
Using Open XDMoD for accounting analytics on the Cray XC supercomputer

Thomas Lorenzen
Danish Meteorological Institute

tl@dmi.dk

Jason Coverston
Cray

jcovers@cray.com

Abstract—As supercomputers grow and accommodate
more users and projects, the system utilization and
accounting log files grow as well, often beyond easy
native comprehension and thus requiring a flexible
graphical tool for accounting analytics. This
presentation will depict the joint effort of the Danish
Meteorological Institute, DMI, and Cray to adapt Open
XDMoD, http://open.xdmod.org, to the DMI Cray XC
supercomputer. Extensions to the Cray RUR framework
that monitor metrics of particular relevance to the site
have been embedded into Open XDMoD and will be
presented as well. This will show Open XDMoD to be a
flexible tool for use with the Cray XC supercomputer,
with strong potential for extending metrics ingestion and
graphical presentation in numerous ways.

Keywords—Accounting analytics, RUR, PBS Pro, Open
XDMoD.

I. INTRODUCTION AND MOTIVATION
Supercomputers, even those of modest size, are a

significant investment, and thus stakeholders are in
continuous need of ensuring proper return on investment.
As supercomputers become increasingly complex with
several specialized components, there is also elevated need
to ensure that each of these are used appropriately.
Additionally, stakeholders are most often in need of
simplified graphical views as opposed to long tabular forms
filled with numbers. Thus, a supercomputing facility must
today be accompanied by an appropriate graphical analytics
engine, which can analyze usage profiles to both oversee the
system utilization and to quickly pinpoint possible
suboptimal usage scenarios.

At the Danish Meteorological Institute, DMI, the

supercomputer is the central nerve in the production of
atmosphere, ocean, and climate forecasts. However, the
supercomputer is still only a part of a larger production
chain which includes pre- and post-processing on numerous
peripheral servers, all of which are equally important in
ensuring timely delivery of products. For seamless usage
analysis and capacity planning across the production line, it
is therefore important to fully integrate such a tool, which is

agnostic to the different Workload Management tools in use
across the different platforms.

Together, Cray and DMI surveyed the internet for such
analytics tools and found Open XDMoD [1]. This merited
further exploration, in particular due to it supporting back-
end accounting logs for several Workload Managers,
including the possibility of adapting to local customizations
of accounting data output produced from such Workload
Managers. This latter part appeared most appealing in
connection with the presentation Enhanced Job Accounting
with PBS Works and RUR [2], which discusses integrating
RUR [3] statistics into accounting logs via the hooks
framework of PBS Professional [4]. This paper outlines how
DMI together with Cray has prototyped extending the
gathering of RUR statistics and the seamless inclusion of
these metrics into the accounting logs of PBS Professional
for subsequent visualization and analysis with Open
XDMoD as a graphical front end.

II. THE SITE AND SYSTEM
The Danish Meteorological Institute, DMI, is the

national meteorological service responsible for forecasting
the evolution of weather, ocean, and climate for the
Kingdom of Denmark. As part of this obligation, DMI is
using supercomputers to execute the numerical models
governing these evolutions in order to produce the best
possible forecasts for society.

In preparation for a future of tight collaboration between
the national meteorological services of the Nordics, DMI
entered into a partnership with its Icelandic sister
organization IMO, the Icelandic Meteorological Office. The
DMI supercomputer is located on the premises of the
Icelandic Meteorological Office with IMO staff having
responsibility for site infrastructure. Thus, the weather
forecasts for the Kingdom of Denmark have been
successfully produced from Iceland since spring 2016.

To ensure timely production and resiliency, DMI is
operating two identical XC systems, one for production and
one for research and development. Both systems share
Sonexion and Netapp storage systems with full and
transparent failover capability. Network communication is
secured by means of alternate paths between the DMI site
(location of forecasters) and the IMO site (location of the
supercomputer).

The design of each individual XC system is configured
to reflect the production nature of the model suites, which is

characterized by a chain of activities. Some chains are clear
candidates for the compute nodes and some are more
general purpose and limitedly parallel in nature and are
therefore well suited for repurposed compute nodes, also
called MAMU [5] nodes. At the site, MAMU nodes are
named GPC (general purpose computing) nodes to be
distinguished from the traditional compute nodes named
HPC (high performance computing) nodes. Henceforth, this
paper will use the terms traditional compute nodes and
repurposed compute nodes to refer to HPC and
GPC/MAMU nodes, respectively.

Both XC systems are scheduled and managed with PBS
Professional, ensuring proper resource allocation for both
production and research and development activities
according to priorities set by management. Scheduling and
resource management of the node types outlined above is
accomplished on the queue level by means of PBS Pro
vntype resource.

III. THE NEEDS AND TOOLS FOR LEVERAGE
The supercomputing tool is first and foremost a

production tool, but due to resiliency requirements, there is
a surplus of resources available for research and
development. In this context, development focuses on
continuous refinement of the operational forecast models,
whereas research includes climate simulations. All activities
must be monitored continuously to assess that project
priorities are met and also that resource usage is in expected
proportion to these priorities.

The need for a graphical tool to analyze system usage is
not limited to making pie charts for system usage across
projects. Nor is such a tool needed to dive into application
tuning for every activity. The need is somewhere in the
middle, where suspicious outliers for selected resources can
be identified and caught for further analysis. The reason
being is that users, who are typically researchers, cannot
generally be expected to be experts at optimizing code and
setup. The system analysts supply documentation and
written guidelines including best practices, but establishing
and maintaining these resources take time and do not
guarantee they are read and adhered to. Suboptimal choices
for code setup and execution are seen periodically, therefore
a tool is needed to catch the outliers, which can have
adverse effects on system utilization.

Thus, an overall need was identified for continuous
monitoring and retrospective analysis of system usage on
different levels of detail. This paper focuses on two items
(a) and (b) below, which have been identified as requiring
attention for pinpointing suboptimal user activity.

(a) The storage subsystems are shared resources, at least
when it comes to bandwidth between compute and storage,
but also when it comes to metadata activity. The Sonexion
OSS resources are separated between production and
research and development via lustre pools (the Sonexion
system still has the MDS as a shared resource). Thus, a
single research activity containing a suboptimal IO profile
can influence all activities, including those production in
nature, potentially slowing down their execution due to
shared resource bottlenecks. Catching such detrimental

activities in the act is not always possible and thus it is
important to seek a way to retrospectively identify such
activities.

 (b) The nature of repurposed compute nodes is to serve
multiple batch jobs at one time, each normally serial in
nature, which makes for minimal waste of resources as
compared to using traditional compute nodes, which are
each allocated exclusively to one single job. However, the
use of repurposed compute nodes is new at the site and puts
the demand on users to be aware of which type of node is
most adequate for their activity. It is important to
continuously inform and guide users to use the repurposed
compute nodes when appropriate.

The tools for metrics gathering and analysis will be
identified and described below as will the assessment of
mitigating the two problem types outlined above. Much of
this will be about taking off-the-shelf tools and modifying
them to local needs, followed by using them in a series of
actions. This will be done in the following sections, sections
IV through VII, ultimately leading to a revisit of the above
items (a) and (b) at the end of section VII. A brief overview
of the tools and their intended use is as follows:

A. Using RUR for extracting compute node metrics,
inclusive of non standard metrics (section IV)
The paper will primarily focus on collecting metrics

from traditional compute nodes. This node type is
exclusively allocated to one single job and is easily
identifiable. However, in light of the itemized topics above,
customized RUR plugins need to be developed. Thoughts
for how to extend the work to repurposed compute nodes
will be outlined in the summary section.

B. Executing RUR from PBS Pro hooks to collect metrics
on a per batch job basis (section V)
Traditional compute nodes are scheduled via ALPS,

with users allocating these resources at batch job submission
time. Thus, the execution of RUR on a per application basis
is less relevant than the execution of RUR in the prologue
and epilogue of each batch job. The PBS Pro hooks
framework is used.

C. Using PBS Pro hooks to embed collected metrics into
accounting logs to be read by Open XDMoD (section VI)
Resource utilization is logged in the accounting logs at

job completion, but the metrics collected by means of RUR
is not natively recognized by PBS Pro. However, PBS Pro
contains the possibility of defining local custom resources,
which then can be assigned values via the hooks framework.
A mechanism of assigning RUR metrics to local custom
resources will be exploited right before they are written to
the PBS accounting log.

D. Adjust Open XDMoD to be able to visualize and analyze
non standard localized metrics (section VII)
Just as with PBS Pro, Open XDMoD can be customized

to recognize special non standard resources from the PBS
Pro accounting logs. Thus, Open XDMoD can be extended
to seamlessly ingest such special metrics, which can then be

analyzed.

IV. THE BACK-END ADAPTATIONS – USING RUR WITH
CUSTOM METRICS

The RUR framework contains the ability to query
traditional compute nodes for different types of metrics and
statistics, including metrics such as energy consumption and
memory usage profiles. A base RUR installation contains a
number of ready-to-use plugins, while at the same time
serving as foundation for local development of site specific
RUR plugins. This has been convenient for the two problem
types (a) and (b) outlined above, which are not easily
addressable by the supplied ready-to-use plugins from Cray.
In the context of this paper, the simple plugin for querying
energy consumption has been fundamental as it adapts
rather naturally to the two problem types at hand.

For the case of logging, if an activity makes unexpected
and excessive use of IO subsystem resources, for instance
by performing numerous metadata operations (e.g.
continuously opening and closing the same file for small
scale writing of data),
/proc/fs/lustre/llite/<lus-cli-id>/stats
is an obvious candidate to probe at job start and at job end.
The format of /proc/fs/lustre/llite/<lus-
cli-id>/stats is described in [6] and essentially
contains a number of counters for bookkeeping and many
different lustre client activities, including number of bytes
read and written and number of files opened and closed
since starting the node as a lustre client. Sampling of
selected counters can be done with a customized RUR stage
plugin for each compute node allocated to a batch job both
at job start and end. The differences between the counters
are calculated and aggregated for all the allocated compute
nodes in the post RUR plugin. For reference, please consult
sample code snippets 1 and 2, which are easily fitted into
the same flow as seen in the RUR energy plugin.

Sample code 1 : Lustre metrics sampling, RUR stage
with open(''.join(glob.glob("/proc/fs/lustre/llite/*/stats")), 'r')
as f:
 for line in f.readlines():
 if re.match('read_bytes|write_bytes',line.strip().split()[0]):
 data[line.strip().split()[0]] = int(line.strip().split()[6])
 continue
 if
re.match('open|close|getattr|getxattr$',line.strip().split()[0]):
 data[line.strip().split()[0]] = int(line.strip().split()[1])
 continue

Sample code 2 : Lustre metrics aggregation, post RUR
stage

with open(inputfile, "r") as f:
 for line in f:
 linedata = rur_unwrap_post_data(line)
 input = json.loads(linedata)
 for a in ['read_bytes', 'write_bytes', 'open', 'close']:
 output[a] += input[a]

Additionally, /proc/stat is an obvious candidate to
probe at job start and end to determine if the allocated
compute nodes are being utilized appropriately, i.e. using
the entire node rather than one single core. The format of
/proc/stat is described in [7] and lists the top counters
for user, kernel, iowait, and idle states for each core. Other
states are present as well, but they are not relevant to the
compute nodes, only counters for states user, kernel, iowait,
and idle are accounted for. Use of hyperthreading is not
forced upon and thus the counters for these cores not

included, thereby only sampling the first half of the listed
cores of /proc/stat. Sampling of counters from
/proc/stat can be done at the beginning and end of a
customized RUR stage plugin for each compute node
allocated to a batch job. The RUR post plugin calculates the
differences between the counters for each of the user,
system, iowait, and idle states, and those are aggregated for
all allocated compute nodes of the job. Ultimately, these
aggregated totals for each state are then compared to the
sum of totals across all four states. This leads to four
percentage numbers, summing up to 100%, and indicates
how much of the job has spent in user, kernel, iowait, and
idle mode, respectively. Jobs with high idle percentages are
then suspected to be serial jobs, thus requiring further
inspection as potential candidates for repurposed compute
nodes. For reference, please consult sample code snippets 3
and 4, which are again easily fitted into the same flow as
seen in the RUR energy plugin.
Sample code 3 : Processor metrics sampling, RUR stage

with open("/proc/stat", 'r') as f:
 cpu, user, nice, system, idle, iowait, irq =
f.readline().strip().split()
 for i in range(nppu):
 cpu, user, nice, system, idle, iowait, irq =
f.readline().strip().split()
 data['user'] += int(user)
 data['system'] += int(system)
 data['idle'] += int(idle)
 data['iowait'] += int(iowait)

Sample code 4 : Processor metrics aggregation, post
RUR stage

with open(inputfile, "r") as f:
 for line in f:
 linedata = rur_unwrap_post_data(line)
 input = json.loads(linedata)
 output['nodes'] += 1
 totaltic=0.0
 for a in ['user', 'system', 'idle', 'iowait', 'irq',
'softirq']:
 totaltic += input[a]
 for a in ['user', 'system', 'idle', 'iowait', 'irq',
'softirq']:
 output[a] += input[a]/totaltic
 for a in ['user', 'system', 'idle', 'iowait', 'irq', 'softirq']:
 output[a] = 100*output[a]/output['nodes']

V. THE BACK-END ADAPTATIONS – EXECUTING RUR
VIA PBS HOOKS

Having defined customized RUR plugins for collecting
site specific metrics, now we show the execution strategy.
The target nodes for RUR are the traditional compute nodes.
Thus, RUR is closely affiliated with ALPS and is executed
in the prologue and epilogue of aprun. However, the target
goal for RUR is for it to be executed in the prologue and
epilogue of PBS Pro. The main reason for this is that users
reserve compute node access via PBS Pro and work
submitted typically contains several aprun invocations,
interspersed with serialized code executing on the MOM
node associated to the job. Retrospective usage analysis
becomes too fragmented if it is done for every aprun
invocation and the time spent in serialized code executing
on the associated front-end MOM node will also remain
unanalyzed. Fortunately, the execution of RUR on a per
batch job basis is possible by making use of the –j option
to rur_prologue.py and rur_epilogue.py. Using
the –j option with the batch job identifier as the argument
will result in RUR output loggings identifiable with fields
apid: 0 and jobid: <job-id>.

More recent versions of PBS Pro have introduced the
concept of hooks, which allow administrators to run custom
Python code during numerous stages of the batch job
lifecycle.

For example, a job’s requested resources can be
validated, modified, or amended via a queuejob hook
prior to entering a queue, or a signal can be sent to a user via
a runjob hook right before a job is sent to an execution
host. PBS Pro hooks are a replacement for the traditional
prologue and epilogue scripts via the
execjob_prologue and execjob_epilogue hooks.
Therefore, rur_prologue.py and
rur_epilogue.py are run from within these hooks. All
relevant structures and attributes of PBS Pro are available to
the hook code via import of the PBS module

import pbs
job=pbs.event().job

One caveat is ensuring that RUR is only engaged for
jobs allocating traditional compute nodes. This is
accomplished by checking for the arch resource and
engaging RUR if its value is XT as the following snippet
shows.

If (str(job.Resource_List.arch) == 'XT'):
 rurcmd = '/path/to/rur_{pro,epi}logue.py' + ' -j ' + job.id
 os.system(rurcmd)
 pbs.event().accept()

For future data gathering centered around repurposed
compute nodes, a similar probing attempt can be made to
ensure metrics are collected only on these types of nodes.

VI. THE BACK-END ADAPTATIONS – EMBEDDING RUR
METRICS INTO PBS ACCOUNTING LOGS

Having established the execution of RUR on a per batch
job basis, the final step is to have the RUR data embedded
into the PBS Pro accounting log. This is the foundation for
the graphical analytics tool. RUR outputs one file per batch
job in json format, which is then casted into the form used
in the PBS accounting logs, preferably on the fly, after the
post stage of RUR has finished at the end of the batch job.

PBS Pro supports the definition of custom resources, and
values can be added to these at will via the PBS Pro hooks
framework. The following PBS Pro qmgr command defines
the custom resources for the metrics gathered by RUR
described above.

create resource read_bytes,write_bytes,open,close, type=long
create resource idle,user,system,iowait type=float

Within an execjob_epilogue PBS hook, the RUR
output is parsed and assigned to these custom resources as
simply as the following snippet.

for dmistats_metric in ["read_bytes", "write_bytes", "open",
"close", "idle", "user", "system", "iowait"]:
 job.resources_used[dmistats_metric] =
rur_data[jobid]['dmistats'][dmistats_metric]

One caveat to be aware of is the execution order of
hooks in the case that a particular trigger point contains
more than one hook, as is now the case for the
execjob_epilogue trigger point. For this, the order
hook attribute can be set to control the order of execution of
several hooks. Hooks with a low value order hook
attribute are executed before those with higher values.

VII. THE FRONT-END ADAPTATIONS – GRAPHING AND
ANALYZING THE PBS ACCOUNTING LOGS

The former three sections resulted in extending PBS Pro
accounting logs, which - for jobs using traditional compute
nodes - contain custom metrics collected and aggregated
from the compute nodes allocated to the job. These
accounting logs will be the bread and butter for the front-
end presentation along with Open XDMoD. Open XDMoD
is a php based web application utilizing MySQL as the
storage back end. It is presumably able to run on all newer
linux distributions; however, only CentOS and Ubuntu seem
to be actually tested by developers. Previous versions of
Open XDMoD were supported on Ubuntu 14.04, and the
latest version fortunately also outlines a recipe for how to
establish a working Open XDMoD version on Ubuntu
16.04, thereby running on the latest Ubuntu LTS version.
The experiences gained for the results presented in this
paper stem from the latest Ubuntu LTS version being the
base.

Just as with RUR and PBS Pro, Open XDMoD will need
to be extended with the knowledge of the metrics, which are
not part of standard PBS Pro accounting log lines. It has
taken a bit of trial and error to identify all spots requiring
adaptation and the code changes will not be detailed in this
paper, since the changes, albeit simple, are somewhat
verbose. Instead, the following paragraphs identify the parts
of the Open XDMoD code that required adjustments. The
authors can of course be consulted for further details.

Accounting data shall be shredded (parsed) and ingested
(written) into the MySQL databases and tables via Open
XDMoD commands. The receiving MySQL tables were
modified for the custom metrics. A file named
db/migrations/cray/cray.sql was created containing
appropriate ALTER TABLE SQL commands to add
columns to the MySQL tables, correlating to the addition of
the custom metrics.

Each workload manager has its own format of
accounting logs. The present case of adding custom metrics
for shredding will be described accordingly. For this, a new
file Craypbs.php beneath
classes/OpenXdmod/Shredder was defined with
inspiration from Pbs.php in the same directory, but with
adaptation to the Cray version of PBS Pro containing the
amendment of custom metrics.

For ingesting the shredded data, the file
classes/OpenXdmod/Ingestor/*/Jobs.php was
adjusted to include the custom metrics.

Finally, for each custom metric, the files
Average<metricname>.php and
Total<metricname>.php were created beneath
classes/DataWarehouse/Query/Jobs/Statist
ics. These contain appropriate descriptions of the metric
and any possible processing thereof prior to visualization,
such as converting the ingested data from seconds to hours
or from bytes to megabytes .

After adapting the code base and installing Open
XDMoD, the accounting data can be shredded and
subsequently ingested into the storage back end with

commands xdmod-shredder -v -r <resource>
-f craypbs -d
/path/tl/<resource>/acctfile and xdmod-
ingestor –v, respectively. Doing this shredding and
ingesting on a daily basis by means of remote file copying
from the XC system is assigned to cron. With a recent work
week’s worth of accounting data, it is now time to
introduce the web interface of Open XDMoD.

The Open XDMoD web interface has a number of tabs
at the top for creating both dashboards and reports. The
help button in the upper right corner, which is context
sensitive, provides help in accordance to which part of the
Open XDMoD interface is presently being used. This paper
will not explore all the functionality, but rather will show
what can be visualized. For this, go to the Usage tab, which
can be considered the first place to dig around and get
experience before defining dashboards and reports.
Activating the Usage tab uncovers a list of metrics to be
selected, seen in the lower left part of the web interface.
When a metric is selected, the visualization will appear in
the lower right part of the web interface, and will reflect the
chosen display options, which can subsequently be adjusted
to taste. Clicking into the graphics presents further options
for drilling down into the displayed statistics. This allows
quick identification of which user and job type show an
unusual usage pattern with respect to the selected metric.
Many other use cases are possible, but with just these
simple handles it is possible to assess the items (a) and (b)
from section III.

(a) : As per the graphics in Figures 1 and 2, assessments
about abnormal lustre metadata activity can be made by first
selecting the tab for total count of lustre file open
operations, for example. This will create a graph of the total
number of such operations on a per day basis. Changing to a
bar chart via the Display button, followed by clicking in the
graph, presents a drop down menu. There, selecting to order
by PI, Principal Investigator (here equivalent to the unix
group) leads to the graphics in Figure 1. Clicking on a bar in
the chart will present other attributes and allows the user to
further drill down for this selected PI. This ultimately leads
to the graphics in Figure 2, where the count of lustre open
file operations metric has been drilled down to the node
level via PI -> User -> Node count. This interestingly shows
that for this user, his or her jobs which allocate thirty-two
nodes (blue bars) are very much lustre metadata intensive.
When approaching the user, as he or she presumably may
not know in detail which of his or her jobs could be lustre
metadata intensive, being able to narrow down the options
will certainly be helpful for quickly identifying the culprit.
Also very interesting are the bars with the second highest
lustre metadata operation count (red bars), which appear to
be only single core jobs and may be better suited for
repurposed compute nodes.

Figure 1 : Starting to look at lustre files being opened

Figure 2 : Drilling down to find out who and what

(b) : As per the graphics in Figures 3 and 4, one can see

suspiciously low processor utilization. Selecting the Usage
tab for total amount of idle processor time will create a
graphic of the total amount of idle processor time on a per
day basis. Change the graph to a pie chart to see a
summarization over the full time period instead of
visualizing statistics per day. This can be achieved via the
Display button, followed by clicking in the graph to activate
a drop down menu and selecting to order by PI, Principal
Investigator (here equivalent to the unix group). The results
are shown in Figure 3. Clicking on a section of the pie chart
will present other attributes and allow the user to drill down
into this selected PI. This ultimately leads to the graphics in
Figure 4, where the amount of processor idle time metric
has been drilled down as PI -> User -> Node count. This
confirms for this user, whose jobs were top rank in allocated
processor idle time, that the majority of this resource waste
is most probably due to jobs mistakenly being placed on the
traditional compute nodes when they should have been
placed on the repurposed compute nodes.

Figure 3 : Starting to look at idle processors

Figure 4 : Drilling down to find out who and what

VIII. FIRST EXPERIENCES AND FURTHER OUTLOOK
The presented examples are mostly to be considered as

initial experiences, but they seem promising as an intuitive
way to dive into the accounting statistics, either by a novice
to the system details who only cares for overall system
usage information, or by the systems analyst who wants to
dive deeper into how a particular resource is being used or
misused and by whom. The level of detail has been
restricted to batch job granularity, and thus does not go into
details of each individual ALPS aprun invocation in the case
that there are several inside of the same batch job. An
immediate thought for improvement would be to allow for
both batch job identifiers and ALPS identifiers to be made
part of the workload manager accounting and subsequent
presentation inside of Open XDMoD.

The examples provided in this paper are centered only
on the traditional compute nodes of the XC system, but
repurposed compute nodes have turned out to be a vital
resource and complement to ensure users have the right tool
available for the right job. However, in its present form,
RUR is tightly connected to ALPS and is thus not adaptable
to repurposed compute nodes. Furthermore, repurposed
compute nodes are not exclusively allocated to a single job,
so monitoring system counters like those in
/proc/fs/lustre/llite/*/stats or
/proc/stat does not easily translate to the use of
resources of a particular job executing on a repurposed
compute node. An idea to be investigated is that of cgroups

[8], a hook control mechanism inside of PBS Pro which has
recently become sufficiently mature to be relied upon.
Under the control of cgroups, information about resource
allocation and use for such jobs can be found in
/sys/fs/cgroup/*/pbspro/<job-id>. Querying
/sys/fs/cgroup/*/pbspro/<job-id> of
repurposed compute nodes from within PBS Pro
execjob_prologue and execjob_epilogue hooks
could possibly provide metrics for repurposed compute node
job analogous to those presented above for jobs targeted to
traditional compute nodes. By making the same types of
adaptations that were made for customized RUR accounting
metrics, these results would then easily make their way into
Open XDMoD.

The above examples just scratch the surface of the
mountain of possibilities, but they show that Open XDMoD
is easily capable of adapting to locally desired metrics.
Additionally, the XC system, enhanced with custom metrics
from RUR and potentially also metrics collected from the
cgroups framework, can seamlessly make its way into being
used in Open XDMoD. Furthermore, Open XDMoD is
capable of ingesting accounting data from a plethora of
different workload managers, making it a capable swiss
army knife tool for data usage analysis and capacity
planning across the full production line and at both the
management and the systems analyst levels. Thus, in this
world of data, it seems that the biggest challenge will not be
to make data available in a somewhat consistent form across
diverse compute platforms, but instead to provide “the right
information, at the right time, in the right place, in the right
way to the right person” [9].

ACKNOWLEDGMENT
Thomas Lorenzen and Jason Coverston thank their

respective employers for being given the possibility to
collaborate on this project and share its outcome with the
user community.

REFERENCES
[1] http://open.xdmod.org.
[2] Scott Suchyta, Enhanced Job Accounting with PBS

Works and Cray RUR,
https://cug.org/proceedings/cug2014_proceedings/inclu
des/files/pap198-file2.pdf.

[3] CRAY CLE XC System Administration Guide S-2393-
5204xc, section “Resource Utilization Reporting”.

[4] Altair PBS Professional 13.1 Administrator’s Guide,
section “Hooks”.

[5] CRAY CLE XC System Administration Guide S-2393-
5204xc, section “Service node MAMU”.

[6] http://doc.lustre.org/lustre_manual.xhtml, “Lustre
Software Release 2.x Operations Manual”, “Lustre
Parameters”.

[7] https://www.kernel.org/doc/Documentation/filesystems/
proc.txt.

[8] https://www.kernel.org/doc/Documentation/cgroup-

v1/cgroups.txt.
[9] Ashley Barker, The Complexity of Arriving at Useful

Reports to Aid in the Successful Operation of an HPC
Center
https://cug.org/proceedings/cug2013_proceedings/inclu
des/files/protected/pap193-file2.pdf.

