
Theta: Rapid Installation and Acceptance of an
XC40 KNL System

Kevin Harms, Ti Leggett, Ben Allen, Susan Coghlan, Mark Fahey, Ed Holohan, Gordon McPheeters, Paul Rich
Leadership Computing Facility
Argonne National Laboratory

Argonne, IL
Email: kharms,tleggett,bsallen,smc,mfahey,eholohan,gmcpheeters,richp@anl.gov

Abstract—In order to provide a stepping stone from the
Argonne Leadership Computing Facility’s (ALCF) world class
production 10 petaFLOP IBM BlueGene/Q system, Mira, to its
next generation 200 petaFLOPS 3rd generation Intel Xeon Phi
system, Aurora, ALCF worked with Intel and Cray to acquire
an 8.6 petaFLOPS 2nd generation Intel Xeon Phi based system
named Theta. Theta was delivered, installed, integrated and
accepted on an aggressive schedule in just over 3 months. We
will detail how we were able to successfully meet the aggressive
deadline as well as lessons learned during the process.

Index Terms—XC40; KNL; deployment; integration; accep-
tance;

I. INTRODUCTION

In 2016 the Argonne Leadership Computing Facility [1]
(ALCF) acquired a new Cray XC40, named Theta, as part of
Argonne’s CORAL (Collaboration of Oak Ridge, Argonne and
Livermore) procurement for Aurora, ALCF’s next leadership
class supercomputer. Theta continues Argonne’s focus on
many-core processing and provides a new platform for com-
putational scientists to prepare codes for the next generation
of Xeon Phi platforms. Theta will become a resource under
the Innovative and Novel Computational Impact on Theory
and Experiment [2] (INCITE) 2018 program. Computational
scientists from around the world will have the opportunity to
compete for compute time on this platform. Theta will also
be the spearhead of a new ALCF program, the ALCF Data
Science Program (ADSP). This program targets non-traditional
HPC applications that focus on the areas of data analysis,
machine learning, deep learning and graph analytics among
others. The ADSP serves to explore and develop the Theta
platform for these new scientific uses.

Figure 1 shows stages of the Theta (ALCF-Lithium) project.
Specifically, Theta was delivered to ALCF on June 27, 2016
and was accepted on September 30, 2016 - just over three
months. However, site preparation started in March, 2016,
completing with final rack connections shortly after the system
arrived. Theta’s acceptance period was split into 6 phases:
Pre-Ship, Installation & Customization, Preparation, Early
Science Testing, Functional & Performance, Stability. Each
had specific entry/exit criteria whether that be milestones,
target metrics, or duration.

This paper has been submitted as an article in a special issue of Concurrency
and Computation Practice and Experience on the Cray User Group 2017.

ALCF-Lithium Project

System Shakeout

Early ScienceMachine 
Acceptance 

Tests

Machine Install, 
Customization & 
AT Preparation

INCITE/ALCC

Accept System
System Begins

Production

Operations

Planning

Site Prep

Science Enablement

Accept System
on Success

Functional and 
Performance Tests 

(Intel/Cray and 
Argonne)

Up to 7 Days
ATP-FP

Stability Test
(Argonne)
21 Days
ATP-S

Pre-Ship 
Tests at 
Cray 
(Intel/Cray)

Early 
Science 

Test 
Period

Transition to 
Operations

Fig. 1. Theta Installation and Acceptance timeline

We cover the key aspects of the physical installation process
and integration into our facility in Section II. The hardware
for the compute, storage, and support systems for Theta is de-
scribed in Section III. In Section IV, the software management
stack is examined, details of the porting and deployment of the
Cobalt scheduler are shared, and various strategies to improve
the systems are discussed. Finally, we look at acceptance test
results and baseline performance results of a set of benchmarks
and some applications in Section V, and highlight several
issues encountered during acceptance in Section VI.

II. INSTALLATION CONSIDERATIONS

Almost every new supercomputer requires modifying or
adding to the facility support services and Theta’s installation
was no different. Some of these were routine, such as installing
new electrical wall panels, while others had unique challenges
and required careful planning. Regardless of the scope, the
data center facility enhancements are typically done very close
to the delivery of the machine so that any last minute changes
to the machine’s facility requirements can be handled with-
out modifying recently completed work. Mechanical/cooling,
electrical, and flooring were facility areas modified for Theta.
While some were more straight forward than others, each pre-
sented challenges and, with Theta’s aggressive installation and
acceptance schedule, required coordination and management.
Also note that sufficient electrical and mechanical capacity
for 24 cabinets was installed, although the initial delivery was
18 cabinets. Designing for extra capacity has already paid off
greatly; in January of 2017, two more cabinets were added to



Theta and the installation was simple since no infrastructure
needed to be installed.

Mechanical work started on March 10 and completed on
June 20. The mechanical improvements included upgrading
an existing water loop to provide the cooling for both Theta
and our existing 10 PF IBM BlueGene/Q (BGQ) production
supercomputer, Mira. Having Mira and Theta share a common
water loop presented several challenges. First, the engineering
team had to design for the modified loop to accomodate
both the constant flow required by the BGQ direct water
cooling and dynamically changing flow required by the XC40
hybrid cooling system. Because Mira’s water cooling loop was
designed with the necessary stubs and valves to accomodate
the addition of a new water cooled system to the loop, the
piping and valves for Theta’s racks could be installed without
any impact to the existing water loop until it was time to
connect and power on the racks. It was necessary to upgrade
the impellers on the pumps serving the water loop to a larger
capacity to support the increased heat load. Since the pumps
were originally installed in an N+1 configuration, the pumps
could be upgraded one at a time without impacting normal
day to day operations - though the upgrades were scheduled
to coincide with regular maintenance windows to reduce risk.
Another interesting challenge the mechanical designers had to
overcome was the programming of the pump controls when the
impellers on the two separate pumps and their corresponding
capacities were different during this transition.

Electrical work started on March 24 and completed on
June 20. We were able to make use of spare electrical
capacity already present in the data center; however, that
meant coordinating work around Mira’s maintenance days and
other data center tenants to reduce the impact of necessary
outages. The electrical improvements were typical for such a
supercomputer, including the installation of new wall panels
and whips as well as two inline PDUs; however, the electrical
substations were on the opposite side of the data center over
120 feet away. Therefore, a copper busway was installed
overhead with 6 1200 Amp busducts, above the ceiling tiles
and lights, and over existing production PDUs, networking
racks, and disk racks. The actual datacenter ceiling is 20
ft high, so the workers had to use a specially constructed
scaffolding that could easily be separated into two parts and
moved easily among the production compute equipment while
hanging the busducts from the high ceiling. Safety awareness
was coordinated with all the data center tenants to ensure all
were aware of the added hazards from this overhead work.

The raised floor was also upgraded to provide support for
the XC40 cabinets. While that work only took several days in
real time, the work was spread over several weeks to reduce
the impact on other facility work in the data center. The
existing floor tiles and pedestals would support a max weight
individually of 925 lb while the XC40 cabinets, inline PDUs,
and Sonexion disk cabinets would all surpass this weight limit.
For example, the disk cabinets would weigh 4,000 lb and cover
two tiles. Therefore the floor pedestals were upgraded to 2 mm
thick steel and could support 9,000 lb, and the existing floor

tiles were replaced with FS300 tiles with support for 5,400
lb. An identical floor upgrade was completed for the Mira
installation just prior to its delivery as well.

After the new cabinets were installed, a hearing test was
conducted by the Argonne Industrial Hygiene group since the
noise level in the datacenter was noticeably higher. The report
indicated for the area around Theta that the sound in that area
measures from between 84 dBA to 93 dBA in front of Theta’s
blowers. ALCF has conducted tests that show baffles on the
intake blower cabinets can abate some of the noise. ALCF is
also considering acoustic barriers along exterior walls to abate
noise leakage into the building office area.

III. HARDWARE DETAILS

Theta is a Cray XC40 with self-hosted Intel Knights Land-
ing (KNL) processors with the Cray Aries interconnect and
a Cray Sonexion 3000 storage system. Figure 2 provides an
overall block diagram of Theta including connections to our
existing infrastructure. At the time of acceptance, Theta was
composed of 18 compute cabinets, 11 cooling cabinets, 1
management cabinet, and 4 Sonexion 3000 storage cabinets
with a total of 3240 compute nodes on 810 blades, 30 LNET
nodes, 60 DVS nodes, 3 MOM, and 13 Tier2 nodes. In January
2017, we added two additional racks to Theta for a total of
3624 compute nodes. Table I shows the various component
counts for Theta as of acceptance. We will examine the key
components in the following subsections.

TABLE I
THETA NODE ARCHITECTURE

processor Intel Xeon Phi 7230
cores/processor 64
core frequency 1.3 GHz1

sockets/node 1
DDR4/node 192 GiB
HBM/node 16 GiB

total node count 3240
total core count 207,360

A. Processor

All compute nodes on Theta feature the Intel Xeon Phi
model 7230. This KNL [3] variant has 64 cores arranged into
32 “tiles” where each tile has 2 cores. Each core has an L1 data
cache of 32KiB 8-way associative and the tile shares a single
1MiB L2 cache. Each core supports 4 SMT hardware threads
and has 2 AVX512 vector units. The KNL features dynamic
frequency scaling with a base frequency of the 1.3 GHz. A tile
can turbo boost to 1.5 GHz while 3 or more cores can turbo
boost up 1.4 GHz. The frequency can be scaled down to 1.0
GHz for power saving or thermal event responses. When the
instruction stream reaches around 40% of AVX instructions
the frequency drops to 1.1 GHz.

1See processor subsection for more detail.

2



Sonexion 3000
/lus/theta-fs0

Infiniband 
QDR Network

IBM ESS
10 PB

/gpfs/theta-fs1

Fig. 2. Block diagram of Theta system - credit Cray, Inc.

B. Memory

The KNL memory subsystem features two types of memory
which can be configured in several different modes. There is
16 GiB of high bandwidth Multi-channel DRAM (MCDRAM)
which is located on the CPU package and has a peak band-
width of around 450 GiB/s and a latency of 150 ns. The Theta
compute nodes also have traditional DDR4 DRAM populating
all 6 memory channels for around 90 GiB/s of bandwidth and
125 ns of latency. A unique feature of the KNL is a method
to provision the MCDRAM in different configurations at boot
time. The “memory mode” determines if the MCDRAM will
be used like a last level cache for the DRAM, in which
case the MCDRAM is not directly addressable. In this case,
a Theta compute node has 128 GiB of main memory, as
seen by Linux, and the hardware would transparently manage
the MCDRAM as a direct-mapped cache layer. The memory
mode can also be set to “flat mode” which provides direct
access to the entire MCDRAM. In flat mode the MCDRAM
appears as discreetly addressable memory to Linux, with the
NUMA distance set father away then DDR4 so that the OS
and runtimes do not allocate any of this memory by default,
leaving it under the control of the application programmer.
A combination of cache and flat modes is a hybrid mode
that enables splitting the MCDRAM into portions of cache
and flat, which are 25%/75%, 50%/50% and 75%/25%. In
addition to setting the memory mode, the “cluster mode” can
be configured. The cluster mode controls the NUMA affinity to

memory controllers and the tag directory locations on the on-
die mesh network. This mode can be set to all-to-all, quadrant
and sub-NUMA{2,4}. During our installation, we configured
the system for primarily two modes, 100% cache quadrant or
100% flat quadrant modes. Other modes were tested sparingly.

C. Network

1) Aries: The XC40 network is based on a high-bandwidth,
low diameter topology called Dragonfly [4]. The Dragonfly
network topology is constructed from a configurable mix of
backplane (referred to as green links), copper (black links), and
optical links (blue links). The XC40 implements the Dragonfly
network with the Aries [5] interconnect ASIC. Each compute
blade contains 4 Aries NICs and 1 Aries interconnect router
chip. Each Aries NIC is mapped to an individual compute
node and the 4 onboard Aries NICs are connected to the Aries
router chip. Each Aries ASIC communicates via a standard
PCI Express Gen3 16 host interface to each of the 4 compute
nodes on that blade. Network requests are issued from the
compute node to the NIC over the PCI bus. Network packets
are typically routed adaptively, on a packet-by-packet basis,
through the Aries network and therefore can leverage both
minimal and non-minimal routing paths. The XC40 system
has hardware and software support that allows the system to
handle certain types of hardware failures without requiring a
system reboot. In addition, the same technology allows for the
removal and replacement of compute blades without a system
reboot. However, blade warm swaps require a network quiesce

3



that stops all high-sped network traffic temporarily, which
will impact running applications. Because of this interruption
we have chosen to bundle up all compute blade work for
maintenance windows.

2) IB SAN: The installation of Theta had a key difference
from prior ALCF system acquisitions. Unlike previous sys-
tems, where users were migrated en masse from one stan-
dalone compute and storage infrastructure to a new, replace-
ment compute and storage infrastructure, it was necessary to
provide continuous parallel computing over the same storage
infrastructure used by both the Mira and Theta systems. To
do this, the existing Mira storage area network, based on
InfiniBand (IB), was upgraded to provide a number of features
specific to the included Lustre storage system (see Section
III-D), as well as to provide sufficient network capacity to fully
utilize the capabilities of the existing GPFS filesystems that
were to be shared between both systems. Along the way, new
challenges were encountered when dealing with the limitations
imposed by physically massive optical networks.

Figure 3 shows the logical configuration of the storage
area network expansion supporting Theta. The arrangement
of storage servers and Lustre LNET routers is based upon
the Lustre Fine-Grained Routing implementation designed at
the Oak Ridge Leadership Computing Facility [6]. The design
was modified to allow for the use of a director-class InfiniBand
switch, thus providing local switching for the Lustre filesys-
tem as well as backbone switching for reaching the GPFS
filesystems shared across multiple supercomputers.

Figure 4 shows connectivity between this new director and
the existing fabric directors. By keeping Lustre traffic isolated
through Fine-Grained Routing, contention is reduced between
the experimental Lustre filesystem and the existing production
GPFS filesystems. One important aspect of the installation,
however, isn’t easily illustrated in these block diagrams: the
director feeding Theta is located 150 feet (46 meters) from the
farthest InfiniBand-connected nodes in the Theta mainframe.

With such great distances between the director switch
and connected nodes, it was necessary to utilize 50 meter
long Fourteen Data Rate (FDR) InfiniBand cables. When IB
cables reach this length, problems begin to arise due to the
propagation delay of light in optical fiber. Similar to increasing
the size of receive windows on high-latency WAN links, it is
necessary to allocate larger buffers to have adequate space
to receive frames delayed by the length of these cables. For
InfiniBand, this is typically done by reducing the number of
Virtual Lanes (VLs) available on a link. Reducing the available
VLs allows each receive buffer to use a larger amount of the
limited memory available on a switch or HCA.

Unfortunately, making fabric-wide changes was out of the
question during the installation. With the aggressive schedule,
most work had to be done live and with Mira fully operational.
No disruptions could be tolerated that would impact filesystem
access. Typically, reducing available Virtual Lanes is done by
changing the setting on the subnet manager. However, the
actual negotiated VLs are only updated when a link is first
brought online. To accomplish this, individual switch port con-

Fig. 3. Theta network diagram - credit Cray, Inc.

IS5600
648p
QDR

IS5600
648p
QDR

IS5600
648p
QDR

IS5600
648p
QDR

SX6536
648p
FDR

384 
HCAs

384 
HCAs

384 
HCAs

384 
HCAs

Theta 
HCAs

Blue: 108x QDR

Red: 36x QDR

Fig. 4. ALCF Fabric Overview

figurations were modified to reach full line-rate performance.
The Mellanox SX6536 switch provides the ability to es-

tablish per-port Virtual Lane configurations. By reducing the
number of available VLs on the ports with 50m cables, full
performance was achieved without any modifications to the
existing fabric. A reset of the port and benchmark testing
quickly proved that this was a feasible solution for providing
adequate performance to the Theta system while resulting in
no impact to the ongoing work on the production Mira system.

D. Storage

The primary storage system for Theta is built using the Cray
Sonexion 3000 Scale-Out Lustre Storage System summarized
in Table II. Theta’s Sonexion 3000 consists of 28 SSU (Scal-
able Storage Units), Lustre metadata servers, and management
servers in four cabinets that are connected to the Mellanox
SX6536 described above. All of the servers in the Sonexion are
also connected to an internal ethernet management network.

There are two server types in the Sonexion 3000, servers
used to serve the Lustre file system and servers used to manage
the Sonexion itself. There are two Sonexion management
servers configured with an Intel Xeon E5-2609 v3 CPU with

4



six cores at 1.9 GHz and 64 GiB of RAM. There are 4
Lustre metadata/management servers and 56 Lustre data (OSS)
servers. The Lustre metadata/management and data servers are
based on Intel Xeon E5-2618L v3 each with 8 cores (HT
enabled) at 2.30 GHz and 64 GiB of RAM.

The two Sonexion management servers, the Lustre Manage-
ment Server (MGS), the first Lustre metadata server (MDS),
and the two additional Lustre metadata servers (Distributed
Name Space DNE/Auxiliary DNE Unit) are all installed in
separate 2U form factors. The two Lustre Object Storage
Servers (OSS) in a SSU are are SAS attached to a 84 drive
5U disk enclosure. There are a total of 82 SAS drives and 2
SSD drives in this enclosure. The SAS drives are 6 GB/7200
RPM drives and are configured using a parity declustered
RAID [7] code called GridRAID [41 (8+2+2)]. The GridRAID
configuration will present a pair of 41 disk RAID arrays
(Lustre OST), one to each of the two OSS servers in the SSU.
The two SSD drives are used by Lustre as journals for ldiskfs
functions and are not used to directly store Lustre file system
data. In the Theta file system there are 28 SSU’s, for a total
of 56 GridRAID OSTs, with a total of 2296 6TB SAS drives
in the file system.

TABLE II
THETA PFS SUMMARY

PFS Lustre GPFS
Clients 3240 2 60

Data Servers 56 60
Metadata Servers 4 60 (shared with data server)
LNET/DVS nodes 30 60
Capacity(useable) 9 PB 8 PB

Peak B/W 240 GB/s 400 GB/s 3

IOR 230-240 GB/s 150 GB/s 4

Filesystems: During the initial acceptance period Lustre was
also the /home file system but we have since transitioned to
using an existing GPFS file system for /home while Lustre
continues to provide the high performance PFS. The Theta
compute nodes are configured with Lustre 2.7.1 and the OSS
and MDS servers in the Sonexion are running Lustre 2.5.1. The
Lustre file system has 56 OSSs setup as active-active failover
pairs. Each of the 56 OSS servers is responsible for a single
OST when not in a failover state. If one of the OSSs in a
pair fails, the surviving OSS takes over the failed OSS’s OST
and serves both OSTs in the SSU. For the MDS servers, each
MDS also has a single MDT. This provides for a total of 56
OSTs and 3 MDTs. Currently, only one MDS/MDT is being
used as we aren’t yet exploiting the Distributed Name Space
feature.

During the acceptance period we also had a GPFS file
system mounted on Theta which is hosted on an IBM ESS
GL-4 system summarized in Table II. This system has 28
ESS-GL4 server pairs where each server pair has 4 JBOD

2Current 20 cabinet configuration has 3624 Lustre clients.
3Actual measured performance from Mira BG/Q.
4Performance limited by number of DVS nodes, number of FDR links, and

current tuning.

enclosures for a total of 6496 2TB SAS disks. The GPFS
file system is accessed on the XC40 nodes using Cray’s
Data Virtualization Service (DVS). Each compute node is a
DVS client and the IO is forwarded to a 60 node GPFS
cluster running on XC40 service nodes (Intel Xeon E5-2670
at 2.60GHz - 8 cores/HT enabled). The GPFS cluster in the
XC40 has remotely mounted the file system from the ESS
system. The GPFS file system is also remotely mounted on
the eLogin nodes via a GPFS cluster that spans all eLogin
nodes.

E. External Services

In addition to the 106 service nodes in the XC cabinets,
Theta also has 9 external serivce nodes: 6 external logins
(eLogins/CDL), 2 batch servers, and 1 purge server. These can
be seen on the left side of Figure 2 on page 3. The eLogins
are the gateway login and development servers for Theta’s
users. The eLogins mounted all of the Lustre and GPFS
filesystems described in Section III-D. During acceptance we
dedicated one exclusively for external Cray personnel use, one
exclusively for ALCF personnel use, and one exclusively for
the test harness (see Section V-A, page 7). The remaining
three were for general purpose login, compilation, and job
submission activities. The batch and purge service nodes were
not utilized during acceptance.

IV. SYSTEM SOFTWARE

A. Rhine/Redwood

To get a head start on understanding Cray’s system software,
ALCF staff met with both Los Alamos National Laboratory
(LANL) and National Energy Research Scientific Computing
Center (NERSC) staff. These meetings were to obtain an
understanding of what they saw as their best practices and
major issues. These meetings ranged from half-day meetings
of ALCF operations staff with visitors from LANL and
NERSC to multiple day visits of a single ALCF staff at LANL
to witness first-hand an OS upgrade. These meetings were
extremely valuable for ALCF providing ALCF an excellent
starting point to begin their partnership with Intel/Cray.

Theta was delivered with UP01 of Cray’s latest environ-
ment, Rhine/Redwood. Rhine/Redwood is the code name for
Cray’s system software stack, CLE 6.0/SMW 8.0, which was
released in December 2015. Rhine/Redwood is a dramatic
change in configuration management philosophy for managing
Cray systems. The previous environment, Pearl/Pecos, used
a shared filesystem for live configuration changes, whereas
Rhine/Redwood is based primarily around the Ansible con-
figuration management tool. At the time of Theta’s install,
Rhine/Redwood was extremely new with very few customers
using it and many Cray engineers still being trained on its use.
While the Cray install and integration team did a great job
getting Theta usable in a compressed timeframe, there were
some lessons learned described next.

Cray was responsible for configuring the machine for our
environment after installation to be used for acceptance. While
most basic configuration was straightforward, some more

5



complex or unique site configuration, like LDAP or interface
bonding, required more effort and coordination with ALCF
staff. The newness of Rhine/Redwood and the accelerated
acceptance schedule meant that there wasn’t much time to
develop best practices for configuration management in the
new Rhine/Redwood environment. However, since there would
be an unusually long period between acceptance and produc-
tion, the emphasis was on getting a working configuration
to meet our acceptance schedule. Even so, we did identify
some practices that would create a more stable acceptance
environment, aid in the post-acceptance knowledge transfer
from Cray to ALCF, and minimize the effort required to get
the machine into an operationally sustainable state.

Most importantly, it is critical to bring the various configu-
ration management locations under revision control as early
in the process as possible. Furthermore, it is important to
establish a simple policy on how revision control should be
used with different configuration management locations and
share that with your Cray integration team ahead of time.
Rhine/Redwood also includes a service called Simple Sync
that allows arbitrary files to be pushed out outside of Ansible
playbooks or worksheets. While this may be tempting to get
a configuration file out, it should be used sparingly, if at all.
It is hard, if not nearly impossible, to track who put the file
in Simple Sync and why, and trivial to break configuration
due to incorrect permissions or ownership. And while some
configuration changes will most likely still get lost in the heat
of the moment trying to get the system working for acceptance,
these practices should help capture the majority of changes
made to get a working system after acceptance.

B. Cobalt

The ALCF uses the Cobalt scheduler and resource man-
ager [8], which was originally developed at Argonne and
maintained by the ALCF. To maintain continuity for our users
and operations staff, Cobalt was ported to the Cray Linux
Environment. The port was done prior to the delivery of Theta
utilizing a test system at Cray, with a goal of ensuring Cobalt
was ready as soon as the Theta system was booted after
install. Since Cobalt is the SRM on all ALCF production
systems, which include IBM BlueGene/Q systems, general
Linux clusters, and previously on the IBM BlueGene/P, and
BlueGene/L platforms, it was imperative that the ability to
support the current ALCF science production environment
resources was maintained while extending the management
capabilities of Cobalt.

Cobalt utilizes a component-based architecture to maximize
reuse and reasonable consistency between different platforms.
To enable this support, we extended Cobalt’s component-based
architecture to include a component specifically intended to
communicate with ALPS as well as support job-to-resource-
association mechanisms that would be specific to the Cray
XC40 (Figure 5). The ALPS interface was chosen over Na-
tive mode due to the relatively short timeline leading up to
acceptance, the requirement for high reliability, and the much
cleaner abstraction layer. Additionally aprun itself would not

Fig. 5. Cobalt Component Structure on the Cray XC40

have to be reimplemented as it would under Native mode.
Due to the way aprun authenticates a run to a SRM-allocated
resource, additional infrastructure had to be added to the
user script launcher to allow Cobalt to compensate for ALPS
reservation timeouts, should job initialization take longer than
expected. This also accommodates possible on-the-fly node
reboots that are required to make use of different MCDRAM
and NUMA modes on the KNL processors (Section III-B).
These behaviors ensure that the user is able to properly
authenticate to the nodes reserved for their job. Since Cobalt
is replacing only the script forker and system components,
it is able to leverage all of its other functionality, allowing
us to use its preexisting queue handling, advance reservation
functionality, and auxiliary script plug-ins for rapid feature
modification and access control.

Initial work on Cray system support began with an exam-
ination of available interfaces for the XC40 in May 2015 so
that the work could be scoped and properly planned. Platform-
neutral groundwork was started on the new system component
in October 2015, as well as the finalization of the decision
to use the ALPS interface as opposed to the Native interface.
Direct tests with ALPS started in January 2016 with the arrival
of a high-fidelity ALPS test simulator package from Cray.
Cobalt was able to control a Cray-internal test system by the
end of March 2016, and had the features known to be required
for driving the Theta Acceptance Test suite by the end of April
2016. Initial integration of Cobalt with the Rhine/Redwood
configuration management systems was complete by the end
of April 2016 after a very successful week-long face-to-
face session between ALCF and Cray developers. Cobalt was
deployed to Theta, while it was in the factory, prior to delivery,
by Cray in June 2016.

It should be noted that the build and stabilization of the new
system component was greatly accelerated by a testing frame-
work provided by Cray that emulates a running Cray system
with different hardware configurations, as well as emulating
all ALPS behaviors provided by BASIL [9]. This simulator
allowed testing of communication to ALPS as well as checking
behaviors as though Cobalt was communicating with a real

6



system, and provides rudimentary scaling checks. Addtionally,
access to the small testbed system with early hardware (called
Kachina) combined with a week-long face-to-face meeting,
gave a great opportunity to test both Cobalt’s behavior against
a genuine system. Moreover, it provided a way to test and
integrate with the larger Rhine/Redwood management stack
and its configuration management and provisioning system,
and allowed us to leverage the experience that Cray had
in integrating other SRMs into the Rhine/Redwood software
stack. The factory installation of Cobalt helped establish
greater confidence in Cobalt’s functionality on the early system
configuration at scale as well as giving Cray engineers some
early experience running their tests through Cobalt. This early
integration is considered essential to a rapid acceptance as well
as rapid spin-up of early science development efforts as this
not only provided a robust batch scheduler on the system from
day one, but eliminated a major switch in running methods
between acceptance testing and user-facing work. Because
all tasks were being run via Cobalt or within a dedicated
reservation within Cobalt, determining utilization and machine
load was made much easier for acceptance testing. This
also allowed us to leverage an Argonne developed automated
testing framework that uses Cobalt for scheduling, managing,
and reporting outcomes of tests (Section V-A).

There were a few differences between the Cray XC40 and
the Rhine/Redwood software stack that required extra care to
accommodate when compared to other systems that Cobalt
supports. First is the mechanism that ALPS uses to commu-
nicate with SRMs in a language agnostic manner. BASIL is
a process that is forked with custom XML-formatted requests
sent to BASIL’s stdin, with custom XML-responses returned
via BASIL’s stdout [10]. Most of Cobalt’s processes are multi-
threaded for responsiveness during IO-bound and remote-call
work. Utilizing a POSIX fork once threads are running creates
a near-certainty of deadlocks due to parent locks being set
by the newly forked child process. While atfork() may be
used to force the release of these locks, numerous libraries,
including glibc, do not properly utilize this function. To work
around this limitation, Cobalt has a set of single-threaded
components known as “forkers” which are single-threaded
shepherd daemons who actually handle forking and tracking
all spawned processes, including prescripts, postscripts, and
user jobs. BASIL is invoked via the system script forker for
every ALPS instruction so that it may be run in a safe manner.

Additionally, we encountered an issue with “disabled” nodes
and their return to service. When a Cray XC40 system is
booted, nodes in distress may be put into a “disabled” state.
This prevents the nodes from interfering with the boot with the
side effect of the existence of these nodes being unreported
by most of the Cray software stack. This causes the node
to “disappear” from Cobalt on restart as the node no longer
appears in the machine’s inventory. When the node is later
repaired and swapped in, a fairly heavyweight request for
system inventory occurs to get full data on the node. Initially,
this caused a hang in Cobalt as the BASIL call processing
would ultimately time out, in addition to the node having to

be added on-the-fly back into Cobalt’s view of the machine.
This hang was corrected prior to acceptance, though the node
disappearance has other problems when constructing resource
reservations for the full system for maintenance as the node
either disappears across the restart, or the node cannot be
reserved due to its invisibility to Cobalt.

Cobalt’s job prescript and postscript was used to provide a
mechanism for on-the fly memory mode control via CAPMC.
One script checks and determines if a memory mode switch
is needed and a second postscript reverts the nodes back
to a default memory configuration. These were tested on
Kachina. Due to the long reboot times as well as early reboot
reliability concerns, this functionality was not used during the
acceptance test period. A set of queues were used for each
MCDRAM and NUMA mode configuration under test. Users
could queue up their jobs for their requested memory modes at
any time, and the the jobs would run when there were sufficient
nodes operating in the desired memory mode attached to that
queue. This allowed for tests of multiple configurations with a
moderate amount of administrative overhead. Work is ongoing
as to how to best automate these switches, particularly with
respect to workloads running at 20% of the machine or larger
in production, and minimizing the switch cost.

Management of user interactive shell jobs proved challeng-
ing in the eLogin environment. Due to the use of wrappers
that ssh and execute commands on a net node in the eLogin
environment, there were problems in aprun authentication to
a batch-mode ALPS reservation from the eLogins. This was
corrected by causing Cobalt’s qsub command to first log the
user into a MoM internal service node, invoking a sub-instance
of qsub from there, and then allowing the interactive mode run
to proceed. This interactive mode provides the ability for users
to run aprun from their shell, but it does not place the user on
the compute nodes, unlike cluster compatibility mode. This is
very similar to both the restrictions and is consistent with the
method of running that exists in the BlueGene environment.

Acceptance was run with an early version of Cobalt and was
run using the ALPS first-fit allocator. Draining of resources
for larger jobs was done either opportunistically by increasing
the score of jobs or utilizing holds to ensure that large jobs
ran right after machine maintenance periods, or by using
Cobalt’s advance-reservation mechanism to provide a similar
function. Immediately after acceptance a version was deployed
that provided resource draining with backfill behavior to
avoid starving large nodecount jobs. This has provided good
throughput as well as good utilization of Theta for early
science purposes.

V. EARLY RESULTS

A. Acceptance

Theta was installed in early July 2016 with an accelerated
timeline. The system completed testing and was accepted on
September 30, 2016. The testing stage consisted of 4 weeks
of acceptance testing and a two week period for running Early
Science [11] projects. We had approximately six weeks to
prepare and validate our test setup prior to beginning the

7



Fig. 6. Screen capture of Test Harness test instance

testing process. For the acceptance process, we leveraged the
ALCF Test Harness [12], which helped automate the building,
running, and validation of the test results, as well as provided
an archive of each job’s code, binaries, and results. The test
harness is a combination of a web backend where a user can
enter the test setup and an application backend that executes
on a node within the target system. Figure 6 is sample screen
shot of an individual instance of a test.

In our case, specifically, we ran the client program on one
of the Theta login nodes and the backend ran on an internal
ALCF virtual machine. The third part of the testing system
is a Git repository that holds all of the test sources, the build
scripts, and run scripts. The test harness executes a given test
by checking out the source, building the executable, and then
submitting the test through the Cobalt scheduler. When the test
executes, the script runs the executable and upon completion
validates the test’s performance and/or correctness. If the test
completed successfully with expected results, a zero exit code
is returned by the script. The script would return an exit code
1 if the application failed with a signal, such as a crash or
hardware error occurred. An exit code 2 or 3 would be returned
if the correctness or performance metric failed to match what
was expected. This system allowed us not only to rapidly
isolate particular failures, but also identify similar problems
across multiple applications or nodes.

In order to accelerate our schedule, we had to prepare these
applications prior to the delivery of Theta. The application
configurations and inputs were prepared on our existing ma-
chine Mira. This allowed us to establish our baseline values
that could be used for comparison of the results on Theta.
The build environment, however, is very different and as such
we needed some other way to prepare the build portion. For
this, we used NERSC’s Edison system [13], which had CLE
version 6 available. Edison provided us a platform to setup
our build scripts and tweak the application build setups. Once
Theta arrived we were quickly up to speed building and testing
our applications. The final piece of combining the Cobalt
scripts with the ALPS aprun command had to wait until Theta
was available as this was the first system with both of these
elements.

Once the acceptance testing processes began, it was essen-
tial to be able to isolate issues and understand failures that

occurred. In order to handle this, we implemented the job
failure analysis (JFA) processes that we use for our production
resources. This process is followed to analyze every job
failure. For any job failure, the associated standard output
and error logs for the job are examined along with the key
system logs. Tools have been developed that interact with the
scheduler to extract all the jobs that had a failure during a given
time period and then pull out events that occurred during the
jobs run time. These procedures account for every job failure
that occurred during acceptance. For any related failure a root
cause is identified, if possible. This job failure process not only
identifies all failures, but also any extreme variability between
job runs of the same application. The JFA process is critical to
establishing confidence in the system’s behavior by providing
a definitive understanding to any failure and the frequency at
which failures are occurring.

The evaluation of the system was done using a combination
of functional tests, benchmarks and science applications. A
total of 170 major test cases were defined, the bulk of
those being functional tests which covered various aspects
of the machine and software stack. Here we will cover the
benchmarks and the associated performance and then look at
the science application scaling results.

B. Benchmarks

The performance evaluation of Theta was done using the
Sustained System Performance [14] (SSP) method that was
developed by NERSC for the NERSC8 acquisition. The SSP
defines a performance for the overall system measured in
TFLOPs. The FLOPS for each application are set using a
baseline run on NERSC’s Hopper system using a single node.
For each application, the solver time is measured for a given
number of nodes and this time is used to compute the FLOP
rate. The FLOP rate is then scaled up to the full number
of nodes of the system. The final system SSP is then the
geometric mean of the individual benchmarks. For Theta, six
applications were considered for the SSP score: AMG2013,
GTC, MILC, MiniDFT, and MiniFE. Table III provides the
listing of the SSP results.

TABLE III
THETA SSP RESULTS

Benchmark Nodes Pi
AMG2013 768 0.012061731

GTC 1200 0.049908531
MILC 384 0.056735604

MiniDFT 47 0.392259086
MiniFE 2662 0.013050658

MiniGhost 768 0.124849456
Geomean - 0.052865462

SSP 171.2840965

The final SSP value was 171.28 TFLOP/s. For our evalua-
tion, all of these benchmarks were run under the KNL cache
quadrant configuration. For the memory bandwidth dependent
applications, we would have seen an improvement by running

8



the test case under the flat quadrant mode; however, we elected
to run all of our applications under a consistent mode.

In addition to the SSP benchmarks, we ran the Sandia
MPI Benchmark (SMB) message rate, STREAM Triad, and
I/O benchmarks. The SMB message rate benchmark measures
message rates for a given message size between pairs of end
points using 8 nodes. Table IV shows the results for 8-byte
and 1024-byte messages using the pair-wise method.

TABLE IV
THETA SMB RESULTS

Message Size Message Rate
8 byte 16.1 mmps

1024 byte 7.3 mmps

The STREAM [15] benchmark measures memory band-
width for different workloads although we just examined the
Triad result. Given the different memory and NUMA mode
configurations the KNL offers, we ran this benchmark under
the different configurations although the majority of all other
testing was done using cache mode. Each test was done using a
single node with 64 MPI processes per node each with a single
thread. Table V show the results for the different memory
modes with the cluster mode being set to quadrant for all
cases. The size reported in Table V is the total size reported
by the STREAM benchmark for all of the arrays used.

TABLE V
THETA STREAM RESULTS

Mode Size (GiB) BW (GiB/s)
Flat 7.8 447.9

Cache 7.8 308.2
Hybrid (50/50) 7.8 442.5
Hybrid (50/50) 97.6 57.9

The I/O performance was evaluated using two I/O bench-
marks, IOR and mdtest. The IOR [16] benchmark was used
to evaluate the I/O bandwidth of the Lustre file system using
an optimal workload to get the maximum performance.

TABLE VI
THETA IOR RESULTS

Command Nodes Write BW Read BW
-a POSIX -e -g -[w|r]
-t 64M -b 12g -F -k -E
-o <file>

1792 247 GB/s 235 GB/s

The mdtest [17] application evaluated metadata rates in
terms of operations per second for different types of opera-
tions. The mdtest application run across the entire machine
testing the Lustre volume. The Lustre volume was configured
with no DNE support, so this test is measuring the rate of a
single MDS/MDT. Mdtest is run with the following arguments:
-i 1 -d /lus/theta-fs0/... -n 10.

TABLE VII
THETA MDTEST RESULTS

Operation Rate (ops/s)
Directory creation 24129.947
Directory stat 133717.879
Directory removal 11199.838
File creation 43459.599
File stat 130676.940
File read 93707.416
File removal 29923.935
Tree creation 194.406
Tree removal 42.541

C. Applications

Along with various benchmarks, we tested application
codes. These applications were primiarily used for testing
and validation of the compilers, libraries and hardware rather
than performance. Table VIII lists the applications tested. We
decided to test all applications in cache mode as we felt this
would be the primary usage model with the system initially.
However, although we used cache mode, we sized the input
sets to fit within 16 GiB of MCDRAM. This was done to
prevent odd artifacts in the strong scaling test cases where
a dataset could from residing in DDR to fitting completely
within MCDRAM. This resulted in a very small amount of
work per core at the large scale process counts.

TABLE VIII
THETA SCIENCE APPLICATIONS

Application Description Small
(nodes)

Large
(nodes)

Scaling
factor

AMG2013 Parallel algebraic multi-
grid solver

216 3072 14.2x

CAM-SE High-Order Methods
Modeling Environment
for atmospheric climate
modeling

256 1024 4x

HACC N-body methods for for-
mation of structure in col-
lisionless fluids under the
influence of gravity in an
expanding universe

96 3240 33.75x

HSCD Turbulent combustion 4 128 32x
LAMMPS Molecular Dynamics 128 2048 16x
NEKbone Computational Fluid Dy-

namics with spectral ele-
ment method

216 3240 15x

MILC Quantum Chromodynam-
ics (su3 rhmd hisq)

128 3072 24x

QBOX First-principles Molecular
Dynamics

216 3240 15x

QMCPACK Continuum Quantum
Monte Carlo

216 3240 15x

Figure 7 shows the relative scaling efficiency for each
application with the “small” size being the baseline. This
demonstrates the “out-of-the-box” performance with no de-
veloper time spent tuning these applications on the system.

9



 0

 0.2

 0.4

 0.6

 0.8

 1

NEKbone

HACC
QMCPACK

LAMMPS

CAM-SE

MILC
QBOX

AMG2013

HSCD

Sc
al

in
g 

ef
fic

en
cy

Application

Application Scaling

Fig. 7. Application scaling

VI. CHALLENGES

As with any new machine, especially one of the first of
its kind with hardware and software, problems are discovered
after installation. Theta installation and acceptance was no
different. One of the interesting things about our system is
that it was purchased from Intel as the prime, with Cray
as the integrator. This was a new situation for all parties
involved, and a significant concern for ALCF was how we
would work together during the deployment and acceptance
phases when the usual stress from tight deadlines and early
system unknowns would begin to arise. It took a few weeks,
but by the judicious use of targeted calls, explicit building
of trust between the three partners, and ensuring that we
had a strong ALCF/Cray/Intel on-site team working together
in a dedicated war room next to the data center stocked
with snacks and sodas, and fancy coffee and tea makers, we
were able to perform some of the fastest debug and fixes
of very complicated problems that we’ve experienced in the
ALCF deployments to-date. Here we highlight a few of the
challenges we encountered and how they were resolved during
the accelerated schedule.

A. MILC Failures

MILC [18] is a QCD application that is heavily used on
our machines. It is also useful in stressing machines at scale
in ways that typical diagnostic programs don’t. Because of this
MILC is a staple in our acceptance test suite. During the final
preparations for acceptance, we were seeing approximately
50% failure rates of 3072 node MILC runs due to a kernel
panic. Smaller sized jobs did not exhibit this and the time to
failure was not consistent. The code and inputs were provided
to Cray and Intel. Finding the root cause proved difficult for
3 reasons. Job size - at the time, Cray only had one internal
KNL machine large enough to run the application. The time
to failure - the average time to fail was almost 2 hours. Most
problematic was that adding any instrumentation to discover
where in the kernel the failure was occurring caused the failure
to completely go away. A great deal of credit needs to be
given to Intel and Cray who worked tirelessly together over a

2 week period, eventually discovering a micro-code issue and
developing a fixed BIOS.

B. Science Tests Readiness

A great deal of work was required to prepare the science
and benchmark codes for the acceptance tests. While early
preparations on other systems went well, the delivery and ac-
ceptance test preparation of Theta overlapped with other high-
priority ALCF activities. We had failed to gain a commitment
from the production side of enough people familiar with the
science codes and the test harness to adequately prepare. As a
result, the final development of the input decks and test harness
configurations were left to a very small set of people, most
of whom were not familiar with the science codes. This led
to some very late nights and weekends of scrambling to get
the codes tested and updated to run properly at scale, risking
the burnout of several deployment team members before the
acceptance test had even begun. For the next deployment, we
will ensure there is larger set of people, including a lead for
each of the science codes, who are dedicated to the preparation
work regardless of what else is happening at the ALCF.

C. Early Science Test Period

One of our important activities prior to starting acceptance
is the Early Science two week test period. During this period
the Early Science projects are allowed onto the system and
tasked with running their codes at scale. We started this with
the Mira deployment, where we utilized it to track down and
debug some significant problems on the machine that would
otherwise not have been found until after acceptance. Because
of that work, we were able to begin running science at scale
on the day Mira’s acceptance was completed and to move to
production ahead of schedule. For time reasons, this period
was scheduled for Theta immediately prior to the start of the
acceptance test. Unfortunately, that was exactly the time we
needed to do a number of quick fixes requiring reboots and
major patch updates, which was frustrating to the users, Cray,
and the deployment team. In the future, we need to ensure a
minimum of a week between the early science test period and
the start of acceptance.

D. PDU Commissioning

Two power distribution units for the Sonexion and XC-40
management racks were commissioned prior to the delivery
of Theta. ALCF staff reviewed the commissioning report
and found numerous errors and inconsistencies. Accurate
commissioning reports are vital to ensure the safety of our
staff and proper operating environments for our hardware. The
errors discovered included numerous invalid voltage readings
which, if accurate, might have damaged equipment. While
these appeared to be data entry errors, they called into question
the methodology and diligence of the contractor involved.
The ALCF immediately rejected the findings and requested
that the contractor send a new technician to perform a new
commissioning report. After some lengthy deliberation, the

10



contractor remedied the situation, performanced a new com-
missioning, and produced a valid report. One lesson-learned
from this experience is that such work by contractors ought
to be observed by ALCF subject-matter experts. This would
perhaps help to reduce the schedule impact of any discovered
issues.

E. Flat-Quad Performance

Early in the preparation phase we compiled and ran all of
the SSP tests to ensure that they completed and met their
anticipated performance targets. The preliminary results were
inline with results achieved at the factory. However, once the
functional and performance phase (ATP-FP) had begun, the
tests meant to be run in the flat-quad memory mode were
performing about twice as slow as they should. Working with
Cray and Intel we were able to determine that a specific
patch set that had been applied during the integration phase
to fix an unrelated issue was the cause. Normally the fix
would be simple - back out the problematic patch set and
rerun. Unfortunately there were multiple challenges. First,
because ATP-FP had officially started, no changes to software
or configuration were allowed. If any needed to be made, ATP-
FP would have to be restarted with all already completed jobs
having to be rerun. These flat-quad jobs were run at the end of
ATP-FP so this would have added at least 3 more days to the
schedule to rerun everything again. Second, the problematic
patch set was necessary to fix a blocking issue so a new patch
needed to be developed to fix the performance issue. Cray
quickly developed a patch and tunings for these benchmarks
to run fast enough under the cache-quad memory mode to
achieve our SSP targets. Once ATP-FP was completed, we
briefly booted with the patch to verify that the problem was
solved and then returned the machine to the official acceptance
configuration. These performance tests have been added to the
ALCF regression test suite used to exercise the system after
each major installation.

VII. CONCLUSION

ALCF received, installed, and accepted a Cray XC40 named
Theta in just over three months from late June 2016 to
September 2016. ALCF did a significant amount of prepratory
work from facility enhancments (busduct, increased weight
capacity, water loop, and even cable trays) to designing and
installing the IB SAN for the Sonexion 3000, and a GPFS
filesystem to porting the Cobalt scheduler that was ready for
Theta day one. This prepratory work made it possible to
begin testing benchmarks and applications soon after power
on. There were several issues that were identified, some that
required a lot of expert work by ALCF, Intel, and Cray (during
and after acceptance.) Regardless, acceptance was started just
2 months after delivery and after a 4 week acceptance period,
Theta was accepted.

ACKNOWLEDGMENT

This research used resources of the Argonne Leadership
Computing Facility, which is a DOE Office of Science User
Facility supported under Contract DE-AC02-06CH11357.

We would like to recognize all the ALCF staff who con-
tributed on the rapid integration efforts and acceptance testing.

We would like to thank the following Cray personnel for
their extraordinary efforts: Joe Glenski, Richard Walsh, Clark
Snyder, Jon Bouvet, Mike Solari.

We would like to thank Jacob Wood and the Intel system
debug team for their extraordinary efforts.

REFERENCES

[1] [Online]. Available: http://www.alcf.anl.gov
[2] [Online]. Available: http://www.doeleadershipcomputing.org
[3] A. Sodani, “Knights Landing: 2nd generation Intel Xeon Phi processor.”

Hot Chips ’15, 2015.
[4] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven,

highly-scalable dragonfly topology,” in Proceedings of the 35th Annual
International Symposium on Computer Architecture, ser. ISCA ’08.
Washington, DC, USA: IEEE Computer Society, 2008, pp. 77–88.
[Online]. Available: http://dx.doi.org/10.1109/ISCA.2008.19

[5] B. Alverson, E. Froese, L. Kaplan, and D. Roweth, “Cray XC series
network.” [Online]. Available: http://www.cray.com/sites/default/files/
resources/CrayXCNetwork.pdf

[6] D. A. Dillow, G. M. Shipman, S. Oral, and Z. Zhang, “I/O congestion
avoidance via routing and object placement,” in Proceedings of Cray
User Group Conference (CUG 2011), 2011.

[7] M. Holland and G. A. Gibson, Parity declustering for continuous
operation in redundant disk arrays. ACM, 1992, vol. 27, no. 9.

[8] COBALT: Component-based lightweight toolkit. [Online]. Available:
http://trac.mcs.anl.gov/projects/cobalt

[9] basil(7) Miscellaneous Information Manual, April 2016.
[10] apbasil(1) General Commands Manual, June 2012.
[11] “ALCF Theta Early Science Program.” [Online]. Available: https:

//www.alcf.anl.gov/early-science-theta-cfp
[12] E. Pershey, “Automated testing of supercom-

puters.” [Online]. Available: https://www.alcf.anl.gov/files/
AutomatedTestingofSupercomputers\ 0.pdf

[13] “Nersc edison system.” [Online]. Available: http://www.nersc.gov/users/
computational-systems/edison/

[14] “Sustained system performance.” [Online]. Available: http://
www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/
trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/ssp/

[15] J. D. McCalpin, “Memory bandwidth and machine balance in current
high performance computers,” IEEE Computer Society Technical Com-
mittee on Computer Architecture (TCCA) Newsletter, pp. 19–25, Dec.
1995.

[16] “Parallel filesystem I/O benchmark.” [Online]. Available: https:
//github.com/LLNL/ior

[17] “mdtest.” [Online]. Available: https://github.com/MDTEST-LANL/
mdtest

[18] “MIMD Lattice Computation (MILC) Collaboration.” [Online].
Available: http://physics.indiana.edu/∼sg/milc.html

11


