential for scalable rich metadata, software-scaled
primary storage infrastructure on flash, and an extensible,
scalable application interface to support both.

III. SAROJA

In an effort to validate the trends and challenges discussed
in section II, we have developed proof-of-concept object
storage middleware — SAROJA. Figure 1 illustrates the
high-level architecture of a representative SAROJA cluster.
At its core is the libsaroja client library, which is a shared-
nothing library that can be linked to the address spaces
of application processes directly if native object APIs are
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Figure 1. High-Level SAROJA Architecture

desired, or through one of the API emulation layers if
interfaces like POSIX or HDF5 are desired.

Note that the implementation of libsaroja itself does not
preclude the use of other key-value stores, object stores, or
consensus protocols, support for which can be added using
extensible plugins. We chose these specific technologies
based on their merits, desirable features, and desire to study
the different trends discussed in Section II. The metadata
cluster and the object storage cluster are managed and scaled
out independently, but can also be collocated physically.
Each of these clusters are backed by NVMe flash devices.
The object storage cluster, Ceph in this case, can also
be configured to make use of available persistent memory
devices to further reduce the latency of object access.

A. Shared-nothing Clients

The anatomy of the SAROJA client is illustrated in
Figure 2. The client performs three classes of functions —
metadata, data, and control. These functions are embodied in
an interface-agnostic library, libsaroja, which forms the
building block for implementing a multitude of application
interfaces.

Metadata functions of the client primarily include the
translation of application metadata, such as POSIX files,
HDF5 containers, or general objects into SAROJA appli-
cation objects and storage objects. While the semantics of
the metadata vary based on the upper-level interface being
emulated, it is critical to use a data model that works

Figure 2. SAROJA Client Architecture

optimally for most of the interfaces. The metadata functions
of the SAROJA client, in conjunction with the scalable
metadata service, will also allow data to be accessed via
multiple application interfaces and offer clients the ability to
analyze and transform data using rich metadata queries. The
SAROJA prototype is extensible to incrementally support the
following interfaces: POSIX, a native object API, HDF5,
NetCDF, pNFS, RESTful S3, and Swift.

The client can be extended with data plugins, including
resiliency mechanisms (such as erasure-coding and replica-
tion), algorithmic data node selection (if not delegated to
the object storage cluster), and supporting low-latency data
path operations using RPC and bulk-synchronous RDMA
techniques where possible. The client can be extended via
control plugins, including distributed lock management (in
cases where strict consistency semantics are desired by
the upper-level interfaces), publishing performance telemetry
and event streams to monitoring and management systems,
and participating in presence and consensus management
protocols for fault-tolerance.

Figure 2 also lists other representative plugins that one
could design, such as a control plugin to interface with the
Cray System Management Software[19], Cray’s Caribou[17]
storage performance and metrics monitoring framework, or a
data plugin to implement different erasure-coding algorithms
than the ones supported by the backing object store.

SAROJA’s pluggable back-end interface supports multiple
metadata and data stores. We have currently implemented:



a plugin that uses Apache Cassandra [15]; a metadata-
as-xattrs plugin which can store the metadata as POSIX
extended attributes in a distributed parallel filesystem such
as Lustre; a Ceph [33] data plugin using the librados
native Ceph API; an Object-as-Files data plugin that stores
SAROJA objects as files in a parallel filesystem; and a
control plugin using Apache Zookeeper [14] to enforce
consistency in our POSIX emulation layer.

Our initial prototype is entirely in userspace: Our long
term goal is to bypass the kernel for the latency and
throughput benefits. However, studies [32, 25] have demon-
strated that the performance degradation caused by the data
indirection in FUSE can be highly-variable based on the
workloads. It is likely that we would need to implement
both kernel and user space versions of the SAROJA client
to fully support POSIX applications.

B. Scalable Metadata Services

A key challenge in building a scale-out storage system for
exascale-class machines is the design of a metadata service.
It must support hundreds of thousands of nodes and support
high object counts. Traditional storage metadata services
are usually centralized, strongly consistent, and normalized.
Yet to scale metadata, strict consistency guarantees held by
traditional filesystems must be carefully relaxed in ways that
applications can tolerate. Part of the SAROJA prototype is
intended to explore ways in which NoSQL database designs
align with the requirements of scaled metadata services.

NoSQL databases like Apache Cassandra, MongoDB, and
Redis employ a variety of techniques to effectively distribute
and store data, providing greater scalability. These include
distributed hash tables for spreading data between multiple
servers, and Log-Structured Merge Trees for storing the
data. These characteristics favor NoSQL databases for the
metadata of distributed storage frameworks, and suitable for
adaptation to persistent memory and flash. However NoSQL
databases typically sacrifice consistency for performance,
instead providing eventual consistency guarantees. These
types of databases also encourage denormalization, wherein
multiple copies of data are maintained for query efficiency.

NoSQL databases have only recently begun undergoing
tuning efforts to fully realize their performance potential on
flash and persistent memory. We intend to follow develop-
ments as these databases evolve, running additional experi-
ments opportunistically. We also will follow and potentially
investigate the role NewSQL database technology might
play in a scalable metadata service. The goal of NewSQL
databases is to provide the consistency and transactional
support of traditional SQL databases with the scale and
performance of NoSQL databases.

Initial prototypes of SAROJA’s metadata service have
been focused on relaxed POSIX operations, since the ma-
jority of HPC applications today require a POSIX inter-
face. Storing fully POSIX compliant metadata in a NoSQL

database is challenging considering NoSQL design criteria.
The main requirements for a prototype POSIX interface on a
NoSQL database include: scalability beyond a single node;
ability to remain consistent during node failures and network
partition events; good performance with the chosen database;
and ability to express POSIX metadata in the format of
the database client. This section explores the challenges
encountered when prototyping POSIX metadata within a
NoSQL database.

1) Metadata models for POSIX: One possible approach
to model POSIX metadata in a NoSQL database is to use the
namespace’s entire pathname as a key for each file. Values
of the key store metadata such as directory permissions and
extended attributes. Functions like readdir() scan the
key space of the database using the directory as the prefix
of the key, like ”/a/b/*”. The pathname-as-key data model
is relatively easy to implement and will work with a simple
key-value database. This model is optimized for creates and
lookups but operations like rename() require a significant
amount of deletions and creations to update the parent keys.

Another metadata model is a two-tier approach. In this
model, all application metadata is represented as a collection.
The key of a collection is its unique identifier, the value
contains a list of related collections. For POSIX metadata
the value contains the identifiers (like an inode number) for
files in a directory. Symbolic names, like POSIX filenames,
are stored separately from the hierarchy of collections. This
metadata model fits within any NoSQL database due to
its simple key/value format and can express non-POSIX
metadata as well. Transaction latency and server hot-spots
are a concern, as multiple queries are needed for a simple
lookup operation, and servers that store the upper collections
in a hierarchical set of collections will be accessed more
frequently. Keeping the collection lists consistent as multiple
clients update them is also a challenge.

IndexFS [26] uses a third approach that we have explored
in-depth, as its primary goal was also to represent POSIX
metadata in a NoSQL database. IndexFS is storage mid-
dleware that adds scalable metadata services to an existing
parallel filesystem. It achieves this by storing metadata in
a key-value database on the parallel filesystem. IndexFS
splits directories in the filesystem between multiple IndexFS
servers using giga+ [23], a dynamic subtree partitioning
algorithm. The key contains the parent directory ID, the
partition ID, and the hash of the name of the directory
entry. The value contains the inode metadata and a pointer
to the file on the parallel filesystem. This design experiences
minimal crosstalk between the IndexFS servers. In addition,
the developers have run with up to 128 metadata servers,
which is impressive. However, it is prototype code that does
not support renames across servers, and is not crash safe.
Our initial SAROJA prototype uses a data model similar to
IndexFS, to store metadata.



2) Metadata partitioning: In addition to how filesystem
metadata is stored, it is critical to consider how it is dis-
tributed between multiple servers. Three different methods
for distributing hierarchical metadata are outlined below. The
ability to define a metadata partitioning model depends on
the data model and database type used.

Dynamic subtree partitioning moves portions of a direc-
tory to other servers based on criteria like server load, num-
ber of files in a directory, or how often a directory or files
within that directory are accessed. This partitioning scheme
can adapt to changing workloads, and preserves metadata lo-
cality for workloads that can be handled by a single metadata
server. However, dynamic subtree partitioning introduces
complexity that can cause varied performance for similar
workloads. Some examples of dynamic subtree partitioning
include IndexFS with giga+, the current implementation of
CephFS, and a planned improvement for CephFS called
Mantle [29].

Static subtree partitioning replicates either the entire
directory hierarchy or portions of the directory hierarchy
between multiple metadata servers. Files that belong to
a directory are distributed between the metadata servers
via distributed hash tables. Static subtree partitioning is
best for workloads where the hierarchy does not change
frequently. Compared to dynamic subtree partitioning, no
work is required to redistribute metadata, which provides
consistent performance. However, this approach makes it
difficult to change the directory hierarchy and can adversely
affect metadata locality for some workloads. Some examples
of static subtree partitioning include ShardFS [35], Lustre
DNE [4], MarFS [5], and GlusterFS [1].

Random subtree partitioning distributes file and directory
metadata between metadata servers using key ranges or
hashing techniques. This model prevents directory hot-spots
and is an approach that is typically used to partition data
in NoSQL databases. However, random partitioning flattens
the namespace, reducing metadata locality. The pathname-
as-key data model discussed earlier could use this approach
to distribute metadata.

3) Metadata Consistency: As previously mentioned,
NoSQL databases typically sacrifice consistency for perfor-
mance. Most metadata operations in POSIX require locking
of the affected inodes or the entire filesystem: A NoSQL
database will not provide these semantics. One approach
that web-scale applications use with eventually consistent
databases is Multi-Version Concurrency Control (MVCC).
By marking versions of metadata as consistent, applications
can roll back to a known good state when inconsistencies
are detected, avoiding strict serialization via consensus.
Some future filesystems, like Intel DAOS [18] use a similar
technique to support a potential POSIX interface.

If the application requires strict serialization, consensus
algorithms such as PAXOS [16] will be necessary. Hosts
reach consensus by voting on proposals until an agreement

is reached. Many database projects (e.g. Google Spanner,
Google Megastore, Hadoop, etc) do implement PAXOS
or PAXOS-like variants to enforce consistency. However,
reaching consensus with hundreds of thousands of clients
is impractical if not impossible. Finding ways to eliminate
the need for consensus for most metadata operations is
desirable.

C. The Data path

For our proof of concept, we used Ceph as the primary
data store. Ceph is a software-based, scalable, distributed
storage system that is inherently fault-tolerant. As mentioned
earlier, the SAROJA architecture does not preclude the use
of a different object store such as Scality RING or Gluster
in place of Ceph.

The data path in an object storage system has several
functions. As part of our research, we studied several of
these functions in the context of large-scale systems. And
as part of the SAROJA experiment, we chose to delegate
other functions to off-the-shelf object storage that already
provides these services. We have observed that there is
ample opportunity for performance and scaling improve-
ment, achievable by redesigning some of these functions:
algorithmic mapping of object identifiers to storage servers
hosting distributed object shards; object resilience by means
of replication or erasure-coding; awareness of system failure
domains that inform object placement and redundancy across
servers; on-the-fly data recovery in the face of failures; data
movement services between various tiers and data stores
(cloud, archive, etc); and most importantly, efficient, highly
granular use of underlying memory, storage, and network
hardware to offer low-latency object access to applications.

Many of these capabilities are implemented as part
of the RADOS (Reliable Autonomous Distributed Object
Store)[34] layer in Ceph. We implemented a Ceph plugin
to SAROJA using the librados[3] C API. Datapath plugins
in SAROJA are agnostic to the top-level I/O interface used
by applications. The stripes of a POSIX file, binary objects
written to an S3 interface, and HDF5 files, are all stored
as RADOS objects. It is key to understand the difference
between these user-facing application objects and internal
on-media persistent storage objects. libsaroja will control
striping user application object data into multiple storage
objects. The current implementation uses a static approach to
track object extents (like Lustre or DVS[30]/Datawarp[13]),
where clients track the object ID and a list of servers that
contain stripe elements of that object. The client has the
file layout as it is statically defined, and contacts the correct
server in the list, for a given object ID and offset. It is
possible (though metadata-heavy) to extend this design so
the entire layout of a user file/object can be mapped by the
client from metadata placed in the scalable metadata service,
with each stripe a unique underlying object in the object
store.



Ceph has support for various low-level Object Storage
Daemon (OSD) back ends, each tuned to suit the hardware
and access characteristics of the underlying media where
the storage objects will eventually be persisted. Ceph’s most
mature back end is a module called FileStore, which depends
on a local under-filesystem. There are several other upcom-
ing and experimental back ends — BlueStore, MemStore,
and KeyValueStore — that improve efficiency when NVMe
flash devices and byte-addressable volatile or non-volatile
memory devices are used.

BlueStore avoids write amplification issues encountered
with FileStore, and reduces object access latency. It collo-
cates user data, OSD metadata, and write-ahead logs on a
given device. The user data objects are stored either directly
on a raw block device without requiring an under-filesystem,
or via the Intel SPDK engine that polls for completions
from user address space to optimize for low latency NVMe
devices. The OSD metadata and write-ahead logs are stored
on the same device as the associated user data, in a RocksDB
instance. RocksDB[7] leverages the Log-Structured Merge
Tree (LSMT)[22] data structure to lay out data efficiently
on flash devices.

As part of our research, we are also tracking potential
viability of Open-Channel[6] NVMe SSDs in the Ceph
data path. Open-Channel SSDs differ from traditional flash
devices by exposing the internal parallelism of the SSD
to the host, providing three benefits: I/O isolation, pre-
dictable latencies, and software-defined non-volatile mem-
ory. The LightNVM[8] stack provides enabling technologies
in the kernel and in userspace that would allow LSM-
Tree based key-value stores like RocksDB, LevelDB[2], and
WiscKey[20], to directly benefit from Open-Channel SSDs.

For the Ceph-based datapath, we favor a two-tier datapath
when both persistent memory and flash devices are available
in the configuration. Ceph supports both replication and
erasure coding at a Placement Group granularity. However,
support for read-modify-write operations required for byte-
level granularity in erasure coded pools, is still nascent.
There is also a performance penalty in erasure coded pools
due to the large granularity of erasure coded stripes, and
the need for two-phase commit during object modification.
With a two-tier model, libsaroja writes first to a replicated
pool using librados. Ceph will then manage migrating data
between the replicated pool and the erasure coded pool based
on preset caching policies. We expect this to perform well
since hot data will remain in the faster flash memory and
avoid costly erasure coding computations until the data is
cold enough to be de-staged. It is important to note that
Ceph does not allow for direct reads from the erasure coded
pool in this configuration, so data must be staged into the
persistent memory first. We see opportunity for improvement
here. At the time of this writing, RADOS clients are unable
to manually override the caching policies to force data to
be de-staged on demand. For a latency-optimized Ceph-

based SAROJA datapath, a replicated pool might thus be
stored in persistent memory, with the erasure coded pool
stored on NVMe SSDs. A potential path forward is to use
the BlueStore OSD back end on flash, and study RocksDB
coupled with an adaptation of MemStore to create a latency-
optimized, byte-granular PMStore for persistent memory
devices.

All components of the SAROJA Ceph data path —
including clients, OSDs, and MONs — communicate with
each other using the Ceph Messenger protocol abstraction.
Currently, three messenger types exist; a Simple messenger
that sends synchronous messages, an Async messenger that
sends messages asynchronously, and an Xio messenger that
leverages the Accelio RPC acceleration library to send
messages via RDMA over InfiniBand networks. The latter
two are experimental and are not yet production-ready.
Both the SimpleMessenger and the AsyncMessenger rely on
traditional TCP/IP and support only Ethernet fabrics. With
the SimpleMessenger implementation, an endpoint spawns a
new thread to service each connection, degrading the perfor-
mance of smaller-sized I/O operations. The AsyncMessenger
addresses this by offloading the communication progress to a
pool of threads and polling on them for completion. To allow
the SAROJA data path to be portable to multiple system
and fabric architectures, and to validate the fabric trends
discussed in Section II, we intend to extend the Messenger
abstraction to implement a libfabric plugin.

libfabric[12], designed by the OpenFabrics Interfaces
Working Group (OFIWG), comprises a set of portable inter-
faces that enable a tight semantic map between applications
and underlying fabric services. Specifically, libfabric soft-
ware interfaces have been co-designed with fabric hardware
providers and middleware developers, with a focus on the
needs of HPC users. Cray has been leading the OFIWG’s
efforts along with our partners, and we have started proto-
typing use of libfabric across our product portfolios. There
already exists an implementation of libfabric for the Cray
XCTM systems which has been shown to give initial good
performance for MPI and SHMEM micro-benchmarks[10,
24, 28]. Having such a plugin to Ceph would allow future
enhancements to libsaroja’s data path to leverage zero-copy
RDMA mechanisms for directly accessing data from a target
storage server’s NVMe SSD or persistent memory device.

D. Presence and Consensus

The amount of user interaction with SAROJA is intended
to be minimal: The system should be able to adapt and
repair itself without user intervention. For example, a stor-
age device failure should cause the system to recover au-
tonomously and rebalance affected data onto another device,
notifying the user to replace a specific failed device. To that
end, the inventory and configuration along with consensus
and presence of SAROJA clients, servers, and devices must
be automated. This work has not been undertaken. Pro-
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visioning SAROJA clients and servers after discovery and
configuration must also be automated. We have investigated
the use of Apache ZooKeeper [14] for provisioning and
device management. ZooKeeper provides resilient, strongly
consistent configuration and synchronization for distributed
applications. For example, we can use ZooKeeper to store
the state and configuration of a server node and update it
when a new node is added or a node leaves the cluster.
Clients and other servers can watch the state of an item and
will be notified when there are changes. We are skeptical
that ZooKeeper itself will meet the scalability requirements
of exascale, even when hierarchically implemented. But we
believe that its simple yet elegant feature set will meet our
needs for initial prototypes. Further work in this area is
necessary to establish feasibility and design proposals.

IV. PRELIMINARY EVALUATION

While a system like SAROJA can be evaluated in multiple
dimensions, as we intend to do in the future, this section
presents our preliminary evaluations of the metadata and
data paths.

A. Metadata Path Evaluation

As a first step, it is desirable to understand how the meta-
data services offered by distributed object stores’ POSIX
clients perform in comparison to incumbent HPC parallel
filesystems. We used the mdtest benchmark, which is the de-
facto metadata evaluation benchmark in HPC, to compare
Ceph and Lustre. The specification of the experimental
platform we used is described in Table I.

Figure 3 shows the file creation rates of Ceph and Lustre.
As the number of clients were scaled up, each process
created 100 files within a common root directory. There are
several takeaways from these results. As one would expect,
the in-kernel Ceph client performs better than its FUSE
counterpart, as it is written natively using the VFS interface
and does not suffer the penalty of frequent user-to-kernel
address space copies. When the MDSs are bottenecked,
Lustre is able to better sustain the metadata operations as the
number of clients increases, while Ceph shows degradation
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in performance. And although Ceph outperforms Lustre
with lower client count, its file creation performance is
significantly lower than Lustre with increasing clients. We
have also observed that Ceph performs better than Lus-
tre with read-intensive metadata workloads, wherein stat()
performance reading multiple attributes of a file from the
filesystem appears to be consistently better with Ceph.
CephFS shows promise in its initial production releases, and
work is actively being undertaken by the Ceph development
community to improve metadata performance via multiple
MDSs and dynamic namespace partition techniques[29].
Still, CephFS has a long way to go before reaching parity
with more mature parallel filesystem implementations.

We have also started to validate the SAROJA metadata
model with the prototype FUSE filesystem (described in
Section III-A) that emulates POSIX on libsaroja, and we
have taken a few initial measurements as a functional test.

Figure 4 shows our preliminary results benchmarking
metadata operations with a fixed number of clients and tasks,
while varying the number of Apache Cassandra servers.
This experiment was run on 56 compute nodes of a Cray
XC system, with 4480 MPI ranks in total (80 tasks per
node) running the mdtest metadata benchmark. Each rank
created 500 files in its own unique directory. All Cassandra
client and server traffic was sent via TCP on the Aries high
speed network. Cassandra version 3.10 was used with the
default configuration, except the concurrent read and con-
current write parameters were increased to recommended
values based on the number of cores. Re-purposed com-
pute nodes were used for servers, so tmpfs was used for
Cassandra data storage. Since we intended to study just
the scaling trends, Cassandra data replication was not used,
nor was Zookeeper-based distributed locking. Clients cached
metadata to reduce the number of round trips required to
create a file. We wanted to compare the results to a raw
Cassandra write benchmark and also evaluate performance
for a POSIX application that can tolerate eventual metadata
consistency.

Although initial untuned benchmarks are underwhelming,
we are encouraged by these results as strictly a functional



Ceph Lustre

Software Version v11.0.0 v2.7.1
Object Servers 4 4
Number of SSDs 24 24
Replication Factor 1 N/A
Number of MDS 1 1
Storage Backend BlueStore 1 OST-per-SSD
Fabric interface IPoIB IPoIB
Network driver SimpleMessenger sockets LND

Table I
DATA PATH EXPERIMENTAL SETUP
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test of POSIX on NoSQL. 56 clients reached their maximum
file creation rate with eight Cassandra servers. Running
a raw Cassandra benchmark with cassandra-stress on the
same configuration, we can achieve approximately 100,000
write operations per second per server with linear scale.
The data model used in the SAROJA client was used for
the raw Cassandra benchmark. We intend to retry this test
with a version of mdtest that can access SAROJA directly
rather than via FUSE, as this may be inhibiting performance.
In addition, a thorough investigation of scalable database
technologies is needed, along with each database’s unique
potential for optimization, for the higher transaction counts
and consistency guarantees expected of a storage metadata
service.

B. Data Path Evaluation

To evaluate the data path, we configured two small
identical storage clusters, one running Ceph, and the other
Lustre. Table I outlines the configuration used for the two
clusters. While these clusters are not representative of real
deployments by any measure to be able to evaluate scaling
trends, they are sufficient to study the relative performance
characteristics of each. Note that the replication factor of
Ceph was set to 1 to allow for a comparable configuration.

We ran the widely-used IOR benchmark to study the I/O
throughput, with client MPI processes ranging from 1 to
128. Figure 5 here depicts the mean and absolute peak
throughput values for Ceph and Lustre across 10 iterations.
From the data, it is evident that Lustre outperforms Ceph

when considering the absolute peak throughput, and vice-
versa on average. Lustre is able to better utilize the band-
width provided by the 24 underlying SSDs. It is also clear
that 32 client processes are able to saturate the bandwidth
of the storage devices backing Ceph and Lustre. With
over-subscription of clients, which is a common scenario
in several large-scale deployments, the Ceph data path is
relatively able to handle the load better. Nonetheless, the
key takeaway from these results is that the Ceph data path
has potential for use in future HPC storage systems. With
the performance considerations and optimizations discussed
in Section III-C, we believe that the gap in performance can
be further reduced.

V. RELATED WORK

There is a large body of research in literature that studies
the various aspects of storage software design for exascale
systems. This section aims to summarize the efforts that are
related to our work.

Scaling the metadata services of parallel filesystems has
been a continuing topic of research for several research
groups. The availability of high-performance databases in
the enterprise world (such as HBase, Cassandra, CalvinDB,
etc.) have paved the way for solutions like CalvinFS, Cas-
sandraFS, and GiraffaFS. These solutions represent a POSIX
namespace by denormalizing the hierarchy and storing the
entire pathname with each key (like the Pathname-as-key
data model discussed in Section III-B). IndexFS[26] and
ShardFS[35] are two related solutions from Carnegie Mel-
lon University, which leverage node-local flash-optimized
databases like LevelDB to store metadata and small files,
while delegating large-file management to the underlying
parallel file system. DeltaFS[37], which builds on the con-
cepts of IndexFS, is storage middleware that explores a
server-less filesystem design for exascale. More recently,
HopFS[21] proposed by Niazi et al. studies the impact of
using a NewSQL database as the metadata layer for HDFS.

Likewise, there have been quite a few efforts that study
and propose the use of object storage technologies in the
supercomputing storage hierarchy. The Distributed Applica-
tion Object Storage (DAOS)[18] layer, the outcome of a joint
effort between several US National laboratories and industry
partners, is a persistent storage interface and translation layer
between user-visible objects and the requirements of under-
lying storage hardware. Mero[11] is a next-generation object
store developed by Seagate. MarFS[5] from researchers at
LANL, much like SAROJA, decouples the metadata and data
management, and promotes the use of object stores in the
datapath. The MarFS authors have demonstrated[9] up to
800 million file creates per second using benchmarks that
replicate the underlying MarFS protocols.

The goals of the above efforts and ours are well-aligned
and complementary. We have learned from and utilized the
findings of several of these efforts in our research and



SAROJA prototype design. We are also engaged with several
of these groups to collaborate and progress the notion of
making object storage technologies viable as the primary
storage tier for large-scale supercomputing, cluster, and
analytics systems.

VI. SUMMARY AND CONCLUSION

In summary, the scaling challenges of supercomputing,
coupled with concurrency and enterprise reliability require-
ments of cluster and analytics storage, are being met with
disruptive solid state storage device types and flat, scale-out
software defined storage topologies. A trend across these
use cases toward a 3-tier storage hierarchy comprising node-
local cache, system-wide primary, and enterprise-wide cold
storage is viable, perhaps likely. The opportunity brought
about by these inflection points in storage system design
could precipitate evolution beyond current parallel file sys-
tems toward converged, object-based system infrastructure
and management, with the potential for diverse workflows
to share common object APIs, formats, data, and semantic
metadata access in the exascale timeframe.

Cray’s SAROJA experiments represent one path in an
ongoing quest for a smooth transition toward this conver-
gence, based on open-source initiatives, big data tools, and
newly minted object store features. Our user-level libsaroja
prototype demonstrates key concepts, abstracting applica-
tion object and search APIs from underlying file, storage
object, and scalable metadata via an extensible, pluggable
design. While our initial evaluations of Cassandra and Ceph
lacked luster, and Lustre’s maturity, they convinced us that
with work and product advancements to leverage flash and
persistent memory, NoSQL database and software-defined
object store technology can, with effort, become staples of
supercomputing.

We aspire to continue this effort, expanding libsaroja’s
capabilities to allow for a more comprehensive evaluation
of object storage technologies. We also intend to evaluate
the metadata and data paths at a larger scale to determine
whether our assumptions and preliminary results can hold
true. We are open to both feedback and collaboration from
the community and our customers. While it is still early
to postulate how the supercomputing storage landscape will
evolve over the next decade, we hope to continue our
efforts toward better understanding it and participating in
community efforts to satisfy our industry’s emerging storage
requirements.
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